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EXERCISE 1:  BINOMIAL PROBABILITY AND LIKELIHOOD 

 

Please cite this work as:  Donovan, T. M. and J. Hines.  2007.  Exercises in 

occupancy modeling and estimation.  

 <http://www.uvm.edu/envnr/vtcfwru/spreadsheets/occupancy.htm> 
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OBJECTIVES 

• To understand the binomial distribution and binomial probability. 

• To understand the binomial maximum likelihood function. 

• To determine the maximum likelihood estimators of parameters, given 

the data. 

• To determine the precision of maximum likelihood estimators. 

 

BINOMIAL DISTRIBUTION 

This exercise roughly follows the materials presented in Chapter 3 in 

“Occupancy Estimation and Modeling.”  Click on the sheet labeled “Binomial” 

and let’s get started.  The binomial distribution is widely used for problems 

where there are a fixed number of tests or trials (n) and when each trial can 

have only one of two outcomes (e.g., success or failure, live or die, heads or 

tails).  The formula is written in the orange box below and on the 

spreadsheet: 
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The number of successes is usually denoted as y, and the probability of 

success is usually denoted as p.  A typical example considers the probability 

of getting 3 heads, given 10 coin flips and given that the coin is fair (p = 0.5).  

The left side of the binomial probability function is written f(3|10,0.5), 

where the vertical bar | means “given” and is read, “the probability of 

getting 3 heads, given 10 coin flips and the probability of a head (success) is 

0.5.”   Let’s break the right hand side of the binomial probability function 

into pieces.  The portion py and (1-p)n-y gives p (the probability of success, 

or heads) raised to the number of times the success occurred (y) and 1-p 
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(the probability of a failure, or tails) raised to the number of times the 

failures occurred.  But if you flip a fair coin 10 times, there are many ways 

you could end up with three heads. For instance, the first three tosses could 

be heads and the rest could be tails (HHHTTTTTTT).  Or the first seven 

could be tails and the last three could be heads (TTTTTTTHHH).  Or you 

could alternate getting heads and tails (e.g., THTHTHTTTT).  The portion of 

the binomial probability function in brackets is called the binomial 

coefficient, and accounts for ALL the possible ways in which three heads 

and seven tails could be obtained.  

 

Another example considers the probability of 15 sites are occupied by a 

species of interest out of a 59 total sites, given p = 0.3 (the probability of 

survival). This example assumes that detection probability (the probability 

of detecting a species that occurs on site, given the site is occupied) is 

perfect and can be ignored.  The left side of the binomial probability 

function would be written:    f(15|59,0.3).   

 

 

The binomial probability can easily be computed in a spreadsheet 

environment.  In the spreadsheet, you'd enter the following data:  n = 59 

(cell G4), y = 15 (cell G5), and p = .3 (cell G9).  Click on cell G4, and then look 

to the left of the formula bar…you’ll see that this cell has been named n.   

Naming cells is a spreadsheet option that we’ll sometimes use in this book to 

help clarify formulas.  (To name a cell, just click on the cell and go to Insert 

| Name | Define.  Or just click on cell and start typing the name where the 
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cell address is listed to the left of the formula bar.)  Similarly, cell G5 is 

named y, and cell G9 is named p.    

 

 

 

Given the entries for n, y, and p, you can use the canned Excel function 

called BINOMDIST to compute the probability of getting 15 occupied sites 

out of a population of 59 (cell G10), which is 0.0875099.  Click on cell G10 

and you’ll see the equation:  =BINOMDIST(y,n,p,FALSE), where 

BINOMDIST is the name of the Excel function, and the information in the 

parentheses are function’s arguments.  This particular function has four 

arguments: 
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In this example, the names of the cells used as arguments appear instead of 

the cell addresses (E.g., Number_s is the number of successes, and is 

entered in cell G5, which is named y, so y appears instead of G5).  Given the 

arguments of the function, Excel returns the binomial probability in cell G10: 

 

3
4
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n = 59
y = 15

p = 0.3
Binomial Prob = 0.0875099
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That is, the probability that 15 sites are occupied by the species of interest, 

given that 59 sites are surveyed and the probability of occupancy is 0.3, is 

0.0875.  Try different entries in cells G4:G5,G9 to get a handle on binomial 

probability.  But keep n under 100 or your spreadsheet will have 

computational troubles (unless you use scientific notation)! 
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GRAPHING THE BINOMIAL DISTRIBUTION 

It’s useful to graph the binomial probability to see the entire probability 

density function.  In cell F24:F124, we entered the numbers 0 through 100 

to represent the total possible number of successes (assuming a maximum of 

100 trials).  In cell G24, we entered the equation 

=BINOMDIST(F24,n,p,FALSE), which is the same as before except that we 

reference cell F24 for the number of successes instead of cell G5.  This 

formula is then copied down to cell G124, and the results are graphed.   
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This graph is the binomial probability function for n = 59, p = 0.3.  You can 

see that, given the data, it would be very unlikely to have few sites or more 

than 28 sites occupied by the species of interest, given the data.   The 

binomial probability function changes as n and p change. For example, below 

is the function for n = 100 and p = 0.5: 
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ASSUMPTIONS OF THE BINOMIAL DISTRIBUTION 

Two major assumptions of the binomial distribution are that the trials are 

independent, and probability of success is constant throughout the 

experiment.  (Note: sometimes these assumptions are violated.   If you flip a 

penny, the outcome of the next flip will be completely independent of the 

outcome of the first flip.  But animals are not pennies.   Pair bonds, home 

range size, dispersal, and family associations are examples of how the 

occupancy of one site can be linked to the occupancy state of another site, 

resulting in extra binomial variation.  How to deal with this problem is 

covered later.)  

 

BINOMIAL LIKELIHOOD 

But we often don't know p in field biology.  What we DO know is the number 

of successes or sites that are occupied (y) and the total number of trials or 
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sites (n).  The goal of this spreadsheet is to show how likelihood procedures 

can be used to estimate p, given n and y, with maximum likelihood 

procedures.  Just to keep things clear, from this point on let’s assume that p 

is the probability of occupancy, n is the number of sites in a population, and y 

is the actual number of sites that are occupied by the species of interest.  

 

In cell G4 enter n = 100, or the number of sites in the population. In cell G5 

enter y = 50, or the number of sites where the species of interest was 

found.  Note that y must be less than or equal to n.  We don't know p (cell 

G9), so you can either ignore this cell or delete the values in it.  Given those 

data, the goal is to find the maximum likelihood estimate (MLE) of 

occupancy, or p.  This equation is shown in the green box.   

 

 

 

Note that the binomial coefficient can be written in two ways:    

 

 

OK, how does the binomial likelihood function differ from the binomial 

probability function in the orange box?   

 

 

 

You should see that the information to the left of the equal sign differs 

between the two equations, but the information to the right of equal sign is 

identical.  The binomial probability function estimates the probability of 
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getting y successes, given n and p (where again the vertical line | means 

“given”), while the binomial likelihood function estimates the probability of p, 

given n and y.   

 

The spreadsheet is set up to compute the likelihood estimate for a variety 

of p estimates.   In column K, cells K4:K104, we let p vary from 0 to 1 in 

increments of 0.01.  For each p, the likelihood is computed in column L (cells 

L4:L104) - the formulae in these cells follow the formula outlined in the 

green box.   

 

 

 

Prove this to yourself by clicking on cell L7 (for example) and examining the 

formula in the formula bar.  The formula in cell L7 is 

=FACT(n)/(FACT(y)*FACT(n-y))*K7^y*(1-K7)^(n-y) .  (Note:  You could also 

have used the COMBIN function instead of the FACT function.  

FACT(n)/(FACT(y)*FACT(n-y)) can be written as COMBIN(y,n).  Also, if a 

cell is set to the scientific format, Excel can handle larger numbers). 

 

GRAPHING THE MLE 

For any given n and y, we can graph the likelihood profile, which tells us the 

likelihood value for each and every p estimate.  Examine the shape of the 

likelihood profile below.   
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Likelihood Profile
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On the x axis is p, which ranges from 0 to 1.  On the y axis is the likelihood 

value.  The graph shows the range of likelihood values possible, given the 

data.  The probability value where this graph peaks is the maximum 

likelihood estimate, or MLE; it shows where the likelihood is greatest.   

 

Graphing is one way to find the MLE.  There are other ways too.  For 

example, Excel finds the maximum likelihood value with a MAX function and 

displays it in cell H14.  The corresponding probability associated with this 

maximum likelihood is computed in cell G15 with a VLOOKUP function.  

Another way to find the MLE is to solve for it analytically.  The analytic 

solution is found by setting the first derivative of the likelihood equation to 

0, and solving for p.  This means (conceptually) that for every point on the 

graph, you estimate its tangent line and find the tangent line whose slope is 

0 – that’s the top of the curve.  The analytic solution to the maximum 

likelihood estimate is computed in cell H15.  Cells G15 and H15 should match 

each other (or be very close).   

 

THE LOG LIKELIHOOD FUNCTION 

The log likelihood function is analytically easier to work with than the 

likelihood function because it drops the binomial coefficient. The log-
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likelihood is computed in column M (cells M4:M104), and the formulae in 

these cells follow the formula outlined in the blue box.  Note that the equal 

sign has been replaced by a symbol which indicates that the log likelihood of 

p given the data is proportional to yln(p)+(n-y)ln(1-p). 

 

 

Note also that the log-likelihoods are negative, and that Excel returns a 

#NUM! error message for p = 0 and p = 1. 

 

The maximum log-likelihood is computed in cell H18 with a MAX function.   

The corresponding p value for this maximum is computed in cell G19 with a 

VLOOKUP function, and the analytic solution is computed in cell H19.   These 

two values should be the same.  

 

A graph of the log-likelihoods against p is also shown (labeled the log-

likelihood profile).  Notice that the shape of the log-likelihood function is an 

upside-down U, which looks comparable to the probability density function.   
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The peak of this graph is the MLE.  Compare the MLE for the likelihood 

profile and the log-likelihood profile - they should be the same.   

)1ln()()ln()),|(ln(    :LIKELIHOODLOG pynpyynpL −−+∝



Exercises in Occupancy Estimation and Modeling; Donovan and Hines 2006 

Chapter 1 Page 12 1/29/2007 

 

PRECISION OF THE MLE ESTIMATOR 

Now that we have found the MLE, given the data, we need to know something 

about the precision of this estimate.  The sampling variance of the MLE is 

directly related to the curvature of the likelihood function or the log 

likelihood function at its maximum.   Compare the MLE and shape when n = 

100, y = 50 (left) with n= 20, y = 10 (right):  
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Notice that both estimate the MLE as p(hat) = 0.5.  But notice also that 

when the sample size is greater, the variance around the MLE is tighter (left 

diagram) than when the sample size is smaller.  Take home message:  bigger 

sample sizes produce more precise MLE’s.   

 

Here are the log likelihood profiles for n = 100, y = 50 (left) and n = 20, y = 

10 (right).   
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Obviously the graph on the left has more curvature than the graph on the 

right (where the right graph is the lower sample size).  When the log 

likelihood profile has a “good” curvature, it suggests a lower variance in the 

MLE estimate compared to a profile that has “poor” curvature.  In the graph 

on the right, there are many values of survival probability that generate 

almost the same log-likelihood value, suggesting that you should not be 

overly confident that the MLE is actually 0.5.  Although both graphs have an 

MLE of 0.5, our “confidence” in this estimate is much lower when the sample 

size is smaller.  In a nutshell, getting the MLE is only the first step of the 

analysis – you also need to estimate the variance of that estimate before you 

can make inferences. 

 

Here’s a clip from FW663 lecture notes 
(http://www.warnercnr.colostate.edu/class_info/fw663/):  
 
“If the log-likelihood function is fairly flat, this implies considerable uncertainty and this is 
reflected in large sampling variances and standard errors, and wide confidence intervals. On 
the other hand, if the log-likelihood function is fairly peaked near its maximum point, this 
indicates some values of p are relatively very likely compared to others. There is some 
considerable degree of certainty implied and this is reflected in small sampling variances 
and standard errors, and narrow confidence intervals.  So, the log-likelihood function at its 
maximum point is important as well as the shape of the function near this maximum point.” 
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How exactly do we quantify the degree of curvature of a function?  We can 

determine "curvature"  at the MLE  by examining the second derivative of 

the log-likelihood function - this tells us how rapidly the likelihood function 

accelerates - the more rapidly it accelerates, the lower the variance (the 

sharper the log-likelihood function).  Fisher showed that the sampling 

variance of the MLE is the negative inverse of the second derivative, 

evaluated at the MLE.   

 

Let's walk through the calculations, starting at the beginning.  For any given 

point on the curve, the derivative is the slope of the line tangent to that 

point on the curve.  This is calculated in column O (cells O4:O104) with a 3 

point estimate.  Be sure to look at the formula - it's a slope equation.  In this 

case, we estimate the slope at a particular point on the likelihood surface by 

examining the values of the two points surrounding it.  If you’re drawing a 

blank right now, it might be useful to recall that for two points, (y2-y1)/(x2-

x1) provides a slope estimate.  For example, click on cell 06 and you’ll see a 

formula =(M7-M5)/(K7-K5).  This gives us the slope of the log likelihood 

function when p = 0.02.  The answer is 2695.1, which is rise over run. This 

means the function is almost vertical at this point.  Let’s try another point.  

What is the derivative of the log likelihood function when p = 0.5?  Click on 

cell 054 and you should see the formula =(M55-M53)/(K55-K53). The answer 

is 0, indicating that the slope of a line tangent to this point on the function = 

0, in turn indicating that it is the top of the function. 
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A graph of these slopes across all points is a function itself (scroll down to a 

graph labeled Log-Likelihood First Derivative), and is technically called 

Fisher’s score function.  If you have studied calculus, you wouldn’t use the 

spreadsheet approach to find the slope of a tangent line at individual points; 

instead you’d find the derivative of the function analytically, which is an 

equation that describes the change in the likelihood across all points taken 

together.  This equation is given in Column R.  The score is a vector of first 

partial derivatives solved analytically.  A plot of the first derivative over 

different values of p is shown below, and is technically written as: 

 
 

p
y)|LogL(p'Function  Score

∂
∂

== y  

 

 

 

 

When the score function is positive (y' > 0), it means the log-likelihood 

function is going up, and when it's negative (y' < 0), it means the log-

likelihood function is going down.  When this function is 0 (y'= 0), it means 

the slope at a given point on the original log-likelihood graph is 0, which 

happens at the peak of the curve, or the MLE.   Look at the graph labeled 

First Derivative.  You should see that where y' = 0, x is the MLE.   
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Play around with different values in cells G4 and G5, and examine the 

likelihood function, the log-likelihood function, and the first derivative of 

the log-likelihood function.  Look at the graphs and determine the MLE.   

 

Now we're ready for the second derivative of the log-likelihood function 

(which according to Cooch and White is called the Hessian).  It is just the 

slope of the plot of the first derivative values (or the slope of the slope of 

the original function), and is computed in cells P4:P104 with another 3 point 

estimate.  A graph labeled Log-Likelihood Second Derivative is shown.   
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So now that we have the second derivative estimates, we can compute the 

sampling variance as -1 * the inverse of the second derivative (evaluated at 

the MLE).  This formula is entered in cells Q4:Q104.  The variance of the 

log-likelihood function is computed in the spreadsheet with a VLOOKUP 

function in cell G20.  The spreadsheet looks up the MLE, and returns its 

associated variance. The analytic formula is computed in cell H20.  Cell G20 

should match cell H20 – but they may not match exactly because the 3-point 

approach is less accurate than the analytic approach.  Columns R and S are 

the analytic solutions of the first and second derivatives: 
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The purpose of all of this is to simply provide an intuitive look behind how 
variance is estimated for a parameter. We’ll return to this topic, as well as 
profile likelihood confidence intervals, in the single-species, single-season 
occupancy model. 


