Types of Studies

- <u>Experiment:</u> researcher manipulates 1 or more independent variables (<u>treatments</u>)
 <u>Experimental Unit (EU)</u> One replication of the experiment
- <u>Quasi-Experiment:</u> treatments not randomly assigned to EUs
- Observational: no variables manipulated by researcher experiment may not be ethical or feasible
- <u>Survey:</u> voluntary response

Causal inference can be made from an experiment

Association relationships can be inferred from an observational study

Experimental Error - Variation among identically treated EUs

- Natural variation among EUs
- Measurement variability
- Variation in treatment conditions
- Extraneous factors (nuisance/lurking variables)
- Interaction of treatments and EUs

Control Treatments - A benchmark for comparing experimental treatments

- No treatment
- Placebo
- Standard practice

3 Principles of Experimental Design

- 1) <u>Blocking (local control) to reduce experimental error</u>
- 2) Randomization to reduce hidden bias
- 3) Replication on an large number of subjects

Key Ingredients to identify:

A hypothesis Dependent variables Experimental conditions Nuisance variables # of EUs Assignment mechanism

Blocking - Grouping of EUs into similar classes

- <u>Common Criteria for blocking</u>
 - o Location
 - o Characteristics (age, weight, sex, ...)
 - o Time

Randomization - Random assignment of treatments to EUs

- Independent observations needed for valid estimates of experimental error (and thus tests of hypotheses)
- Randomization simulates the effect of independence
 - o Allows the assumption of independence & normal distribution

Replication

- Demonstrates reproducibility
- Allows estimation of experimental error variance
- Allows for increased precision of treatment effects

Effect of watching Children's Television Workshop programs on test scores.

Ho: Watching has no effect on post-program test scores

H1: Watching increases post-program test scores

With three individuals assigned to each of two treatments, there are 20 possible treatment assignments.

Below is data for the **observed** treatment assignment vector: (0, 0, 0, 1, 1, 1)

Unit	Treatment	Response	Trt Mean
1	0	55.0	
2	0	72.0	66.6
3	0	72.7	
4	1	70.0	
5	1	66.0	71.6
6	1	78.9	

t = (71.6 - 66.6) / 6.935 =5.07/6.935 = 0.731

p-value = 0.25