Hypothesis Testing

- Null Hypothesis $\left(\mathrm{H}_{0}\right) \quad$ vs. Alternative Hypothesis $\left(\mathrm{H}_{\mathrm{A}}\right)$
- $\alpha=\mathrm{P}$ (Type I Error) \rightarrow the level of significance (l.o.s.)
- $\beta=\mathrm{P}$ (Type II Error)
- power $=1-\beta$

p -value

- Measures the strength of the sample evidence against H_{o}
- Definition:

The probability, computed assuming that H_{0} is true, of a sample result (\bar{X}) as extreme or more extreme than the one from our sample.

Rule of Thumb for the significance of p-values

- The p-value is the smallest l.o.s. α at which we can reject H_{0}
- If the p-value is less than .05 , then our results are statistically significant at the .05 level

$\mathrm{H}_{0}: \mu=54 \mathrm{~cm}$	$\sigma_{\bar{X}}=\frac{4.5 \mathrm{~cm}}{\sqrt{9}}=1.5 \mathrm{~cm}$
$\mathrm{H}_{\mathrm{a}}: \mu>54\left(\mu_{\mathrm{a}}=58\right)$	$\alpha=.05$

4 Steps for finding the Power in a test of hypotheses

1) Write the RR for H_{0} in terms of z-scores:
2) Write the RR for H_{0} in terms of \bar{X} :
3) Find the probability of a Type II error if $\mu=58$
4) Power $=1-$ P(Type II Error):
$\mathrm{H}_{0}: \mu=40 \mathrm{mpg}$
$\mathrm{H}_{\mathrm{A}}: \mu<40$
Population Standard Deviation: $\sigma=6 \mathrm{mpg}$
Significance Level: $\quad \alpha=.01$
Sample Results:
A SRS of $n=16$ gives $\bar{X}=36.7$
5) Write the rejection rule (RR) for H_{0} in terms of z-scores.
6) Write the rejection rule (RR) for H_{0} in terms of \bar{X}.
7) Find the probability of a Type II error if $\mu=38$ [i.e., $\beta(38)]$
a) Find the sample z-score $\left(z_{s}\right)$.
b) State a conclusion for the test at the $\alpha=.01$ level.
c) Find the p-value.
$H_{0}: \mu=\mu_{0}$
$H_{A}: \mu>\mu_{0}\left(=\mu_{A}\right)$
$R R$ in terms of $Z: \quad Z_{s}>z_{\alpha} \Leftrightarrow \frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}>z_{\alpha}$
$R R$ in terms of $\bar{X}: \quad \bar{X}>\underbrace{z_{\alpha} \frac{\sigma}{\sqrt{n}}+\mu_{0}}_{\bar{X}_{\alpha}}$
$\beta=P\left(\right.$ Accept $H_{0} \quad \mid H_{A}$ is true $)$

Probability Distributions for Random Variables (RVs)

- Probability Distribution (for a discrete RV) - represented graphically as a Probability Histogram
- Indicates the possible values for a RV
- Indicates how to assign probabilities for the possible values: $p(x)=\mathrm{P}(\mathrm{X}=x)$
- Probability Distribution (for a continuous RV) - represented as a Probability Density Curve
- Areas under a smooth curve, $f(x)$, indicate probabilities of values in a given range

Expected Value of a Random Variable

- a weighted average of all possible values for X, weighted by the probability of each value $E(X)=\mu$, the mean for the RV
$0 E(X)=\sum_{x=-\infty}^{\infty} x p(x)$ for a discrete RV
$0 E(X)=\int_{x=-\infty}^{\infty} x f(x) d x$ for a continuous RV

Example (discrete RV):

$\mathrm{Y}=\#$ heads in two tosses of a fair coin

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Y}=0)=1 / 4 \\
& \mathrm{P}(\mathrm{Y}=1)=1 / 2
\end{aligned}
$$

$$
P(Y=2)=1 / 4 \quad \text { and zero otherwise }
$$

$$
\begin{aligned}
E(Y) & =0 \cdot P(Y=0)+1 \cdot P(Y=1)+2 \cdot P(Y=2) \\
& =0 \cdot \frac{1}{4}+1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}=1
\end{aligned}
$$

Example (continuous RV):
$\mathrm{X}=$ the position at which a two-meter with length of rope breaks when put under tension (assuming every point is equally likely)
$f(x)=1 / 20 \leq x \leq 2$, zero otherwise
$E(X)=\int_{0}^{2} x\left(\frac{1}{2}\right) d x=\left.\frac{1}{4} x^{2}\right|_{0} ^{2}=1-0=1$
$f(x)$

| $1 / 2$ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| -1 | 0 | 1 | 2 | 3 |

Properties of Expectation
$E(a)=a$
$E(a X)=a * E(X)$
$E(X+a)=E(X)+a$
$E(X+Y)=E(X)+E(Y)$

$$
E(X Y)=E(X) * E(Y) \quad \text { if } \mathrm{X} \& \mathrm{Y} \text { are independent }
$$

Variance of a Random Variable

- a weighted average of squared deviations from the mean, $[x-E(x)]^{2}$
$\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=\sigma^{2}$
$0 \operatorname{Var}(X)=\sum_{x=-\infty}^{\infty}(x-E(x))^{2} p(x)$ for a discrete RV
$0 \operatorname{Var}(X)=\int_{x=-\infty}^{\infty}(x-E(x))^{2} f(x) d x$ for a continuous RV
$\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right] \Rightarrow E\left(X^{2}\right)-[E(X)]^{2}$ for any RV
Example:
$\mathrm{Y}=\#$ heads in two tosses of a fair coin

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Y}=0)=1 / 4 \\
& \mathrm{P}(\mathrm{Y}=1)=1 / 2
\end{aligned}
$$

$$
P(Y=1)=1 / 2
$$

$$
\mu=E(Y)=1
$$

$$
P(Y=2)=1 / 4 \quad \text { and zero otherwise }
$$

$$
\begin{aligned}
\operatorname{Var}(Y) & =(0-\mu)^{2} \cdot P(Y=0)+(1-\mu)^{2} \cdot P(Y=1)+(2-\mu)^{2} \cdot P(Y=2) \\
& =(0-1)^{2} \cdot \frac{1}{4} \quad+(1-1)^{2} \cdot \frac{1}{2} \quad+(2-1)^{2} \cdot \frac{1}{4} \\
& =\frac{1}{2}
\end{aligned}
$$

$\underline{O R}$

$$
\begin{aligned}
& E\left(Y^{2}\right)=0^{2} \cdot P(Y=0)+1^{2} \cdot P(Y=1)+2^{2} \cdot P(Y=2) \\
&=0 \cdot \frac{1}{4}+1 \cdot \frac{1}{2}+4 \cdot \frac{1}{4}=\frac{3}{2} \\
& \operatorname{Var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=\frac{3}{2}-1^{2}=\frac{1}{2}
\end{aligned}
$$

$\xrightarrow[\text { Properties of Variance }]{\text { Var }}$
$\operatorname{Var}(X \pm a)=\operatorname{Var}(X)$
$\operatorname{Var}(a X)=a^{2} * \operatorname{Var}(X)$

$$
\begin{array}{ll}
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) & \text { if } \mathrm{X} \& \mathrm{Y} \text { are independent } \\
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 * \operatorname{Cov}(X, Y) & \text { always }
\end{array}
$$

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E([X-E(X)] *[Y-E(Y)]) \\
& =E(X Y)-E(X) * E(Y)
\end{aligned}
$$

$$
\begin{array}{ccl}
Y_{1}, Y_{2}, \ldots, Y_{n} \sim N\left(\mu, \sigma^{2}\right) & \rightarrow & \text { a Simple Random Sample (SRS) of size } n \\
\text { i.i.d. } & \rightarrow & \text { independent and identically distributed }
\end{array}
$$

$$
E(\bar{Y})=E\left(\frac{Y_{1}+Y_{2}+\ldots+Y_{n}}{n}\right)=\frac{1}{n} E\left(Y_{1}+Y_{2}+\ldots+Y_{n}\right)=\frac{1}{n}(n \bullet \mu)=\mu
$$

$$
\operatorname{Var}(\bar{Y})=\operatorname{Var}\left(\frac{Y_{1}+Y_{2}+\ldots+Y_{n}}{n}\right)=\frac{1}{n^{2}} \operatorname{Var}\left(Y_{1}+Y_{2}+\ldots+Y_{n}\right)=\frac{1}{n^{2}}\left(n \cdot \operatorname{Var}\left(Y_{i}\right)\right)=\frac{\sigma^{2}}{n}
$$

$$
\frac{\bar{Y}-\mu}{\sigma / \sqrt{n}}=Z \sim N(0,1)
$$

2-Sample Tests

$$
\begin{aligned}
& Y_{11}, Y_{12}, \ldots, Y_{1 n_{1}} \stackrel{\text { iid }}{\sim} N\left(\mu_{1}, \sigma_{1}^{2}\right) \\
& Y_{21}, Y_{22}, \ldots, Y_{2 n_{2}} \stackrel{\text { iid }}{\sim} N\left(\mu_{2}, \sigma_{2}^{2}\right) \\
& E\left(\bar{Y}_{1}-\bar{Y}_{2}\right)=E\left(\bar{Y}_{1}\right)-E\left(\bar{Y}_{2}\right)=\mu_{1}-\mu_{2}=\mu_{2} \\
& \operatorname{Var}\left(\bar{Y}_{1}-\bar{Y}_{2}\right)=\operatorname{Var}\left(\bar{Y}_{1}\right)+\operatorname{Var}\left(\bar{Y}_{2}\right)=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}
\end{aligned}
$$

