<u>**Fmax Test:** (a.k.a. Hartley's test)</u> $H_o: \sigma_1^2 = \sigma_2^2$ vs. $H_a: \sigma_1^2 \neq \sigma_2^2$ (for 2 samples) $F_{\max,s} = s_{\max}^2 / s_{\min}^2$ $df = n^* - 1$ where $n^* = \max(n_1, n_2)$

Brown & Forythe's HOV Test $H_o: \sigma_1^2 = \sigma_2^2$ vs. $H_a: \sigma_1^2 \neq \sigma_2^2$ (for 2 samples)

- Uses recoded data: $z_{1j} = |x_{1j} \tilde{x}_1|$, $z_{2j} = |x_{2j} \tilde{x}_2|$ where \tilde{x}_i is the median of sample *i*.
- $\rightarrow H_o$: "deviations from the median are the same in the 2 populations"

$$F_{B\&F} = \frac{MST}{MSE} = \frac{\sum_{i=1}^{2} n_i (\overline{z_i} - \overline{z_i})^2 / (2 - 1)}{\sum_{i=1}^{2} \sum_{j=1}^{n_i} n_i (z_{ij} - \overline{z_{i}})^2 / (N - 2)} = \left(\frac{\overline{z_1} - \overline{z_2}}{SE_{\overline{z_1} - \overline{z_2}}}\right)^2 \text{ is defined in chapter 4 (here with t=2)}$$

 $T_{B\&F} = \sqrt{F_{B\&F}} = \frac{\overline{z_1} - \overline{z_2}}{SE_{\overline{z_1} - \overline{z_2}}} \text{ with } df = n_1 + n_2 - 2 \text{ (Note: This is just an equal variance T-statistic with } S_p^2 \text{ in the SE})$

Rejection Region at the α level of significance: $|T_{B\&F}| \ge t_{\alpha/2, n_1+n_2-2}$

- This test is more *robust* to non-normal populations than the Fmax test.
- The text refers to this as <u>Levene's (med) test</u>, but Levene originally used $z_{1i} = |x_{1i} \overline{x}_1|$ with \overline{x} rather than \tilde{x}

Results for: ch6-1-MouseDiet-v1-1.jmp (Cholesterol reduction after 21 days on a special diet: 14 mice/group)

Oneway Analysis of <u>Z(median)</u> By Diet $(z_{1j} = |x_{1j} - \tilde{x}_1|, z_{2j} = |x_{2j} - \tilde{x}_2|)$

t Test (Oat-Bean) Assuming equal variances

Difference	1.5262	t Ratio	0.79695
Std Err Dif	1.9151	DF	26
		Prob > t	0.4327

Oneway Analysis of Reduction By Diet Tests that the Variances are Equal

Level	Count	Std Dev	Me	eanAbsDif	to Mean	MeanAbsDif to Median	
Bean	14	6.122964	5.0)45698		4.948514	
Oat	14	9.163964	6.4	183653		6.474729	
<u>Test</u> Brown-I Levene	Forsythe	F F e** <u>0.6</u> 0.5	R <u>atio DF</u> <u>351</u> 1 934 1	Num DFD 26 26	<u>en p-Value</u> 0.4327 0.4480	1	
**the text calls this test based on $z_{1j} = x_{1j} - \tilde{x}_1 $ Levene's (med) Test							

Example:

x1	x2	z1	z2
3	2		
5	6		
6	14		

$$T_{B\&F} = 1.26$$
, *pvalue* = .276