
1

An Introduction to Data Analysis and Graphics with R

A workbook for the 2010 University of Vermont R workshop

Sasha Hafner and Adam Ryan

September 2010

For more information on this workshop, please contact Sasha Hafner at
sasha.hafner@dataanalysisworkshops.com.

2

Contents
Objective ... 5
1. Introduction to R ... 6

1.1. R overview and history .. 6
1.2. Finding and installing R ... 6
1.3. Running R: GUI & scripts ... 6
1.4. R basics: commands, expressions, assignments, operators, objects 8
1.5. R data types .. 11
1.6. R data structures ... 12
1.7. Functions, arguments, and packages .. 15
1.8. Missing, indefinite, and infinite values .. 17
1.9. Getting help .. 18

Exercises ... 20
2. Vectors, matrices, and arrays .. 21

2.1. Creating and working with vectors .. 21
2.2. Vector arithmetic, some common functions, and vectorized operations 24
2.3. Matrices and arrays .. 26
Exercises ... 30

3. Data frames, data import, and data export .. 31
3.1. Reading data from files .. 31
3.2. Creating data frames manually .. 33
3.3. Working with data frames .. 34
3.4. Writing data to files ... 38
Exercises ... 39

4. Graphics, part I.. 40
4.1. Introduction to the plot function .. 40
Exercises ... 44

5. Manipulating data, part I ... 45
5.1. Modes, classes, attributes, length, and coercion .. 45
5.2. Indexing, sub-setting, splitting, sorting, and locating data .. 46
5.3. Factors .. 54
Exercises ... 56

6. Manipulating data, part II ... 57
6.1. Combining data .. 57
6.2. Aggregating and summarizing data ... 58

6.3. Dates and times .. 63
6.4. Reshaping data ... 66

Exercises ... 67
7. Exploratory data analysis .. 68

7.1. Summary statistics ... 68

7.2. Histograms and box plots... 69
7.3. Normal quantile and cumulative probability plots... 71
7.4. Dealing with detection limits ... 74
Exercises ... 79

8. One- and two-sample tests (and the R approach to statistical output) 80
8.1. t tests .. 80

3

8.2. The R approach to statistical output... 82

Exercises ... 83
9. Classical linear models ... 84

9.1. The lm function, model formulas, and statistical output ... 84
9.2. Linear regression .. 85
9.3. ANOVA and pairwise comparisons... 102
9.4. ANCOVA .. 112
Exercises ... 117

10. Nonparametric alternatives to t tests and ANOVA ... 119
10.1. Wilcoxon signed-rank test ... 119
10.2. Kruskal-Wallis test... 120
Excercise ... 120

11. Loops, grouping, and conditional execution ... 121

11.1. Loops and grouping ... 121
11.2. Conditional statements ... 128
Exercises ... 130

12. Graphics II .. 131
12.1. Arranging multiple plots per page ... 131
12.2. More on the plot function: arguments and values .. 139
12.2 Adding data to plots .. 141
12.3. Annotating plots ... 149
12.4. Other high-level plotting functions .. 157
12.5. Graphics output .. 158
Exercises ... 160

13. Functions ... 164

13.1. Writing functions ... 164
Exercises ... 169

14. Generalized linear models... 170
14.1. The glm function .. 170
Exercises ... 175

15. Generalized additive models ... 176
15.1. The gam function ... 176
Exercises ... 181

16. Nonlinear regression ... 182

16.1. The nls function ... 182
Exercises ... 186

17. Survival Analysis .. 187

17.1. Log-rank test and Cox proportional hazards model ... 187
Exercise ... 192

18. Distributions and simulations ... 193
18.1. Available distributions ... 193

18.2. Monte Carlo simulations .. 195
18.3. Numerical simulations ... 201
Exercises ... 204

19. Batch processing ... 207
19.1. Running R in batch mode .. 207

4

20. Specialized packages, related documents, and additional information 209

References ... 210
Appendix 1. Solutions to exercises ... 211

Section 1. Introduction to R .. 211
Section 2. Vectors, matrices, and arrays ... 211
Section 3. Data frames, data import, and data export ... 212
Section 4. Graphics, part I ... 213
Section 5. Manipulating data, part I .. 213
Section 6. Manipulating data, part II .. 214
Section 7. Exploratory data analysis ... 215
Section 8. One- and two-sample tests ... 215
Section 9. Classical linear models .. 216
Section 10. Nonparametric alternatives to t tests and ANOVA.. 218

Section 11. Groups, looping, and conditional execution .. 218
Section 12. Graphics II ... 218
Section 13. Functions .. 220
Section 14. Generalized linear models.. 221
Section 15. Generalized additive models .. 222
Section 16. Nonlinear regression .. 222
Section 18. Distributions and simulations .. 223

Appendix 2. list of data files and their sources ... 226
Disclaimer: .. 227

5

Objective
The objective of this workshop is to introduce participants to data analysis and graphics with R.

The range of analysis that can be completed, and the types of graphics that can be created in R

are astounding. In addition to the wide variety of functions available in the "base" packages that

are installed with R, more than 2400 contributed packages are available for download, each with

its own suite of functions. Some of the individual packages are the subject of entire books.

Obviously, this workshop will not cover every type of analysis or plot that R can be used for, or

even every subtlety associated with each function covered in this workshop. However, after

completing this workshop, you should be comfortable with the basic tools for carrying out

typical data analyses and generating publication- and presentation-quality graphics in R. Given

the inherent flexibility of R and of the functions that are covered in this workshop, we hope these

basic tools will go a long way toward meeting your data analysis and data presentation needs.

Furthermore, the experience that you gain in this workshop should give you a familiarity with the

use of R, the Comprehensive R Network Archive (CRAN) site, and the R language, all of which

will facilitate acquisition and use of other packages for specialized data analysis. Lastly, the brief

introduction to some more advanced topics, such as writing functions and batch processing, can

serve as a starting point for the development of time-saving procedures for data analysis and

presentation. We hope you continue to use and learn R. Considering the number of people that

are using and contributing to R, the number of books and other documents dedicated to R, and

R's inherent flexibility, the data analysis and graphics development possiblities seem endless.

6

1. Introduction to R
Crawley 2007: Chapter 1; Dalgaard 1997: Chapter 1; R-Intro: Sections 1 & 2, R-Lang: Section 2

1.1. R overview and history

R is a software system for computations and graphics. According to the R FAQ (http://cran.r-

project.org/doc/FAQ/R-FAQ.html#R-Basics), “[i]t consists of a language plus a run-time

environment with graphics, a debugger, access to certain system functions, and the ability to
run programs stored in script files.‖ R was originally developed in 1992 by R. Ihaka and R.

Gentleman at the University of Auckland (New Zealand). The R language is a ―dialect‖ of the S

language
1
, which was developed (principally) by J. Chambers at Bell Laboratories. This software

is currently maintained by the R Development Core Team, which consists of more than a dozen

people, and includes Ihaka, Gentleman, and Chambers. Additionally, many other people have

contributed code to R since it was first released. The source code for R is available under the

GNU General Public License, meaning that users can modify, copy, and redistribute the software

or derivatives, as long as the modified source code is made available. R is regularly updated,

however, changes are usually not major.

1.2. Finding and installing R

R is available for Windows, Mac, and Linux operating systems. Installation files and instructions

can be downloaded from the Comprehensive R Archive Network (CRAN) site at http://cran.r-

project.org/. Although the graphical user interface (GUI) differs slightly across systems, the R

commands do not.

1.3. Running R: GUI & scripts

There are two basic ways to use R on your machine: through the GUI, where R evaluates your

code and returns results as you work, or by writing, saving, and then running R script files
2
. R

script files (or scripts) are just text files that contain the same types of R commands that you can

submit to the GUI. Scripts can be submitted to R using the Windows command prompt, other

shells, batch files, or the R GUI. All the code covered in this workbook will work if directy typed

into the GUI, or it can be saved in a script file which can then be submitted to R
3
. Working

directly in the R GUI is great for the early stages of code development, where a lot of

experimentation and trial-and-error occurs. For any code that you want to save, rerun, and

modify, you should consider working with R scripts. A useful approach is to work with both

simultaneously—testing and perfecting code in the GUI before saving it in a script file.

1
 The S language is also used in the commercial software S-PLUS, which is very similar to R.

2
 Note that the R GUI is command-line driven. To get around writing code altogether there are some icon-driven

programs that interface with R, e.g. R Commander (http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/). But, we

recommend you stick to writing R commands yourself. The developer of R Commander, John Fox, wrote: ―I must

confess that I'm not terribly enamored of menu/dialog box interfaces to statistical software. . . One of my design

goals was to wean users from the GUI to writing commands. . .‖
3
 There is at least one difference between scripts and the GUI: with scripts, the results are not automatically

printed—to manually print to the output file, use the function print.

http://cran.r-project.org/
http://cran.r-project.org/
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/

7

So, how do you work with scripts? Any simple text editor works—you just need to be able to

save text in the ASCII format, i.e. ―unformatted‖ text. You can save your scripts and either call

them up using the command source("file_name.R") in the R GUI, or, if you are using a

shell (e.g. Windows command prompt) then type R CMD BATCH file_name.R4. The Windows

and Mac versions of the R GUI come with a pretty basic script editor, shown below (the window

in the center). This editor allows you to edit and create scripts, and also submit commands with

the click of a button.

Unforunately, this editor isn‘t very good—the Windows version does not even have syntax

highlighting
5
.

There are some useful (in some cases free) text editors available that can be set up with R syntax

highlighting and other features. TINN-R is a free text editor that is designed specifically for

working with R script files
6
. Notepad++ is a general purpose text editor, but includes syntax

highlighting and the ability to send code directly to R with the NppToR plugin
7
. For serious code

4
 To execute R scripts in batch mode, Windows needs to know where to find the R executable—you can do this by

adding the file location to the Environment variable.
5
 The Mac version does have syntax highlighting, as well as some other nice features.

6
 You can find more information and download the program here: http://www.sciviews.org/Tinn-R/. Note that an

old version of TINN-R (1.17.2.4) is more flexible (and easier to set up) than newer versions, but we encourage you

to check out newer versions. TINN-R 1.17.2.4 seems to be buggy in Windows Vista.
7
 Notepad++ can be downloaded here: http://notepad-plus-plus.org/download. NppToR is available here:

http://sourceforge.net/projects/npptor/.

8

writing, you might want to check out Emacs
8
, which is a powerful text editor that becomes a

tailor-made R code editor when you add the ESS plugin. A list of text editors that work well with

R can be found here: http://www.sciviews.org/_rgui/projects/Editors.html.

1.4. R basics: commands, expressions, assignments, operators,
objects

The instructions you give R are called commands. The basic approach to using the R GUI is to

type a command and hit enter—R evaluates what you typed and prints the result.

> 1+1

[1] 2

Notice a couple things about the above code. The > character is the prompt that will always be

present in the GUI—it is used throughout this workbook to show which lines are commands

(although where code gets complicated later on in this workbook, we leave out the prompt

character and use different fonts for commands and R output). The line following the command

starts with a [1], which is simply the position of the adjacent element in the output—this will

make more sense later.

For the above command, the result is printed to the screen and lost—there is no assignment

involved
9
. In order to do anything other than the simplest analyses, you must be able to store and

recall data. In R, you can assign the results of command to symbolic variables (as in other

computer languages) using the assignment operator <-. When a command is used for

assignment, the result is no longer printed to the GUI console
10

.

> x<-1+1

> x

[1] 2

Note that this is very different from:

> x< -1+1

[1] FALSE

In this case, putting a space between the two characters that make up the assignment operator

causes R to interpret the command as an expression that asks if x is less than zero. However,

spaces usually do not matter in R, as long as they do not separate a single operator or a variable

name. This, for example, is fine:

8
 You can find more information, and a download here: http://vgoulet.act.ulaval.ca/en/ressources/emacs/. Or, for the

more typical do-it-yourself approach, here: http://ess.r-project.org/index.php?Section=download. Note that there is a

steeper learning curve for Emacs than for the other programs mentioned above.
9
 You might call this command an expression, to distinguish it from an assignment, but be aware that this distinction

is not consistently used in the literature on R. Note that you can actually recall the last value printed to the screen

with .Last.value.
10

 Unless you surround the entire command in parentheses.

http://www.sciviews.org/_rgui/projects/Editors.html
http://vgoulet.act.ulaval.ca/en/ressources/emacs/
http://ess.r-project.org/index.php?Section=download

9

> x <- 1 +1

Note that you can recall a previous command in the R GUI by hitting the up arrow on your

keyboard. This becomes handy when you are debugging code.

When you give R an assignment, such as the one above, the object referred to as x is stored in

R's workspace. You can see what is currently stored in the workspace by using the ls function.

> ls()

[1] "x"

To remove objects from your workspace, use rm.

> rm(x)

> x

Error: object "x" not found

The equal sign (=) can also be used as an assignment operator. However, in other cases the equal

sign means something different (such as with column names when setting up a data frame), and

this use is discouraged
11

.

If you want to assign the same value to several symbolic variables, you can use the following

syntax.

> x<-y<-z<-1.0

R is a case-sensitive language. This is true for symbolic variable names, function names, and

everything else in R.

> x<-1+1

> x

[1] 2

> X

Error: object "X" not found

In R, commands can be separated by moving onto a new line (i.e. hitting enter) or by typing a

semicolon (;), which can be handy in scripts for condensing code. If a command is not

completed in one line (by design or error), the typical R prompt > is replaced with a +.

> x<-

+ 1+1

11

 But, some serious R users stick with = instead of <- (e.g., Spector 2008).

10

If you find that you get stuck in a bad command, just hit the Esc key to get back to the regular

prompt. For most of the commands in this workbook, we will include the prompt character > on

the first line, and the continuation character + on following lines. If you want to select and copy a

multi-line command from this workbook, you should be able to avoid copying the > and +

characters by holding down the Alt key while you select.

There are several operators that are used in the R language. Some of the most common are listed

below (more on these later):

Arithmetic:

+ - * / ^ plus, minus, multiply, divide, power

Relational:

a==b a is equal to b (do not confuse with =)

a!=b a is not equal to b (the ! symbol can be used to negate relational expressions in

general)

a<b a is less than b

a>b a is greater than b

a<=b a is less than or equal to b

a>=b a is greater than or equal to b

Logical/grouping:

! not

& and

| or

Indexing

$ part of a data frame

[] part of a data frame, array, list

[[]] part of a list

Grouping commands
{}

Making sequences

a:b returns the sequence a, a + 1, a + 2, . . . b

Others

commenting

; alternative for separating commands

~ model formula specification

() order of operations, function arguments

Commands in R operate on objects, which can be thought of as anything that can be assigned to

a symbolic variable. Objects include vectors, matrices, factors, lists, data frames, and functions.

Excluding functions, these objects are also referred to as data structures or data objects.

11

When you close the R GUI, it will ask you if you want to ―save workspace image?‖. This refers

to the workspace that you have created—i.e. all the objects that you have loaded or created. It is

good practice to not rely on a saved workspace. Instead, you should save the commands that

created it as a script file, or save your output as a text file. One handy feature of the R GUI is the

―Save History‖ option, which can be found in the File menu. This allows you to save all the

commands you have submitted to the R GUI during your session as a script file.

1.5. R data types

The term ―data type‖ in R refers to the type of data that is present in a data structure, and does

not describe the data structure itself. There are four common types of data in R: numerical,

character, logical, and complex numbers. These are referred to as modes in R and are shown

below.

Numerical data

> x<-10.2

> x

[1] 10.2

Character data

> name<-"John Smith"

> name

[1] "John Smith"

Any time character data are entered directly into the R GUI, you must surround individual

elements with quotes. Otherwise, R will look for an object.

> name<-John

Error: object "John" not found

Either single or double quotes can be used in R (double quotes are used in this workbook, to

avoid confusing single quotes with the accent character (`). When character data are read into R

from a file, the quotes are not necessary
12

.

Logical data contain only three values: TRUE, FALSE, or NA (NA indicates a missing value—more

on this later). R will also recognize T and F, but these are not reserved, and can therefore be

overwritten by the user, and it is therefore good (although tedious) to avoid them.

> a<-TRUE

> a

[1] TRUE

12

 Unless spaces are present in individual elements, although even here quotes can be avoided by specifying a

separator other than a space.

12

Note that there are no quotes around logical values—this would make them character data. R will

return logical data for any relational expression submitted to it.

> 4 < 2

[1] FALSE

or

> b<-4 < 2

> b

[1] FALSE

And finally, complex numbers, which will not be covered in this workbook, are the final data

type in R.

> cnum1<-10 + 3i

> cnum1

[1] 10+3i

You can use the mode or class function to see what type of data is stored in any symbolic

variable
13

.

> class(name)

[1] "character"

> class(a)

[1] "logical"

> class(x)

[1] "numeric"

> mode(x)

[1] "numeric"

1.6. R data structures

Data in R are stored in data structures (also known as data objects)—these are the objects that

you perform calculations on, plot data from, etc. Data structures in R include vectors, matrices,

arrays, data frames, lists, and factors. We will demonstrate how to make these different data

structures in a following section; the examples below simply give you an idea of their structure.

13

 Mode and class are not identical—as Bill Venables writes: ―‗mode‘ is a mutually exclusive classification of

objects according to their basic structure. . . ‗class‘ is a property assigned to an object that determines how generic

functions operate with it.‖ (http://tolstoy.newcastle.edu.au/R/e4/help/08/04/8330.html).

http://tolstoy.newcastle.edu.au/R/e4/help/08/04/8330.html

13

Vectors are perhaps the most important type of data structure in R. A vector is simply an ordered

collection of elements (e.g. individual numbers).

> x<-1:10

> x

 [1] 1 2 3 4 5 6 7 8 9 10

Matrices are similar to vectors, but have two dimensions.

> X<-matrix(1:30,nrow=3)

> X

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 4 7 10 13 16 19 22 25 28

[2,] 2 5 8 11 14 17 20 23 26 29

[3,] 3 6 9 12 15 18 21 24 27 30

Arrays are similar to matrices, but can have more than 2 dimensions.

> Y<-array(1:90,dim=c(3,10,3))

> Y

, , 1

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 4 7 10 13 16 19 22 25 28

[2,] 2 5 8 11 14 17 20 23 26 29

[3,] 3 6 9 12 15 18 21 24 27 30

, , 2

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 31 34 37 40 43 46 49 52 55 58

[2,] 32 35 38 41 44 47 50 53 56 59

[3,] 33 36 39 42 45 48 51 54 57 60

, , 3

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 61 64 67 70 73 76 79 82 85 88

[2,] 62 65 68 71 74 77 80 83 86 89

[3,] 63 66 69 72 75 78 81 84 87 90

One feature that is shared for vectors, matrices, and arrays is that they can only store one type of

data at once, be it numerical, character, or logical. Technically speaking, these data structures

can only contain elements of the same mode
14

.

14

 Data structures that contain elements of all the same mode are referred to as atomic—this is not important but may

save you some confusion in the future.

14

Data frames are similar to matrices—they are two-dimensional. However, a data frame can

contain columns with different modes. Data frames are similar to data sets used in other

statistical programs: each column represents some variable, and each row usually represents an

―observation‖ or ―record‖ or ―experimental unit‖.

> dat<-data.frame(sp=c("Dog","Cat","Human"),sex=c("F","M","F"),

+ weight=c(75.2,186,8.72),living=c(T,F,T))

> dat

 sp sex weight living

1 Dog F 75.20 TRUE

2 Cat M 186.00 FALSE

3 Human F 8.72 TRUE

Lists are similar to vectors, in that they are an ordered collection of elements, but with lists, the

elements can be other data objects (the elements can even be other lists). Lists are important in

the output from many different functions. In the code below, the variables defined above are

used to form a list.

> summary.1<-list(1.2,x,Y,dat)

> summary.1

[[1]]

[1] 1.2

[[2]]

 [1] 1 2 3 4 5 6 7 8 9 10

[[3]]

, , 1

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 4 7 10 13 16 19 22 25 28

[2,] 2 5 8 11 14 17 20 23 26 29

[3,] 3 6 9 12 15 18 21 24 27 30

, , 2

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 31 34 37 40 43 46 49 52 55 58

[2,] 32 35 38 41 44 47 50 53 56 59

[3,] 33 36 39 42 45 48 51 54 57 60

, , 3

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 61 64 67 70 73 76 79 82 85 88

[2,] 62 65 68 71 74 77 80 83 86 89

[3,] 63 66 69 72 75 78 81 84 87 90

15

[[4]]

 sp sex weight living

1 Dog F 75.20 TRUE

2 Cat M 186.10 FALSE

3 Human F 8.72 TRUE

Note that a particular data structure need not contain data to exist. This may seem a bit strange,

but can be useful when it is necessary to set up an object for holding some data later on.

> x<-NULL

1.7. Functions, arguments, and packages

In R, you can carry out complicated or tedious procedures using functions. Functions require

arguments, which include the object(s) that the function should act upon. For example, the

function sum will calculate the sum of all its arguments:

> sum(1.0,4.214,2.3,8.145,-3.3)

[1] 12.359

The arguments in (most) R functions can be named, i.e. by typing the name of the argument, an

equal sign, and the argument value (arguments specified in this way are also called tagged). For

example, for the function plot, the help file lists the following arguments.

plot(x, y, ...)

Therefore, we can call up this function with the following code.

> a<-1:10

> b<-a

> plot(x=a,y=b)

With named arguments, R recognizes the argument keyword (e.g. x or y) and assigns the given

object (e.g. a or b above) to the correct argument. When using names arguments, the order of the

arguments doesn‘t matter. We can also use what are called positional arguments, where R

determines the meaning of the arguments based on their position.

> plot(a,b)

The expected position of arguments can be found in the help file for the function you are

working with or by asking R to list the arguments using the args function.

> args(plot)

function (x, y, ...)

It usually makes sense to use positional arguments for only the first few arguments in a function.

After that, named arguments are easier to keep track of. Many functions also have default

argument values that will be used if values are not specified in the function call. These default

16

argument values can be seen by using the args function and can also be found in the help files.

For example, for the function rnorm, the arguments mean and sd have default values.

> args(rnorm)

function (n, mean = 0, sd = 1)

Any time you want to call up a function, you must include parentheses after it, even if you are

not specifying any arguments. If you don‘t include parentheses, R will return the function code

(which can be useful).

Note that it is not necessary to use explicit numerical values as function arguments—symbolic

variable names which represent appropriate data structures can be used. It is also possible to use

functions as arguments within functions. R will evaluate such expressions from the inside

outward. While this may seem trivial, this quality makes R very flexible. There is no explicit

limit to the degree of nesting that can be used. You could use:

> plot(rnorm(10,sqrt(mean(c(1:5,7,1,8,sum(8.4,1.2,7))))),1:10)

which includes 5 levels of nesting (the sum of 8.4, 1.2, and 7 is combined with other values to

form a vector, for which the mean value is calculated, then the square root of this value is taken

and used as the standard deviation in a call to rnorm, and the output from this call is plotted). Of

course, it is often easier to assign intermediate steps to symbolic variables. R evaluates nested

expressions based on the values that functions return or the data represented by symbolic

variables. For example, if a function expects character data for a particular argument, then you

can use a call to the function paste in place of explicit character data.

Many functions (including sum, plot and rnorm) come with the R ―base packages‖, i.e.

they are loaded and ready to go as soon as you open R. These packages contain the most

common functions
15

. While the base packages include many useful functions, for specialized

procedures, you should check out the content that is available in the add-on packages. The

CRAN website currently lists more than 2400 contributed packages that contain functions and

data that users have contributed. You can find a list of the available packages at the CRAN

website (http://cran.r-project.org/).

To utilize the functions in contributed R packages, you need to first install and then load the

package. Packages can be installed via the Packages menu in the R GUI (select the ―Packages‖

menu, then ―Install packages‖, then select the closest mirror site, and finally, select the package

you want to install). Or just use the command
16

:

15

 You can find a list of these packages here: http://cran.r-project.org/doc/FAQ/R-FAQ.html.
16

 This simple process can become frustrating if you don‘t have permission to write to the directory where R saves

packages by default (e.g., if your user account does not include complete access). The best way around this is

through specifying the locations where packages should be downloaded, say C:\Users\Joe\R_Lib. Then:
> install.packages("NADA",lib='C:/Users/Joe/R_Lib')

> library(NADA,lib.loc='C:/Users/Joe/R_Lib')

http://cran.r-project.org/
http://cran.r-project.org/doc/FAQ/R-FAQ.html

17

> install.packages("package name")

where "package name" should be replaced with the actual name of the package you want to

install, for example:

> install.packages("NADA")

Installation is a one-time process, but packages must be loaded each time you want to use them.

This is very simple, e.g., to load the package NADA, use the following command.

> library(NADA)

Loading required package: survival

Loading required package: splines

Attaching package: 'NADA'

 The following object(s) are masked from package:stats :

 predict

Any package that you want to use that is not included as one of the ―base‖ packages needs to be

loaded every time you start R. (Alternatively, you can add code to the file Rprofile.site that will

be executed every time you start R.)

You can find information on specific packages through CRAN, by browsing to http://cran.r-

project.org/ and selecting the packages link on the lower left. Each package has a separate web

page, which should include links to source code, and a pdf manual. When working with a new

package, it is a good idea to read the manual.

Some packages contain different functions with the same name, e.g. predict in the stats and

NADA packages. The function in use will be the function from the package that was loaded last.

To ―unload‖ functions, use the detach function:

> detach("package:NADA")

For tasks that you repeat, but which have no associated function in R, or if you don't like the

functions that are available, you can write your own functions. This topic is covered in a later

section.

1.8. Missing, indefinite, and infinite values

Real data sets often contain missing values. R uses the marker NA (for ―not available‖) to

indicate a missing value. Any operation carried out on an NA will return NA.

> x<-NA

http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/web/packages/

18

> x-2

[1] NA

Note that the NA used in R does not have quotes around it—this would make it character data
17

.

To determine if a value is missing, use the is.na function (this function can also be used to set

elements in a data object to NA.)

> is.na(x)

[1] TRUE

> !is.na(x)

[1] FALSE

Indefinite values are indicated with the marker NaN, for ―not a number‖. Infinite values are

indicated with the markers Inf or –Inf. You can find these values with the functions

is.infinite, is.finite, and is.nan.

1.9. Getting help

It is usually easy to find the answer to questions about specific functions or about R in general.

There are several good introductory books on R, some of which are listed at the end of this

workbook. You can also find free detailed manuals on the CRAN website (http://cran.r-

project.org/, then select the ―manuals‖ link at the lower left). Also, it helps to keep a copy of

Short‘s R Reference Card (Short 2005), which demonstrates the use of many common functions

and operators in 4 pages (http://cran.r-project.org/doc/contrib/Short-refcard.pdf).

Each function in R has a help file associated with it that explains the syntax and usually includes

an example. Help files are concisely written. You can bring up a help file by typing ? and then

the function name.

> ?aov

This will bring up the help file for the aov function in your default internet browser. Once the

help file is opened, you can of course search within it using your brower‘s search function

(usually accessable with ctrl+f on Windows and apple+f on Macs). But, what if you aren‘t sure

what function you need for a particular task? How can you know what help file to open? In

addition to the sources given below, you should try help.search("keyword") or

??keyword, both of which search the R help files for whatever keyword you put in. For

example

> ??Kruskal

returns

Help files with alias or concept or title matching ‘Kruskal’ using

17

 For character data, missing values are given as <NA> to distinguish them from "NA".

http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/doc/contrib/Short-refcard.pdf

19

fuzzy matching:

MASS::isoMDS Kruskal's Non-metric Multidimensional Scaling

stats::kruskal.test Kruskal-Wallis Rank Sum Test

Type '?PKG::FOO' to inspect entry 'PKG::FOO TITLE'.

To see a particular help file, follow the instructions given, e.g.,

> ?stats::kruskal.test

In this case, you can leave out the stats:: part of the command, since the stats package is

automatically loaded when R is started.

> ?kruskal.test

There is an R help mailing list (http://www.r-project.org/mail.html), which can be very helpful.

Before posting a question, be sure to search the mailing list archives, and check the posting guide

(http://www.r-project.org/posting-guide.html). Individuals on the mailing list can provide helpful

answers to even obscure questions, but they are generally not shy about telling users to go back

and read the posting guide.

One of the best sources of help on R functions is the mailing list archives (http://cran.r-

project.org/, then select ―Search‖ at the upper left, then ―Searchable mail archives‖). Here you

can find suggestions for functions for particular problems, help on using specific functions, and

all kinds of other information. A quick way to search the mailing list archives by entering

RSiteSearch("keyword") into the console. For the most comprehensive search, a good bet is

Google—http://www.google.com. To limit the results to R-related pages, adding ―cran‖ seems to

work well.

To search for objects (including functions) that include a particular string, you can use the

apropos function:

> apropos("mean")

 [1] "colMeans" "kmeans" "mean"

 [4] "mean.data.frame" "mean.Date" "mean.default"

 [7] "mean.difftime" "mean.POSIXct" "mean.POSIXlt"

[10] "rowMeans" "weighted.mean"

For much more powerful searching capabilities that you can access through the GUI, check out

the sos package (Graves et al. 2009).

http://www.r-project.org/mail.html
http://www.r-project.org/posting-guide.html
http://cran.r-project.org/
http://cran.r-project.org/
http://www.google.com/

20

Exercises

1. You can use R for magic tricks: Pick any number. Double it, and then add 12 to the result.

Divide by 2, and then subtract your original number. Did you end up with 6.0?

2. If you want to work with a set of 10 numbers in R, something like this:

11.0 8.3 9.8 9.6 11.0 12.0 8.5 9.9 10.0 11.0

what type of data structure should you use to store these in R?

What if you want to work with a data set that contains weight, age, and an categorical assessment

of health for 50 whitetail deer—what type of data structure should you use to store these in R?

3. Install and load a package—take a look at the list of available packages, and pick one. To

make sure you‘ve loaded it correctly, try to run an example from the package reference manual.

Identify the arguments required for calling up the function. Detach the package when you are

done.

4. Assign your full name (or someone else‘s full name) to a variable called my.name. Print the

value of my.name to the GUI. Try to subtract 10 from my.name. Finally, determine the type of

data stored in my.name and 10 using the class function. If you are unsure of what class does,

check out the help file.

5. Pretend you are interested in seeing what functions R has for generalized additive models (or

some other topic). Can you figure out how to search for relevant functions? Are you able to

identify a function or two that may do what you want?

21

2. Vectors, matrices, and arrays
Crawley 2008: Chapter 2, Dalgaard 2008: Chapter 1.2, R-Intro: Sections 2 & 5, Short 2005

2.1. Creating and working with vectors

There are several ways to create a vector in R. Where elements are spaced by exactly 1, just

separate the values of the first and last elements with a colon.

> 1:5

[1] 1 2 3 4 5

or even

> 1:10000

 [1] 1 2 3 4 5 6 7 8

 [9] 9 10 11 12 13 14 15 16

...

[9985] 9985 9986 9987 9988 9989 9990 9991 9992

 [9993] 9993 9994 9995 9996 9997 9998 9999 10000

The function seq (for sequence) is more flexible. Its typical arguments are from, to, and by

(or, in place of by, you can specify length.out).

> seq(-10,10,2)

 [1] -10 -8 -6 -4 -2 0 2 4 6 8 10

Note that the by argument does not need to be an integer. When all the elements in a vector are

identical, use the rep function (for repeat).

> rep(4,5)

[1] 4 4 4 4 4

For other cases, use c (for concatenate or combine).

> c(2,1,5,100,2)

[1] 2 1 5 100 2

Note that you can name the elements within a vector.

> c(a=2,b=1,c=5,d=100,e=2)

 a b c d e

 2 1 5 100 2

Any of these expressions could be assigned to a symbolic variable, using an assignment operator.

> v1<-c(2,1,5,100,2)

> v1

[1] 2 1 5 100 2

22

Variable names can be any combination of letters, numbers, and the symbols . and _, but, they

cannot start with a number or with _.

> a_vector_with.a.long.name.100<-seq(1,3,0.1)

> a_vector_with.a.long.name.100

 [1] 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4

[16] 2.5 2.6 2.7 2.8 2.9 3.0

The c function is very useful for setting up arguments for other functions, as will be shown later.

As with all R functions, both variable names and function names can be substituted into

functions calls in place of numeric values.

> x<-rep(1,3)

> y<-4:10

> z<-c(x,y)

> z

 [1] 1 1 1 4 5 6 7 8 9 10

Although R prints the contents of individual vectors with a horizontal orientation, R does not

have ―columns vectors‖ and ―row vectors‖, and vectors do not have a fixed orientation. This

makes use of vectors in R very flexible.

Vectors do not need to contain numbers, but can contain data with any of the modes mentioned

earlier (numeric, logical, character, and complex) as long as all the data in a vector are of the

same mode
18

.

Logical vectors are very useful in R for subsetting data, i.e., for isolating some part of an object

that meets certain criteria. For relational commands, the shorter vector is repeated as many times

as necessary to carry out the requested comparison for each element in the longer vector (this

repeat rule is discussed more below).

> x<-1:10

> x>5

 [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

Also, note that when logical vectors are used in arithmetic, they are changed (coerced in R terms)

into a vector of binary elements: 1 or 0. Continuing with the above example:

> a<-x>5

> a

 [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

> a*1.4

18

 This does not mean you cannot comibine data of different modes into a single vector using c—you actually can,

but R will coerce all the elements to the same mode.

23

 [1] 0.0 0.0 0.0 0.0 0.0 1.4 1.4 1.4 1.4 1.4

One function that is commonly used on character data is paste. It concatenates character data

(and can also work with numerical and logical elements—these become character data).

> paste("A","B","C",TRUE,42)

[1] "A B C TRUE 42"

Note that the paste function is very different from c. The paste function combines its

arguments into a single character value, while the c function combines its arguments into a

vector, where each argument becomes a single element. The paste function becomes handy

when you want to combine the character data that are stored in several symbolic variables.

> month<-"March"

> day<-12

> year<-2009

> paste("Today is the ",day,"th day of ",month,", ",year,sep="")

[1] "Today is the 12th day of March, 2009"

This is especially useful with loops, when a variable with a changing value is combined with

other data. Loops will be discussed in a later section.

> group<-1:10

> id<-LETTERS[1:10]

> for(i in 1:10) {

+ print(paste("group =",group[i],"id =",id[i]))

+ }

[1] "group = 1 id = A"

[1] "group = 2 id = B"

[1] "group = 3 id = C"

[1] "group = 4 id = D"

[1] "group = 5 id = E"

[1] "group = 6 id = F"

[1] "group = 7 id = G"

[1] "group = 8 id = H"

[1] "group = 9 id = I"

[1] "group = 10 id = J"

Note that the separator can be specified as well using the sep argument (default is a single space

" "). LETTERS is actually a constant (one of only a few) that is built into R—it is a vector of

uppercase letters A through Z (different from letters).

24

2.2. Vector arithmetic, some common functions, and vectorized
operations

In R, vectors can be used directly in arithmetic expressions. Operations are applied on an

element-by-element basis. This can be referred to as ―vectorized‖ arithmetic, and, along with

vectorized functions (described below), it is a quality that makes R a very efficient programming

language
19

.

> x<-6:10

> x

[1] 6 7 8 9 10

> x+2

[1] 8 9 10 11 12

For an operation carried out on two vectors the mathematical operation is applied on an element-

by-element basis.

> y<-c(4,3,7,1,1)

> y

[1] 4 3 7 1 1

> z<-x+y

> z

[1] 10 10 15 10 11

When two vectors that have different numbers of elements are used in an expression together, R

will repeat the smaller vector. For example, with a vector of length one, i.e. a single number:

> x<-1:10

> m<-0.8

> b<-2

> y<-m*x + b

> y

 [1] 2.8 3.6 4.4 5.2 6.0 6.8 7.6 8.4 9.2 10.0

If the number of rows in the smaller vector is not a multiple of the larger vector (often indicative

of an error) R will return a warning.

> x<-1:10

> m<-0.8

> b<-c(2,1,1)

> y<-m*x + b

Warning message:

longer object length

 is not a multiple of shorter object length in: m * x + b

19

 Efficient for code-writers, that is.

25

Some arithmetic operators that are available in R are:

+ addition

- subtraction

* multiplication

/ division

^ exponentiation

%/% integer division

%% modulo (remainder)

log(a) natural log of a

log10(a) base 10 log of a

exp(a) e
a

sin(a) sine of a

cos(a) cosine of a

tan(a) tangent of a

sqrt(a) square root of a

Some simple functions that are useful for vector math include:

min minimum value of a set of numbers

max maximum of a set of numbers

pmin parallel minima (compares multiple vectors "row-by-row")

pmax parallel maxima

sum sum of all elements

length length of a vector (or the number of columns in a data frame)

NROW number of rows in a vector or data frame

mean arithmetic mean

sd standard deviation

rnorm generates a vector of normally-distributed random numbers
signif, ceiling, floor

 rounding

Many, many other functions are available.

R also has a few built in constants, including pi.

> pi

[1] 3.141593

Parentheses can be used to control the order of operations, as in any other programming

language. So,

> 7 - 2*4

[1] -1

is different from:

> (7 - 2)*4

26

[1] 20

and

> 10^1:5

[1] 10 9 8 7 6 5

is different from:

> 10^(1:5)

[1] 1e+01 1e+02 1e+03 1e+04 1e+05

Many functions in R are capable of accepting vectors (or even data frames and arrays, lists) as

input for single arguments, and returning an object with the same structure. These vectorized

functions make vector manipulations very efficient. Examples of such functions include log,

sin, and sqrt. For example,

> x<-1:10

> sqrt(x)

 [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490

 [7] 2.645751 2.828427 3.000000 3.162278

or

> sqrt(1:10)

 [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490

 [7] 2.645751 2.828427 3.000000 3.162278

The previous expressions are also equivalent to:

> sqrt(c(1,2,3,4,5,6,7,8,9,10))

 [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490

 [7] 2.645751 2.828427 3.000000 3.162278

But they are not the same as the following, where all the numbers are interpreted as individual

values for multiple arguments.

> sqrt(1,2,3,4,5,6,7,8,9,10)

Error in sqrt(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) :

 10 arguments passed to 'sqrt' which requires 1

There are also some functions designed for making vectorized (or list-ized?) operations on lists,

matrices, and arrays: these include apply and lapply. We will cover these in a later section.

2.3. Matrices and arrays

Arrays are multi-dimensional collections of elements and matrices are simply two-dimensional

arrays. R has several operators and functions for carrying out operations on arrays, and matrices

27

in particular (e.g. matrix multiplication). Many data analysis and plotting tasks can be carried out

without using arrays or matrices, but these data structures become are useful for some tasks.

To generate a matrix, the matrix function can be used. For example:

> X<-matrix(1:15,nrow=5,ncol=3)

> X

 [,1] [,2] [,3]

[1,] 1 6 11

[2,] 2 7 12

[3,] 3 8 13

[4,] 4 9 14

[5,] 5 10 15

Note that the filling order is by column by default (i.e. each column is filled before moving onto

the next one). The ―unpacking‖ order is the same.

> as.vector(X)

 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

If, for any reason, you want to change the filling order, you can use the byrow argument:

> X<-matrix(1:15,nrow=5,ncol=3,byrow=T)

> X

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

[4,] 10 11 12

[5,] 13 14 15

A similar function is available for higher-order arrays, called array. Here is an example with a

three-dimensional array:

> Y<-array(1:30,dim=c(5,3,2))

> Y

, , 1

 [,1] [,2] [,3]

[1,] 1 6 11

[2,] 2 7 12

[3,] 3 8 13

[4,] 4 9 14

[5,] 5 10 15

, , 2

 [,1] [,2] [,3]

[1,] 16 21 26

[2,] 17 22 27

28

[3,] 18 23 28

[4,] 19 24 29

[5,] 20 25 30

Arithmetic with matrices and arrays that have the same dimensions is straightforward, and is

done on an element-by-element basis. This is true for all the arithmetic operators listed in earlier

sections.

> Z<-matrix(1,nrow=5,ncol=3)

> Z

 [,1] [,2] [,3]

[1,] 1 1 1

[2,] 1 1 1

[3,] 1 1 1

[4,] 1 1 1

[5,] 1 1 1

> X + Z

 [,1] [,2] [,3]

[1,] 2 7 12

[2,] 3 8 13

[3,] 4 9 14

[4,] 5 10 15

[5,] 6 11 16

This doesn‘t work when dimensions don‘t match:

> Z<-matrix(1,nrow=3,ncol=3)

> X + Z

Error in X + Z : non-conformable arrays

For mixed vector/array arithmetic, vectors are recycled if needed.

> Z

 [,1] [,2] [,3]

[1,] 1 1 1

[2,] 1 1 1

[3,] 1 1 1

> x<-1:9

> Z+x

 [,1] [,2] [,3]

[1,] 2 5 8

[2,] 3 6 9

[3,] 4 7 10

> y<-1:3

> Z+y

 [,1] [,2] [,3]

[1,] 2 2 2

[2,] 3 3 3

29

[3,] 4 4 4

R also has operators for matrix algebra. The operator %*% carries out matrix multiplication, and

the function solve can invert matrices.

> X<-matrix(c(1,2.5,6,3.2,4,5,6,4,9),nrow=3)

> X

 [,1] [,2] [,3]

[1,] 1.0 3.2 6

[2,] 2.5 4.0 4

[3,] 6.0 5.0 9

> solve(X)

 [,1] [,2] [,3]

[1,] -0.33195021 -0.02489627 0.23236515

[2,] -0.03112033 0.56016598 -0.22821577

[3,] 0.23858921 -0.29460581 0.08298755

A useful function for working with matrices is the outer function. In its simplest usage, it will

apply a specified function to all combinations of the elements in two vectors given as arguments.

This can be handy for, e.g., contour plots. Note that the function specified as the FUN argument

must be a vectorized function. For example, let‘s make a multiplication table
20

:

> x<-y<-1:11

> outer(x,y,"*")

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]

 [1,] 1 2 3 4 5 6 7 8 9 10 11

 [2,] 2 4 6 8 10 12 14 16 18 20 22

 [3,] 3 6 9 12 15 18 21 24 27 30 33

 [4,] 4 8 12 16 20 24 28 32 36 40 44

 [5,] 5 10 15 20 25 30 35 40 45 50 55

 [6,] 6 12 18 24 30 36 42 48 54 60 66

 [7,] 7 14 21 28 35 42 49 56 63 70 77

 [8,] 8 16 24 32 40 48 56 64 72 80 88

 [9,] 9 18 27 36 45 54 63 72 81 90 99

[10,] 10 20 30 40 50 60 70 80 90 100 110

[11,] 11 22 33 44 55 66 77 88 99 110 121

20

 This may not be the best example, since the fun argument is actually an operator and not a function. To use an

operator here, note that you have to enclose it in quotes. You can try using a function, such as pmax, instead.

30

Exercises

1. Generate a vector of numbers that contains the sequence 1, 2, 3,. . .10 (try to use the least

amount of code possible to do this). Assign this vector to the variable x, and then carry out the

following vector arithmetic. Make sure your answers match the values given below.

x10log (=0, 0.301, 0.477. . .)

xln (=0, 0.69, 1.099. . .)

x

x

2
 (=1, Inf, -1.7. . .)

2. Use an appropriate function to generate a vector of 100 numbers that go from 0 to 2 with a

constant interval. Assuming this first vector is called x, create a new vector that contains sine(2x

- 0.5). Determine the minimum and the maximum of sine(2x - 0.5). Does this match what you

expect?

3. Create 5 vectors, each containing 10 random numbers. Give each vector a different name.

Creacte a new vector where the 1
st
 element contains the sum of the 1

st
 elements in your original 5

vectors, the 2
nd

 element contains the sum of the 2
nd

 elements, etc. Determine the mean of this

new vector. (Hint: this should be a very easy set of operations.)

4. Create the following matrix using the least amout of code (ir should be only around 30

characters):

 [,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 6 7 8 9 10

[3,] 11 12 13 14 15

[4,] 16 17 18 19 20

[5,] 21 22 23 24 25

5. If you are bored, try this. Given the following set of linear equations:

27.2x + 32y – 10.8z = 401.2

x – 1.48y = 0

409.1x +13.5z = 2.83

Solve for x, y, and z using matrix algebra.

31

3. Data frames, data import, and data export

Crawley 2007: Chapter 4, Dalgaard 2008: Sections 1.2.10 & 2.4, R-Data: Section 1.2, R-Intro: Sections

6 & 7

3.1. Reading data from files

As described above, a data frame is a type of data structure in R with rows and colums, where

different columns can contain data with different modes. A data frame is probably the most

common data structure that you will use for storing what you might call ―data sets‖. The easiest

way to create a data frame is to read in data from a file—this is done using the function

read.table, which works with ASCII text files. Data can be read in from other files as well,

using different functions, but read.table is the most commonly used approach. R is very

flexible in how it reads in data from text files. Typically, organization will be as follows

agency site date discharge flag.discharge

USGS 4232730 2006-01-01 75 P

USGS 4232730 2006-01-02 493 P

USGS 4232730 2006-01-03 1380 P

USGS 4232730 2006-01-04 1910 P

USGS 4232730 2006-01-05 1940 P

. . .

Note that the column labels in the header have to be compatable with R‘s variable naming

convention, or else R will make some changes as they are read in (or won‘t read the data in

correctly). With this option, R will assign row numbers based on the order of the observations.

So, for example, the data shown above without row labels are in the text file River_flow.txt, and

they can be read in and assigned to the data frame flow.dat using the following command.

> flow.dat<-read.table("River_flow.txt",header=TRUE)

> flow.dat

 agency site date discharge flag.discharge

1 USGS 4232730 2006-01-01 75 P

2 USGS 4232730 2006-01-02 493 P

3 USGS 4232730 2006-01-03 1380 P

4 USGS 4232730 2006-01-04 1910 P

...

Note that you must specify header=TRUE, or else R will interpret the row of labels as data. If

the file you are trying to load is not in the directory that R is working in (the working directory,

which can be checked with getwd() and changed with setwd(file= "filename")or

through the File menu [after selecting ―File‖, select ―Change dir…‖]) you can include a file path,

but note that the path should have forward, not backward, slashes (or double backward slashes, if

you prefer).

If you do not specify a field separtor (the sep argument) R assumes that any spaces or tabs

separate the data in your text file. In this case, the number of white space characters separating

your columns does not matter. However, any character data that contain spaces must be

32

surrounded by quotes (otherwise, R interprets the data on either side of the white space as

different elements).

Alternately, other separators can be used. If you specify a separator (say sep="\t" for tabs or

sep="," for commas) two consecuative separators will be interpreted as a missing value.

Conversely, with the default options, you need to explicitly identify missing values in your data

file with NA (or any other character, as long as you tell R what it is with the na.strings

argument).

For some field separators, there are alternate functions that can be used with the default

arguments, e.g. read.csv, which is identical to read.table, except default arguments differ.

Also, R doesn‘t care what the name of your file is or what its extension is, as long as it is an

ASCII text file. A few other handy bits of information for using read.table follow. You can

include comments at the end of rows in your data file—just preceed them with a #. Also, R will

recognize NaN, Inf, and -Inf in input files.

Probably the easiest approach to handling missing values is to indicate their presence with NA in

the text file. R will automatically recognize these as missing values. Since the file River_flow.txt

uses NA for missing values, they should have been read in properly
21

.

> which(is.na(flow.dat$discharge))

[1] 273

> flow.dat[271:275,]

 agency site date discharge flag.discharge

271 USGS 4232730 2006-09-28 1430 P

272 USGS 4232730 2006-09-29 1430 P

273 USGS 4232730 2006-09-30 NA <NA>

274 USGS 4232730 2006-10-01 1290 A

275 USGS 4232730 2006-10-02 649 A

In most cases, it makes the most sense to put your data into a text file for reading into R. This

can be done in various ways. Data downloaded from the internet are often in text files to begin

with. Data can be entered directly into a text file using a text editor. For data that are in a

spreadsheet program such as Excel you have at least two options. Data can be copied and pasted

into a text editor and saved as a text file—this creates a tab-delimited file. Alternatively, data can

be saved directly from spreadsheet programs, e.g. as ―Formatted Text (Space delimited)‖ (*.prn)

in Excel (although this can be problematic for spreadsheets with a large number of columns), or

as comma-separated values (*.csv).

If it is not possible to convert your data file into a text file, e.g. if the original software is not

available for opening the file, it is likely that you can find a function for reading the file directly.

R has the capability to handle many different formats
22

.

21

 The tricks used in these two commands are described in section 5.2.
22

 See the foreign package.

33

This may all seem confusing, but it is really not that bad. Your best bet is to play around with the

different options, find one that you like, and stick with it. Let‘s work on another example. First,

take a look at the contents of the file US_pop.txt. It looks something like this:

year pop

1790 3929214

1800 5308483

1810 7239881

...

A header row is present, but row numbers are not present. So, it should be easy to read in:

> pop.dat<-read.table("US_pop.txt",header=TRUE)

> pop.dat

 year pop

1 1790 3929214

2 1800 5308483

3 1810 7239881

...

21 1990 248709873

22 2000 281421906

Note that we did not need to specify a separator, since one or more white space characters

(spaces, in this case) are interpreted as a separator
23

. This type of read.table statement, that

includes only the file name and header=TRUE is the approach that we recommend. Unless your

file has unquoted character strings that contain white space characters (e.g., spaces) or missing

values are actually missing (i.e., not represented by NA or some other string), there is no need to

specify the separator with the sep argument.

Data frames can actually be edited interactively in R using the edit function. This is really only

useful for small data sets.

> pop.dat<-edit(pop.dat)

3.2. Creating data frames manually

Data frames can be made manually using the data.frame function:

> date<-c("1-FEB-2008","17-APR-2008","20-JUN-2008","19-SEPT-2008")

> mass<-c(1.8,3.4,6.3,7.8)

> dat<-data.frame(sample.date=date,mass.mean=mass)

> dat

23

 In fact, if we had specified sep=" " R would have returned an error, since the number of spaces between entries

is not consistent in this file.

34

 sample.date mass.mean

1 1-FEB-2008 1.8

2 17-APR-2008 3.4

3 20-JUN-2008 6.3

4 19-SEPT-2008 7.8

While this approach is not an efficient way to enter data that could be read in directly, it can be

very handy for some applications, e.g. creating customized summary tables. Note that column

names are specified using an equal sign. It is also possible to specify (or change, or check)

column names for an existing data frame using the function names.

> names(dat)<-c("Date","Mass")

> dat

 Date Mass

1 1-FEB-2008 1.8

2 17-APR-2008 3.4

3 20-JUN-2008 6.3

4 19-SEPT-2008 7.8

Row names (1:4 above) can be specified in the data.frame function with the row.names

argument.

> dat<-data.frame(sample.date=date,mass.mean=mass,

+ row.names=c("D","E","A","B"))

> dat

 sample.date mass.mean

D 1-FEB-2008 1.8

E 17-APR-2008 3.4

A 20-JUN-2008 6.3

B 19-SEPT-2008 7.8

Specifying row names can be useful if you want to index data, which will be covered later. Row

names can also be specified for an existing data frame with the rownames function (not to be

confused with the row.names argument).

3.3. Working with data frames

So what do you do with data in R once it is in a data frame? Commonly, the data in a data frame

will be used in some type of analysis or plotting procedure. It it usually necessary to be able to

select and identify specific columns (i.e., vectors) within data frames. There are two ways to

specify a given column of data from within a data frame. The first is to use the $ notation. To

demonstrate, let‘s read in some data on biological hydrogen production from glucose:

> h2.dat<-read.table("Biohydrogen.txt",header=TRUE)

To see what the column names are, we can use the function names:

> names(h2.dat)

[1] "reactor" "date" "time" "vol" "conc.h2"

35

The $ notation just uses a $ between the data frame name and column name to specify a

particular column. Say we want to look at the vol column, which contains the volume of biogas

(a mixture of H2 and CO2 in this case) produced by a particular reactor
24

.

> h2.dat$vol

 [1] 0.00 0.00 19.50 14.25 9.10 24.20 17.50 4.00 4.00 0.00

 [11] 0.00 21.40 16.20 9.90 25.50 17.40 4.00 0.00 0.00 0.00

 [21] 22.50 17.00 10.50 26.60 17.10 2.00 0.00 0.00 0.00 21.20

 [31] 15.30 10.40 23.60 16.80 7.00 4.00 0.00 0.00 20.40 12.70

 [41] 9.30 21.20 20.70 2.60 NA 0.00 0.00 0.00 4.20 0.00

 [51] 0.00 0.00 1.85 1.70 0.00 0.00 0.00 3.60 0.00 0.00

 [61] 0.00 0.00 2.50 0.00 0.00 0.00 3.70 0.00 0.00 0.00

 [71] 2.00 0.80 0.00 0.00 17.80 14.40 14.00 24.60 5.10 2.60

 [81] 5.50 0.00 0.00 22.75 20.00 16.50 14.90 7.00 4.00 3.00

 [91] 0.00 0.00 21.90 19.20 16.60 17.50 6.30 4.40 1.50 0.00

[101] 0.00 25.20 19.80 17.30 17.30 6.60 2.70 2.80 0.00 0.00

[111] 24.60 21.20 18.80 15.10 9.00 2.40 0.00 0.00 0.00 19.60

[121] 18.30 16.30 23.00 5.00 2.10 6.20 0.00 0.00 11.35 0.00

[131] 0.00 0.00 0.00 2.00 0.00

Although it is handy to think of data frame columns as having a vertical orientation, this

orientation is not present when they are printed individually—instead, elements are printed from

left to right, and then top to bottom. The expression h2.dat$vol could be used just as you

would any other vector. For example:

> mean(h2.dat$vol)

[1] NA

R can‘t calculate the mean because of a single NA value. Let‘s remove it first using the na.omit

function (more on this below):

> mean(na.omit(h2.dat$vol))

[1] 7.719403

The second option for working with individual colums within a data frame is to use the

commands attach and detach. Both of these functions take a data frame as an argument:

attaching a data frame puts all the columns within that data frame in R‘s search path, and they

can be called by using their names alone without the $ notation.

> attach(h2.dat)

> vol

 [1] 0.00 0.00 19.50 14.25 9.10 24.20 17.50 4.00 4.00 0.00

 ...

24

 With the $ notation, you don‘t even need to specify the complete name of the column you want—just enough to

distinguish it from other columns is sufficient, so h2.dat$v would also work here.

36

[131] 0.00 0.00 0.00 2.00 0.00

Note that when you are done using the individual columns, it is good practice to detach your

data frame. Once the data frame is detached, R will no longer know what you mean when you

specify the name of a column alone:

> detach(h2.dat)

> vol

Error: object "vol" not found

If you modify a variable that is part of an attached data frame, the data within the data frame

remain unchanged; you are actually working with a copy of the data frame.

The $ notation can also be used to add columns to a data frame. For example, if we want to add a

column to this data frame that has combined date and time, we can use the following code.

> h2.dat$date.time<-paste(h2.dat$date,h2.dat$time,sep=", ")

Let‘s say we also want a new column with biogas volume in L instead of mL:

> h2.dat$vol.L<-h2.dat$vol/1000

Here is what our new data frame looks like:

> h2.dat

 reactor date time vol conc.h2 date.time vol.L

1 G172 9/18/2006 11:12 0.00 NA 9/18/2006, 11:12 0.00000

2 G172 9/18/2006 14:00 0.00 0.00 9/18/2006, 14:00 0.00000

3 G172 9/19/2006 9:26 19.50 7.73 9/19/2006, 9:26 0.01950

...

135 G171 9/21/2006 12:40 0.00 30.26 9/21/2006, 12:40 0.00000

Both the $ notation and the attach and detach functions can be used to specify data vectors

within any other function. However, there are other options when using functions. For some

functions, you can specify the data frame that should be used with the data argument, e.g.

data=h2.dat, and then refer to the column(s) within the data frame directly by name. This

argument can be used in many different functions. For other functions, you can use the with

function. Although it looks a bit clunky, the with function can save code and help prevent user

errors.

Many data frames that contain real data will have some missing observations. R has several tools

for working with these observations. For starters, the na.omit function can be used for

removing NAs from a vector. Let‘s work with the conc.h2 column, which contains the

concentration of H2 (% volume) in the produced biogas.

> h2.dat$conc.h2

 [1] NA 0.00 7.73 10.72 15.69 21.64 23.53 26.52 25.06 NA

37

 [11] 0.00 8.39 11.89 17.84 24.24 27.20 26.23 27.79 NA 0.00

 [21] 7.85 11.54 18.72 22.38 24.77 28.46 27.06 NA 0.00 7.38

 [31] 10.66 11.89 20.97 25.36 17.01 25.22 NA 0.00 6.57 9.29

 [41] 13.08 16.82 22.88 22.10 NA NA NA NA NA NA

 [51] NA NA NA NA NA NA NA NA NA NA

 [61] NA NA NA NA NA NA NA NA NA NA

 [71] NA NA NA 0.00 6.67 10.51 14.48 21.20 23.61 18.96

 [81] 26.25 NA 0.00 8.31 13.55 21.26 23.11 25.78 26.40 27.13

 [91] NA 0.00 7.50 11.82 17.21 21.08 22.86 22.00 26.49 NA

[101] NA NA NA NA NA NA NA NA NA NA

[111] NA NA NA NA NA NA NA NA NA NA

[121] NA NA NA NA NA NA NA 31.20 35.22 NA

[131] NA NA NA 30.93 30.26

> na.omit(h2.dat$conc.h2)

 [1] 0.00 7.73 10.72 15.69 21.64 23.53 26.52 25.06 0.00 8.39

[11] 11.89 17.84 24.24 27.20 26.23 27.79 0.00 7.85 11.54 18.72

[21] 22.38 24.77 28.46 27.06 0.00 7.38 10.66 11.89 20.97 25.36

[31] 17.01 25.22 0.00 6.57 9.29 13.08 16.82 22.88 22.10 0.00

[41] 6.67 10.51 14.48 21.20 23.61 18.96 26.25 0.00 8.31 13.55

[51] 21.26 23.11 25.78 26.40 27.13 0.00 7.50 11.82 17.21 21.08

[61] 22.86 22.00 26.49 31.20 35.22 30.93 30.26

attr(,"na.action")

 [1] 1 10 19 28 37 45 46 47 48 49 50 51 52 53 54 55

[17] 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

[33] 72 73 82 91 100 101 102 103 104 105 106 107 108 109 110 111

[49] 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

[65] 130 131 132 133

attr(,"class")

[1] "omit"

Although the result does contain more than just the non-NA values, only the non-NA values will

be used in subsequent operations
25

. Note that the result of na.omit contains more information

than just the non-NA values. This function can also be applied to complete data frames. In this

case, any row with an NA is removed.

> h2.clean.dat<-na.omit(h2.dat)

It is often necessary to identify NAs present in a data structure. The is.na function can be used

for this—it can also be negated using the ―!‖ character.

> is.na(h2.dat$conc.h2)

 [1] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

 [11] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

 [21] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

25

 The other components are attributes, which can be handy if you need them, but can generally be ignored. In this

case, na.action records the original row number of values that were removed.

38

 [31] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

 [41] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

 [51] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

 [61] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

 [71] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

 [81] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

 [91] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

[101] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[111] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[121] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE

[131] TRUE TRUE TRUE FALSE FALSE

3.4. Writing data to files

With R, it is easy to write data to files. The function write.table is usually the best function

for this purpose. Given only a data frame name and a file name, this function will write the data

contained in the data frame to a text file, using spaces for separators, and putting double quotes

around all character data. There are several characteristics of the file that is created that can be

controlled using this function, as seen in the complete list of arguments given in the associated

help file:

write.table(x, file = "", append = FALSE, quote = TRUE, sep = " ", eol

= "\n", na = "NA", dec = ".", row.names = TRUE, col.names = TRUE,

qmethod = c("escape", "double"))

For example, if we wanted to write out the entire contents of the h2.dat dataframe we could use

the following code:

> write.table(h2.dat,"h2.out")

Setting the append argument to TRUE lets you add data to a file that already exists. Note that

there are several other arguments for changing the appearance of the output.

The write.table function cannot be used with all data structures in R (e.g. lists), but it is

possible to send all R output to a file using the sink function. The follow command would send

all the susequent output from R to the file R_stuff.out.

> sink("R_stuff.out")

To go back to the default ―sink‖—i.e., the GUI itself, use:

> sink()

39

Exercises

1. The file Thakali_Ni_EC50s.txt contains nickel EC50s for barley root elongation in soils, along

with relevant soil chemistry. Open the file to see how it is formatted (if you don‘t have a text

editor that shows tabs and spaces, you can use Microsoft Word, and click the ―show paragraph

marks‖ button, ¶), and then read the data into R using the function read.table. Print the

resulting data frame to the screen to make sure the data were read in correctly.

Did you include sep in your command? If not, do so now, if so, try the command without the

sep argument. Is it needed? Delete the quotes that are present in the data file around the soil

names (use the search and replace feature of your text editor) and save the file with a new name.

Now do you need the sep argument to read the data in? Why?

2. Determine the minimum and maximum soil pH (ph.soil) in your new data frame that contains

the Thakali data. Next, add a new column to the data frame that contains the log10 of the EC50

(ec50.ni).

3. Create a new data frame that contains the mean Ni EC50, soil pH, and soil organic carbon

(oc) from the Thakali data. Write out the summary to a new file using the default options. Write

the data out again, but this time, see if you can eliminate the row labels. Finally, try changing the

separator to a tab.

4. Open the Excel file Carion_beetles.xls, which contains data on the presence of several species

of carion beetles in 25 locations in NY state. Can you think of more than one way to get these

data into R? Save these data to a text file using your chosen method, and try reading them into R

using read.table. Try adding a space between the genus abbreviation and the species name

for one or two species and repeat the process. Does this cause any problems?

40

4. Graphics, part I
Dalgaard 2008: Section 2.2, R-Intro: Section 12, Murrell 2005

4.1. Introduction to the plot function

It is easy to produce publication-quality graphics in R. However, in this first section on graphics,

we will focus on the simplest plots that can be produced with the plot function. This function

produces a plot as a side effect, but the type of plot produced depends on the type of data

submitted. The basic plot arguments, as given in the help file for plot.default are:

plot(x, y = NULL, type = "p", xlim = NULL, ylim = NULL,

 log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL,

 ann = par("ann"), axes = TRUE, frame.plot = axes,

 panel.first = NULL, panel.last = NULL, asp = NA, ...)

To plot a single vector, all we need to do is supply that vector as the only argument to the

function:

> z<-rnorm(10)

> plot(z)

In this case, R simply plots the data in the order they occur in the vector. To plot one variable

versus another, just specify the two vectors for the first two arguments:

> x<- -15:15

> y<-x^2

> plot(x,y)

2 4 6 8 10

-2
-1

0
1

2
3

Index

z

41

And that is all it takes to generate plots in R, as long as you like the default settings. Of course,

the default settings generally won‘t be sufficient for publication- or presentation-quality

graphics. Fortunately, plots in R are very flexible. The table below shows some of the more

common arguments to the plot function, and some of the common settings. For many more

arguments, see the help file for par.

Argument Common options Additional information

bg

"red"

"blue"

many more

Color of fill for some plotting

symbols (see below)

col

"red"

"blue"

1

Through
657

Color of plotting symbols and

lines. Type colors() to get

list. You can also mix your

own colors. See ―Color

Specification‖ in the help file

for par.

las

0

1

2

3

Rotation of numeric axis

labels.

log

"x"

"y"

"xy"

For making log axes. If you

have multiple decades, you

may have to use axis function

(or our function log.axis) for

nice-looking axes

-15 -10 -5 0 5 10 15

0
5

0
1

0
0

1
5

0
2

0
0

x

y

42

lty

0

1 or "solid"

2 or "dashed"

3 or "dotted"

through
6

Line types. Can also specify

custom types, e.g, 23 would

have a 2-unit dash followed by

a 3-unit space. Note that lines

simply connect points—there

is no automatic ―smoothing‖.

main
Any character string, e.g.,
"Plot 1"

Adds a main title at the top.

pch

0

through
25

Plotting symbols. See below

for symbols. Can also use any

single character, e.g., "v" or

"@".

type

"p" for points

"l" for line

"b" for both

"o" for over

"n" for none

"n" can be handy for setting

up a plot that you later add

data to.

xlab, ylab
Any character string, e.g.,
"Income (US$)"

For specifying axis labels.

xlim, ylim

Any 2-element vector, e.g.,
c(0,100)

c(-10,10)
c(55,0)

List higher value first to

reverse axis

Use of some of the above arguments is shown in the following example.

> plot(x,y,type="o",xlim=c(-20,20),ylim=c(-10,300),pch=21,col="red",

+ bg="yellow",xlab="The X variable",ylab="X squared")

43

The plot function is effectively vectorized. It accepts vectors for the first two arguments (which

specify the x and y position of your observations), but can also accept vectors for some of the

other arguments, including pch or col. Among other things, this provides an easy way to

produce a reference plot demonstrating R‘s plotting symbols and lines. If you use R regularly,

you may want to print a copy out (or make your own).

> plot(1:25,rep(1,25),pch=1:25,ylim=c(0,10),xlab="",ylab="",axes=F)

> text(1:25,1.8,as.character(1:25),cex=0.7)

> text(12.5,2.5,"Default",cex=0.9)

> points(1:25,rep(4,25),pch=1:25,col="blue")

> text(1:25,4.8,as.character(1:25),cex=0.7,col="blue")

> text(12.5,5.5,'col="blue"',cex=0.9,col="blue")

> points(1:25,rep(7,25),pch=1:25,col="blue",bg="red")

> text(1:25,7.8,as.character(1:25),cex=0.7,col="blue")

> text(10,8.5,'col="blue",',cex=0.9,col="blue")

> text(15,8.5,'bg="red"',cex=0.9,col="red")

> box()

-20 -10 0 10 20

0
5

0
1

5
0

2
5

0

The X variable

X
 s

q
u

a
re

d

44

Exercises

1. Produce a data frame with two columns: x, which ranges from -2 to 2 and has a small

interval between values (for plotting), and cosine(x). Plot cosine(x) vs. x as a line. Repeat, but try

some different line types or colors.

2. Read in the data in the file Oxychem.txt, which contains the concentration of the chemical

Dechlorane Plus in tree bark from western NY State and surrounding areas. Plot the Dechlorane

Plus concentration (dechlor) vs. the distance (dist—in km) from the suspected source

(OxyChem). Try using linear and logarithmic axes, and be sure to add appropriate axis labels and

a heading. Try a few plotting symbols and colors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Default

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

col="blue"

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

col="blue", bg="red"

45

5. Manipulating data, part I
Crawley 2007: Chapters 2 & 4, Dalgaard 2008: Sections 1.2 & 10.1.3, R-Intro: Section 5.4, R-Lang:

Section 3.4, Venables & Ripley 2002: Chapter 2. Spector 2008

5.1. Modes, classes, attributes, length, and coercion

As described above, the mode of an object describes the type of data that it contains. In R, mode

is an object attribute. All objects have at least two attributes: mode and length, but many objects

have more.

> x<-1:10

> mode(x)

[1] "numeric"

> length(x)

[1] 10

It is often necessary to change the mode of a data structure, e.g. to have your data displayed

differently, or to apply a function that only works with a particular type of data structure. In R

this is called coercion. There are many functions in R that have the structure as.something

that change the mode of a submitted object to ―something‖. For example, say you want to treat

numeric data as character data.

> x<-1:10

> as.character(x)

 [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"

Or, you may want to turn a matrix into a data frame.

> X<-matrix(1:30,nrow=3)

> as.data.frame(X)

 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

1 1 4 7 10 13 16 19 22 25 28

2 2 5 8 11 14 17 20 23 26 29

3 3 6 9 12 15 18 21 24 27 30

If you are unsure of whether or not a coercion function exists, give it a try—two other common

examples are as.numeric and as.vector.

Attributes are important internally for determining how objects should be handled by various

functions. In particular, the class attribute determines how a particular object will be handled

by a given function. For example, output from a linear regression has the class "lm", and will be

handled differently by the print function than will a data frame, which has the class

"data.frame". The utility of this object-oriented approach will become more apparent later on.

46

It is often necessary to know the length of an object. Of course, length can mean different things.

Three useful functions for this are nrow, NROW, and length.

The function nrow will return the number of rows in a two-dimensional data structure.

> X<-matrix(1:30,nrow=3)

> X

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 4 7 10 13 16 19 22 25 28

[2,] 2 5 8 11 14 17 20 23 26 29

[3,] 3 6 9 12 15 18 21 24 27 30

> nrow(X)

[1] 3

The vertical analog is ncol.

> ncol(X)

[1] 10

You can get both of these at once with the dim function.

> dim(X)

[1] 3 10

For a vector, use the function NROW or length.

> x<-1:10

> NROW(x)

[1] 10

The value returned from the function length depends on the type of data structure you submit,

but for most data structures, it is the total number of elements.

> length(X)

[1] 30

> length(x)

[1] 10

5.2. Indexing, sub-setting, splitting, sorting, and locating data

Subsetting and indexing are ways to select specific parts of a data structure (such as specific

rows within a data frame) within R. Indexing (also known as subscripting) is done using square

brackets in R:

> v1<-c(5,1,3,8)

> v1

[1] 5.0 1.0 3.0 8.0

Say we want the 3
rd

 observation:

47

> v1[3]

[1] 3.2

R is very flexible in terms of what can be selected or excluded.

This returns the 1
st
 through 3

rd
 observation:

> v1[1:3]

[1] 5.0 1.0 3.2

While this returns all but the 4
th

 observation:

> v1[-4]

[1] 5.0 1.0 3.2

This bracket notation can also be used with relational constraints. For example, if we want only

those observations that are < 5.0:

> v1[v1<5]

[1] 1.0 3.2

This may seem a bit confusing, but if we evaluate each piece separately, it becomes more clear:

> v1<5

[1] FALSE TRUE TRUE FALSE

> v1[c(FALSE,TRUE,TRUE,FALSE)]

[1] 1.0 3.2

While we are on the topic of subscripts, we should note that, unlike some other programming

languages, the size of a vector in R is not limited by its initial assignment. This is true for other

data structures as well. To increase the size of a vector, just assign a value to a position that

doesn‘t currently exist:

> length(v1)

[1] 4

> v1[8]<-10

> length(v1)

[1] 8

> v1

[1] 5.0 1.0 3.2 8.0 NA NA NA 10.0

Indexing can be applied to other data structures in a similar manner as shown above. For data

frames and matrices, however, we are now working with two dimensions. In specifying indices,

row numbers are given first. To demonstrate subscripting as applied to data frames, let‘s read in

a file:

48

> flow.dat<-read.table("River_flow.txt",header=TRUE)

This data frame has 730 rows and five columns:

> dim(flow.dat)

[1] 730 5

> flow.dat

 agency site date discharge flag.discharge

1 USGS 4232730 2006-01-01 75 P

2 USGS 4232730 2006-01-02 493 P

3 USGS 4232730 2006-01-03 1380 P

...

729 USGS 1509000 2006-12-30 672 A

730 USGS 1509000 2006-12-31 628 A

Let‘s say we want only the first five rows and first two columns:

> flow.dat[1:5,1:2]

 agency site

1 USGS 4232730

2 USGS 4232730

3 USGS 4232730

4 USGS 4232730

5 USGS 4232730

If an index is left out, R returns all values in that dimension (you need to include the comma).

> flow.dat[1:5,]

 agency site date discharge flag.discharge

1 USGS 4232730 2006-01-01 75 P

2 USGS 4232730 2006-01-02 493 P

3 USGS 4232730 2006-01-03 1380 P

4 USGS 4232730 2006-01-04 1910 P

5 USGS 4232730 2006-01-05 1940 P

You can also specify row or column names directly within the brackets—this can be very handy

when order may change in future versions of your code.

> flow.dat[1:5,"site"]

[1] 4232730 4232730 4232730 4232730 4232730

You can also specify multiple column names using the c function
26

.

26

 Since you are using character data to identify columns in the last two examples (both "site" and

c("agency","site") are chacter vectors), it is also possible to use the function paste. This can be handy, for

example, when you are working in a loop, and want to select a different row or column with each iteration.

49

> flow.dat[1:5,c("agency","site")]

 agency site

1 USGS 4232730

2 USGS 4232730

3 USGS 4232730

4 USGS 4232730

5 USGS 4232730

Relational constraints can also be used in indexes.

> flow.dat[flow.dat$discharge<60,]

 agency site date discharge flag.discharge

50 USGS 4232730 2006-02-19 55 P

77 USGS 4232730 2006-03-18 31 P

78 USGS 4232730 2006-03-19 52 P

80 USGS 4232730 2006-03-21 59 P

92 USGS 4232730 2006-04-02 50 P

100 USGS 4232730 2006-04-10 58 P

106 USGS 4232730 2006-04-16 51 P

116 USGS 4232730 2006-04-26 56 P

NA <NA> NA <NA> NA <NA>

While indexing can clearly be used to create a subset of data that meet certain criteria, the

subset function is often easier and shorter to use for data frames
27

. Subsetting is used to select a

subset of a vector, data frame, or matrix that meets a certain criterion (or criteria). To return what

was given in the last example
28

.

> subset(flow.dat,discharge<60)

 agency site date discharge flag.discharge

50 USGS 4232730 2006-02-19 55 P

77 USGS 4232730 2006-03-18 31 P

78 USGS 4232730 2006-03-19 52 P

80 USGS 4232730 2006-03-21 59 P

92 USGS 4232730 2006-04-02 50 P

100 USGS 4232730 2006-04-10 58 P

106 USGS 4232730 2006-04-16 51 P

116 USGS 4232730 2006-04-26 56 P

Note that the $ notation does not need to be used in the subset function. As with indexing,

multiple constraints can also be used:

> subset(flow.dat,discharge>4000 & site!=4232730)

 agency site date discharge flag.discharge

27

 A note about the subset function that may or may not ever be relevant: by default, a subsetted object retains all

the levels of a factor (see following sections for information on factors). If you want to remove unused levels, use

drop=TRUE.
28

 Well, the result is almost identical to the previous result—note the different handling of NA values.

50

438 USGS 1509000 2006-03-14 4540 A

544 USGS 1509000 2006-06-28 6050 A

545 USGS 1509000 2006-06-29 4760 A

In some cases you may want to select observations that include any one value out of a set of

possibilities. Say we only want those observations where flag.discharge is A, Ae, or P. We

could use this:

> subset(flow.dat,flag.discharge=="A" | flag.discharge=="Ae" |

flag.discharge=="P")

 agency site date discharge flag.discharge

1 USGS 4232730 2006-01-01 75 P

2 USGS 4232730 2006-01-02 493 P

3 USGS 4232730 2006-01-03 1380 P

4 USGS 4232730 2006-01-04 1910 P

...

But, this is an easier way:

> subset(flow.dat,flag.discharge %in% c("A","Ae","P"))

 agency site date discharge flag.discharge

1 USGS 4232730 2006-01-01 75 P

2 USGS 4232730 2006-01-02 493 P

3 USGS 4232730 2006-01-03 1380 P

4 USGS 4232730 2006-01-04 1910 P

...

Indexing matrices and arrays follows what we have just covered. For example:

> X<-matrix(1:30,nrow=3)

> X

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 4 7 10 13 16 19 22 25 28

[2,] 2 5 8 11 14 17 20 23 26 29

[3,] 3 6 9 12 15 18 21 24 27 30

> X[3,8]

[1] 24

> X[,3]

[1] 7 8 9

> Y<-array(1:90,dim=c(3,10,3))

> Y[3,1,1]

[1] 3

51

Indexing is a little trickier for lists—you need to use double square brackets, [[i]], to specify

an element within a list
29

. Of course, if the element within the list has multiple elements, you

could use indexing to select specific elements within it.

> list.1<-list(1:10,X,Y)

> list.1[[1]]

 [1] 1 2 3 4 5 6 7 8 9 10

Although you may not run into a need for it, it is possible to use double, triple, etc. indexing with

all types of data structures. R evaluates the expression from left to right.

> list.1[[2]][3,2]

[1] 6

Indexing, either alone or in combination with the subset function, can be used for some pretty

sophisticated subsetting. For example, taking the hydrogen production data:

> h2.dat<-read.table("Biohydrogen.txt",header=TRUE)

> h2.dat

 reactor date time vol conc.h2

1 G171 9/18/2006 11:12 0.00 NA

2 G171 9/18/2006 14:00 0.00 31.20

3 G171 9/19/2006 9:26 11.35 35.22

...

134 G185 9/20/2006 13:41 2.10 NA

135 G185 9/21/2006 12:40 6.20 NA

Let‘s say we want to select only data from those reactors that do not have missing H2

concentrations, with an exception for the first observation (11:12 on 9/18/2006, for which no

measurements were made). This exception makes the code more complicated, but see if you can

figure out how this works:

> subset(h2.dat,!reactor %in% h2.dat$reactor[h2.dat$date!="9/18/2006"

+ & h2.dat$time!="11:12"][is.na(h2.dat$conc.h2[h2.dat$date!=

+ "9/18/2006" & h2.dat$time!="11:12"])])

 reactor date time vol conc.h2

10 G172 9/18/2006 11:12 0.00 NA

11 G172 9/18/2006 14:00 0.00 0.00

12 G172 9/19/2006 9:26 19.50 7.73

...

107 G182 9/20/2006 13:41 4.40 22.00

108 G182 9/21/2006 12:40 1.50 26.49

29

 You can use single brackets too, but doing so will return an object that is still a list.

52

An easy way to divide data into groups is to use the split function. This function will divide a

data structure (typically a vector or a data frame) into one subset for each level of the variable

you would like to split by. The subsets are stored together in a list.

h2.splt<-split(h2.dat,h2.dat$reactor)

This function can be handy for viewing data, especially when working with data frames with

many groups.

> h2.splt

$G171

 reactor date time vol conc.h2

1 G171 9/18/2006 11:12 0.00 NA

2 G171 9/18/2006 14:00 0.00 31.20

3 G171 9/19/2006 9:26 11.35 35.22

4 G171 9/19/2006 12:51 0.00 NA

5 G171 9/19/2006 16:00 0.00 NA

6 G171 9/19/2006 22:52 0.00 NA

7 G171 9/20/2006 8:52 0.00 NA

8 G171 9/20/2006 13:41 2.00 30.93

9 G171 9/21/2006 12:40 0.00 30.26

...

$G185

 reactor date time vol conc.h2

127 G185 9/18/2006 11:12 0.0 NA

128 G185 9/18/2006 14:00 0.0 NA

129 G185 9/19/2006 9:26 19.6 NA

130 G185 9/19/2006 12:51 18.3 NA

131 G185 9/19/2006 16:00 16.3 NA

132 G185 9/19/2006 22:52 23.0 NA

133 G185 9/20/2006 8:52 5.0 NA

134 G185 9/20/2006 13:41 2.1 NA

135 G185 9/21/2006 12:40 6.2 NA

If you apply split to individual vectors, the resulting list can be used directly in some plotting

or summarizing functions to give you results for each separate group. (There are usually other

ways to arrive at this type of result.) The split function can also be handy for manipulating and

analyzing data by some grouping variable, as we will see later.

It is often necessary to sort data. For a single vector, this is done with the function sort.

> x<-rnorm(5)

> x

[1] 0.08396616 0.60914099 0.93206451 -1.29747244 0.87950418

> y<-sort(x)

> y

[1] -1.29747244 0.08396616 0.60914099 0.87950418 0.93206451

53

But what if you want to sort an entire data frame by one column? In this case it is necessary to

use the function order, in combination with indexing.

> h2.dat[order(h2.dat$vol),]

> h2.dat[order(h2.dat$vol),]

 reactor date time vol conc.h2

1 G171 9/18/2006 11:12 0.00 NA

2 G171 9/18/2006 14:00 0.00 31.20

...

108 G182 9/21/2006 12:40 1.50 26.49

63 G177 9/21/2006 12:40 1.70 NA

62 G177 9/20/2006 13:41 1.85 NA

...

111 G183 9/19/2006 9:26 25.20 NA

24 G173 9/19/2006 22:52 25.50 24.24

33 G174 9/19/2006 22:52 26.60 22.38

54 G176 9/21/2006 12:40 NA NA

The function order returns a vector that contains the row positions of the ranked data:

> order(h2.dat$vol)

 [1] 1 2 4 5 6 7 9 10 11 19 20 27 28

...

Note in the reordered data frame, the automatic row labels that are added by R stay with the

observation that they were originally associated with when the data frame was first created.

The previous discussion in this section shows how to isolate data that meet certain criteria from a

data structure. But sometimes it is important to know where data resides in its original data

structure. Two functions that are handy for locating data within an R data structure are match

and which. The match function will tell you where specific values reside in a data structure,

while the which function will return the locations of values that meet certain criteria.

> match(1.85,h2.dat$vol)

[1] 62

Note that this function matches the first observation only. This function is vectorized.

> match(c(1.85,2.0,25.5),h2.dat$vol)

[1] 62 8 24

Let‘s check this result:

> h2.dat[c(62,8,24),]

 reactor date time vol conc.h2

62 G177 9/20/2006 13:41 1.85 NA

8 G171 9/20/2006 13:41 2.00 30.93

24 G173 9/19/2006 22:52 25.50 24.24

54

The match function is useful for finding the location of the unique values, such as the

maximum.

> match(max(h2.dat$vol),h2.dat$vol)

[1] 54

Let‘s take a look at the value.

> h2.dat$vol[54]

[1] NA

Oops. Try again.

> match(max(na.omit(h2.dat$vol)),h2.dat$vol)

[1] 33

> h2.dat$vol[33]

[1] 26.6

The which function, on the other hand, will return all locations that meet the criteria.

> which(h2.dat$vol<1)

 [1] 1 2 4 5 6 7 9 10 11 19 20 27 28

[14] 29 36 37 38 46 47 55 56 57 59 60 61 64

[27] 65 66 68 69 70 71 73 74 75 77 78 79 81

[40] 82 83 91 92 100 101 109 110 118 119 126 127 128

Of course, you can specify multiple constraints.

> which(h2.dat$vol<10 & h2.dat$vol>0)

 8 14 17 18 23 26 35 44 45 50 53 58 62

[14] 63 67 72 76 80 81 88 89 90 97 98 99 106

[27] 107 108 115 116 117 124 125 133 134 135

The which function can be useful for locating missing values.

> which(is.na(h2.dat$vol))

[1] 54

5.3. Factors

For many analyses, it is important to distinguish between quantitative (i.e., continuous) and

categorical (i.e., discrete) variables. Categorical data are called factors in R. Internally, factors

are stored as numeric data (as a check with mode will tell you), but they are handled as

categorical data in statisitical analyses. Factors are a class of data in R. R automatically

55

recognizes non-numerical data as factors when data are read in
30

, but if numerical data are to be

used as a factor (or if character data are generated within R and not read in), conversion to a

factor must be specified explicitly. In R, the function factor does this.

> a<-c(rep(0,4),rep(1,4))

> a

[1] 0 0 0 0 1 1 1 1

> a<-factor(a)

> a

[1] 0 0 0 0 1 1 1 1

Levels: 0 1

The levels that R assigns to your factor are by default the unique values given in your original

vector. This is often fine, but you may want to assign more meaningful levels. Levels can be

specified for a factor using the levels function.

>levels(a) <- c("F","M")

> a

[1] F F F F M M M M

Levels: F M

The order in which a factor is sorted can be important in some cases. For example, say you have

a vector that contains height categories.

> heights<-c("short","short","tall","medium","medium","tall")

If you designate this as a factor, the default levels will be sorted alphabetically.

> height.1<-factor(heights)

> height.1

[1] short short tall medium medium tall

Levels: medium short tall

> as.numeric(height.1)

[1] 2 2 3 1 1 3

If you specify levels as an argument of the function factor, you can control the order of the

levels.

> height.2<-factor(heights,levels=c("short","medium","tall"))

> as.numeric(height.2)

[1] 1 1 3 2 2 3

This can be useful for obtaining a logical order in statistical output or summaries.

30

 Factors take up less storage space than do character data. Automatic conversion of read-in data to factors can be

suppressed by specifying stringsAsFactors=FALSE when using read.table.

56

Sometimes it is necessary to combine multiple factors to make a new factor that includes all

combinations of the original factors. This can be done using a colon (:), as described below in

the discussion on model formulae.

Exercises

1. Read in the data in US_GDP.txt which contains US gross domestic product (in millions of $)

from 1790 to 2009. Using subscripting, return the following: 1) The first 10 rows of the of the

colums year and gdp.real, 2) Nominal GDP (gdp.nom) for the 1800s only.

Now use the subset function to create a new data frame that has only data for the 1800s.

2. Still working with this data set, find the location of the maximum real GDP. Lastly, sort the

entire data frame by real GDP.

3. Read in the data in the file Cacti_v_tort.txt. Try creating a subset of this data frame that

contains only observations where tortoises were present (where the variable tortoise equals Yes)

using the subset function.

57

6. Manipulating data, part II

6.1. Combining data

Data frames (or vectors or matrices) often need to be combined for analysis or plotting. Three R

functions that are very useful for combining data are rbind, cbind, and merge. The function

rbind simply "stacks" objects on top of each other to make a new object ("row bind"). The

function cbind ("column bind") carries out an analogous operation with columns of data. The

merge function is used to merge data frames by some common variable or variables.

> stuff.dat<-data.frame(ID=c("A","B","C"),response=1:3)

> stuff.dat

 ID response

1 A 1

2 B 2

3 C 3

> a.row<-c("C",4)

> more.stuff.dat<-rbind(stuff.dat,a.row)

> more.stuff.dat

 ID response

1 A 1

2 B 2

3 C 3

4 C 4

> a.column<-c(3,1,5)

> wide.stuff.dat<-cbind(stuff.dat,y=a.column)

> wide.stuff.dat

 ID response y

1 A 1 3

2 B 2 1

3 C 3 5

To demonstrate the merge function, let's read in some data.

> pop.dat<-read.table("US_pop.txt",header=TRUE)

> pop.dat

 year pop

1 1790 3929214

2 1800 5308483

3 1810 7239881

...

21 1990 248709873

22 2000 281421906

> gdp.dat<-read.table("US_GDP.txt",header=T)

> gdp.dat

 year gdp.nom gdp.real

1 1790 187 4027

58

2 1791 204 4268

3 1792 223 4583

...

219 2008 14441400 13312200

220 2009 14256300 12987400

To merge these two data frames by year, we can use the following command:

> us.dat<-merge(pop.dat,gdp.dat,by="year")

> us.dat

 year pop gdp.nom gdp.real

1 1790 3929214 187 4027

2 1800 5308483 476 7398

3 1810 7239881 699 10626

...

21 1990 248709873 5800500 8033900

22 2000 281421906 9951500 11226000

Notice that us.dat does not have rows for all the years that are present in the gdp.dat data

frame, because most of them didn‘t have a matching year in pop.dat. If you want to keep all

rows regardless, use all=TRUE.

Merge operations can get more complicated than the simple example demonstrated above. For

example, what if the variables you would like to merge by don‘t have the same name in both data

frames? In this case, just use the arguments by.x and by.y instead of by. If the data frames

have variables with the same names, but not the variables you want to merge by, R will add

extensions to the variable names (.x and .y by default) in the new data frame. Note that you can

merge by multiple variables by specifying, e.g., by=c("var1", "var2"). Check out the help

file for merge for even more options.

6.2. Aggregating and summarizing data

R has some powerful functions for aggregation of data. Some operations could be carried out

with multiple functions. In this section, we will start with some simple operations using the

table function, and then discuss more advanced aggregation before exploring the functions that

can be used to carry the aggregation out. The table function is handy for summarizing counts

of factor data. To demonstrate, let's read in some data from the ISwR package.

> install.packages("ISwR")

> library(ISwR)

> juul.dat<-juul

> names(juul.dat)

[1] "age" "menarche" "sex" "igf1" "tanner" "testvol"

Let's make sure sex and menarche are factors.

> juul.dat$sex<-factor(juul.dat$sex,labels=c("M","F"))

> juul.dat$menarche<-factor(juul.dat$menarche,labels=c("No","Yes"))

59

> table(juul.dat$sex)

 M F

621 713

> table(juul.dat$sex,juul.dat$menarche)

 No Yes

 M 0 0

 F 369 335

For more advanced data aggregation, R offers the following functions: apply, lapply,

aggregate, by, and tapply (among others). Spector (2008: 106) presents some handy

information on selecting an appropriate function. We will focus on only the most common

operations.

A typical operation is this: you have a data frame with some grouping variable, and you need to

carry out some operation on individual groups within the data. Take, for example, our data on H2

production by bacteria in a set of laboratory reactors (serum bottles):

> h2.dat<-read.table("Biohydrogen.txt",header=TRUE)

> h2.dat

 reactor date time vol conc.h2

1 G171 9/18/2006 11:12 0.00 NA

2 G171 9/18/2006 14:00 0.00 31.20

3 G171 9/19/2006 9:26 11.35 35.22

4 G171 9/19/2006 12:51 0.00 NA

5 G171 9/19/2006 16:00 0.00 NA

6 G171 9/19/2006 22:52 0.00 NA

7 G171 9/20/2006 8:52 0.00 NA

8 G171 9/20/2006 13:41 2.00 30.93

9 G171 9/21/2006 12:40 0.00 30.26

...

135 G185 9/21/2006 12:40 6.20 NA

Let‘s say we want to know the total volume of biogas produced by each reactor. The function

tapply is a good place to start (others would also work). The arguments we need to specify are

X (the vector we want to summarize), INDEX (the grouping variable), and FUN (the function we

want to apply to each group).

> tapply(h2.dat$vol,h2.dat$reactor,FUN = sum)

 G171 G172 G173 G174 G175 G176 G177 G178 G179 G180 G181

13.35 92.55 94.40 95.70 98.30 NA 7.75 6.10 6.50 84.00 88.15

 G182 G183 G184 G185

87.40 91.70 91.10 90.50

60

The function aggregate is another good choice here. Its syntax is similar, but note that the by

argument (analogous to INDEX in tapply) needs to be a list. This function returns a data frame,

so use it if that is what you need.

> aggregate(h2.dat$vol,list(reactor=h2.dat$reactor),FUN=sum)

 reactor x

1 G171 13.35

2 G172 92.55

3 G173 94.40

4 G174 95.70

5 G175 98.30

6 G176 NA

7 G177 7.75

8 G178 6.10

9 G179 6.50

10 G180 84.00

11 G181 88.15

12 G182 87.40

13 G183 91.70

14 G184 91.10

15 G185 90.50

What if we need to do something more complicated, like fit a spline, carry out interpolation, or

fit a model to each group within a larger data set?

> tox.dat<-read.table("Ogeechee_tox_summary.txt",header=TRUE)

> tox.dat

 test n.doc n.ph rep dom.source ph doc lc50

1 2 2 6 1 1 6.25 2.09 9.27

2 3 2 6 1 2 6.22 2.10 6.06

...

126 144 15 8 2 7 8.08 14.60 475.01

Let‘s say we want to fit a regression model to each group of data that has a particular DOM

source
31

:

> by(tox.dat,tox.dat$dom.source,FUN=function(x)

+ lm(lc50 ~ doc + ph,data=x))

tox.dat$dom.source: 1

Call:

lm(formula = lc50 ~ doc + ph, data = x)

Coefficients:

(Intercept) doc ph

31

 This example requires you to write your own function, and it introduces the lm function for fitting linear models.

Both are discussed in later sections.

61

 -1239.47 14.93 178.15

tox.dat$dom.source: 2

Call:

lm(formula = lc50 ~ doc + ph, data = x)

Coefficients:

(Intercept) doc ph

 -705.70 14.38 98.20

...

If you need to process multiple variables at once, you can use aggregate, which can handle

entire data frames. In this example, we just use part of a data frame to calculate mean pH, DOC

concentration, and LC50 for each DOM source.

> aggregate(tox.dat[,6:8],list(dom.source=tox.dat$dom.source),mean)

 dom.source ph doc lc50

1 1 7.198333 7.766667 158.8883

2 2 7.156111 8.016667 112.3661

3 3 7.150556 7.785000 105.0778

4 4 7.153889 8.216111 118.4539

5 5 7.140556 8.265556 115.0394

6 6 7.140000 7.897778 138.6472

7 7 7.145000 7.857778 136.1128

Let‘s give this data frame a name for use later on.

> tox.summ.dat<-aggregate(tox.dat[,6:8],

+ list(dom.source=tox.dat$dom.source),mean)

We will readily admit that using aggregate, by, and tapply can be a bit confusing. If you

can‘t see an advantage of one function over another, there may not be an advantage to using one

or the other. The differences between these functions mostly relates to output format (although

there are some other important differences). Try one function, and move onto another if needed.

If your data are organized as a list, and you would like to apply some function to each element in

the list (e.g., individual vectors or data frames or. . .), use lapply or sapply. These functions

provide a flexible option for some of the more difficult problems: convert your data into a list

using split, which will divide your data based on some grouping variable, and then use

lapply or sapply to carry out the necessary operation. And, if the operation you want to carry

out just seems too complicated for use with one of these or similar functions (e.g., maybe the

operation you need to carry out requires multiple steps), you always have the (old school) option

of using loops, which are described in a later section.

62

Let‘s move on to some simpler material. Sometimes it is necessary to carry out some operation

on complete rows or columns within arrays or data frames. The function apply can be used for

this.

> apply(tox.summ.dat,2,range)

 dom.source ph doc lc50

[1,] 1 7.140000 7.766667 105.0778

[2,] 7 7.198333 8.265556 158.8883

The above functions are useful for applying a function to specific groups within a data set and

producing one result (or set of results) for each group. In some cases, you may want to add a new

column to a data frame that contains the result for the group that each row belongs to. Thinking

again about the Ogeechee toxicity data, suppose that you want to normalize the DOC

concentration by the mean concentration for each DOM source. There are a couple code-

intensive ways that you could do this: create a summary with e.g., use tapply, and merge the

result back with the original data frame, or you could apply split to the data frame, use

lapply to apply the required function to each list within the result, and then use unsplit to put

the pieces back together. However, R also has a single function for this specific purpose: ave.

> tox.dat$doc.mean<-ave(tox.dat$doc,tox.dat$dom.source,FUN=mean)

> tox.dat

 test n.doc n.ph rep dom.source ph doc lc50 doc.mean

1 2 2 6 1 1 6.25 2.09 9.27 7.766667

2 3 2 6 1 2 6.22 2.10 6.06 8.016667

3 4 2 6 1 3 6.19 2.09 7.88 7.785000

4 5 2 6 1 4 6.23 2.16 8.28 8.216111

5 6 2 6 1 5 6.22 2.27 9.03 8.265556

6 7 2 6 1 6 6.22 2.17 5.42 7.897778

7 8 2 6 1 7 6.25 2.18 9.00 7.857778

8 26 7 6 1 1 6.29 6.57 28.20 7.766667

9 27 7 6 1 2 6.20 6.58 30.64 8.016667

...

It is easier to see what we did if we sort the data frame by DOM source.

> tox.dat<-tox.dat[order(tox.dat$dom.source),]

> tox.dat

 test n.doc n.ph rep dom.source ph doc lc50 doc.mean

1 2 2 6 1 1 6.25 2.09 9.27 7.766667

8 26 7 6 1 1 6.29 6.57 28.20 7.766667

15 50 15 6 1 1 6.20 14.65 56.87 7.766667

...

2 3 2 6 1 2 6.22 2.10 6.06 8.016667

9 27 7 6 1 2 6.20 6.58 30.64 8.016667

16 51 15 6 1 2 6.00 14.63 38.95 8.016667

...

3 4 2 6 1 3 6.19 2.09 7.88 7.785000

10 28 7 6 1 3 6.22 6.53 33.72 7.785000

17 52 15 6 1 3 5.97 14.33 59.94 7.785000

63

...

Now we can normalize the DOC concentration by this new column of means:

> tox.dat$doc.norm<-tox.dat$doc/tox.dat$doc.mean

Of course, it isn‘t necessary to follow these exact steps. For example, we could do this all in one

step by writing out own function, which is covered in a later section:

> tox.dat$doc.norm.2<-ave(tox.dat$doc,tox.dat$dom.source,

+ FUN=function(x) x/mean(x))

6.3. Dates and times

Dates are handled relatively easily in R. R has a data class called Dates, which are represented

as the number of days since the beginning of 1970 (generally as integer data). Date data are read

in as character data. To convert them to Date data, you can use the function as.Date.

>flow.dat<-read.table("River_flow.txt",header=TRUE)

> flow.dat$date[1:20]

 [1] 2006-01-01 2006-01-02 2006-01-03 2006-01-04 2006-01-05 2006-01-06

 [7] 2006-01-07 2006-01-08 2006-01-09 2006-01-10 2006-01-11 2006-01-12

[13] 2006-01-13 2006-01-14 2006-01-15 2006-01-16 2006-01-17 2006-01-18

[19] 2006-01-19 2006-01-20

365 Levels: 2006-01-01 2006-01-02 2006-01-03 2006-01-04 ... 2006-12-31

> as.Date(flow.dat$date[1:20])

 [1] "2006-01-01" "2006-01-02" "2006-01-03" "2006-01-04" "2006-01-05"

 [6] "2006-01-06" "2006-01-07" "2006-01-08" "2006-01-09" "2006-01-10"

[11] "2006-01-11" "2006-01-12" "2006-01-13" "2006-01-14" "2006-01-15"

[16] "2006-01-16" "2006-01-17" "2006-01-18" "2006-01-19" "2006-01-20"

> some.dates<-as.Date(flow.dat$date[1:20])

While these values look like character data, they are not. It is possible to carry out mathematical

operations on them now.

> class(some.dates)

[1] "Date"

> some.dates - 100

 [1] "2005-09-23" "2005-09-24" "2005-09-25" "2005-09-26" "2005-09-27"

 [6] "2005-09-28" "2005-09-29" "2005-09-30" "2005-10-01" "2005-10-02"

[11] "2005-10-03" "2005-10-04" "2005-10-05" "2005-10-06" "2005-10-07"

[16] "2005-10-08" "2005-10-09" "2005-10-10" "2005-10-11" "2005-10-12"

> mean(some.dates)

[1] "2006-01-10"

64

The default format for dates in R in YYYY-MM-DD (e.g., 2009-12-10 for December 10, 2009),

which is represented in R as "%Y-%m-%d". If your dates are in a different format, you need to

tell R what that format is when you convert them to a date object.

> some.dates<-c("May 01 2008","June 12 2009")

> as.Date(some.dates)

Error in fromchar(x) :

 character string is not in a standard unambiguous format

> as.Date(some.dates,"%b %d %Y")

[1] "2008-05-01" "2009-06-12"

R is very flexible in the date formats that it will read in. This makes importing from other

programs (e.g. Excel) very easy
32

.

> other.dates<-c("7/1/1974","7/2/1974","7/3/1974","7/4/1974",

+ "7/5/1974")

> as.Date(other.dates,format="%m/%d/%Y")

[1] "1974-07-01" "1974-07-02" "1974-07-03" "1974-07-04" "1974-07-05"

You can find information on the options for specifying the format of dates in the help file for the

function strptime (this function can be used for converting character data from one date format

to another).

Another handy function is weekdays, which will return the day of the week for any date or

combined date-time.

> weekdays(as.Date("1776-07-04"))

[1] "Thursday"

R can also handle combined dates and times (although this topic is a bit confusing, and users

concerned with second accuracy should consult the relevant help files). There are two basic

combined date and time classes in R: POSIXct and POSIXlt. The first form contains the

number of seconds since the beginning of 1970 as a numeric vector, while the second is actually

a list that contains a vectors of YYYY-MM-DD, HH:MM:SS, and the time zone. You can use

the ―$‖ notation to return specific columns.

> some.times<-c("1990-01-07 11:10:00 EST","1990-01-07 11:15:00

EST","1990-01-08 22:04:17 EST")

> some.times

[1] "1990-01-07 11:10:00 EST" "1990-01-07 11:15:00 EST"

[3] "1990-01-08 22:04:17 EST"

> as.POSIXct(some.times)

32

 If you read in dates from a file and assign the data to a data frame, they will be recognized as a factor by R. To

convert to dates, you first need to coerce them to character data using as.character.

65

[1] "1990-01-07 11:10:00 EST" "1990-01-07 11:15:00 EST"

[3] "1990-01-08 22:04:17 EST"

If we want to subtract one hour:

> as.POSIXct(some.times) - 3600

[1] "1990-01-07 10:10:00 EST" "1990-01-07 10:15:00 EST"

[3] "1990-01-08 21:04:17 EST"

The default display of the other form (POSIXlt) looks similar, but it actually contains separate

vectors for seconds, minutes, days, etc.

> as.POSIXlt(some.times)

[1] "1990-01-07 11:10:00" "1990-01-07 11:15:00" "1990-01-08 22:04:17"

> as.POSIXlt(some.times)$min

[1] 10 15 4

> as.POSIXlt(some.times)$sec

[1] 0 0 17

Here are all the vectors:

> names(as.POSIXlt(some.times))

[1] "sec" "min" "hour" "mday" "mon" "year" "wday" "yday"

[9] "isdst"

You can find more information by checking out the help file for POSIXlt. It is possible to carry

out operations with POSIXct and POSIXlt objects.

> other.times<-c("1990-01-07 22:10:04 EST","1990-01-08 11:22:01

EST","1990-01-14 22:04:00 EST")

> as.POSIXlt(some.times) - as.POSIXct(other.times)

Time differences in hours

[1] -11.00111 -24.11694 -143.99528

attr(,"tzone")

[1] ""

For control over the output units use difftime.

> difftime(as.POSIXlt(some.times),as.POSIXct(other.times),

+ units="secs")

Time differences in secs

[1] -39604 -86821 -518383

attr(,"tzone")

[1] ""

If you are working with date and time data that are divided up among several columns in a data

frame, it is easy to convert this to a POSIXlt or POSIXct object.

> separate.times<-data.frame(month=c("April","April","March"),

66

+ day=c(8,9,9),yr=c(2007,2007,2008),hr=c(7,7,9),min=c(10,12,01))

> separate.times

 month day yr hr min

1 April 8 2007 7 10

2 April 9 2007 7 12

3 March 9 2008 9 1

> comb.times<-paste(separate.times$month,separate.times$day,

+ separate.times$yr,paste(separate.times$hr,separate.times$min,

+ sep=":"))

> comb.times

[1] "April 8 2007 7:10" "April 9 2007 7:12" "March 9 2008 9:1"

You can now tell R that these are dates.

> as.POSIXlt(comb.times,format="%B %d %Y %H:%M")

[1] "2007-04-08 07:10:00" "2007-04-09 07:12:00" "2008-03-09 09:01:00"

A few other useful functions are Sys.time, which will return the current time, and

system.time, which tells you how long an expression takes to run.

> Sys.time()

[1] "2009-02-04 19:26:47 EST"

> system.time(

+ for (i in 1:10000) {

+ rnorm(1000)

+ }

+)

 user system elapsed

 8.38 0.00 8.37

6.4. Reshaping data

Data with mulipe measurements or variables for each experimental unit (e.g. time series data)

present some difficulties that aren‘t present in simplier data sets. These types of data can be

organized into one of two forms, called ―wide‖ and ―long‖ (or ―stacked‖ and ―unstacked‖). This

is probably best demonstrated by example. The file Ave_wind_US.dat contains mean wind

monthly wind speeds for cities in the U.S.

> wind.dat<-read.table('Ave_wind_US.txt',header=T,sep='\t')

> wind.dat
 location no.yr jan feb mar apr may jun jul aug sep oct nov dec ann

1 13876BIRMINGHAM AP,AL 65 8.1 8.7 9.0 8.2 6.8 6.0 5.7 5.4 6.3 6.2 7.2 7.7 7.1

2 03856HUNTSVILLE, AL 41 9.0 9.4 9.7 9.2 7.9 6.8 5.9 5.8 6.7 7.2 8.0 8.9 7.9

3 13894MOBILE, AL 60 10.1 10.3 10.5 10.1 8.7 7.5 6.9 6.7 7.7 8.0 8.9 9.6 8.8

4 13895MONTGOMERY, AL 64 7.7 8.2 8.3 7.3 6.1 5.8 5.7 5.2 5.9 5.7 6.5 7.1 6.6

5 26451ANCHORAGE, AK 55 6.4 6.8 7.1 7.3 8.5 8.4 7.3 6.9 6.7 6.7 6.4 6.3 7.1

. . .

67

These data are in the ―wide‖ format, with mean wind speed given in a different column for each

month. The reshape function can be used to convert a data from wide to long or long to wide.

> wind.l.dat<-reshape(wind.dat,direction="long",varying=3:15,

+ v.names='wind',timevar='month',times=c(names(wind.dat)[3:15]))

> wind.l.dat

 location no.yr month wind id

1.jan 13876BIRMINGHAM AP,AL 65 jan 8.1 1

2.jan 03856HUNTSVILLE, AL 41 jan 9.0 2

3.jan 13894MOBILE, AL 60 jan 10.1 3

4.jan 13895MONTGOMERY, AL 64 jan 7.7 4

5.jan 26451ANCHORAGE, AK 55 jan 6.4 5

. . .

Exercises

1. Read in the data on hydrogen production in the file Biohydrogen.txt. The file Reactors.txt

contain information on the reactor setup (solution and headspace composition) of the individual

reactors. Read in the data in both of these files, and add information on the reactor setup to the

data frame on hydrogen production. Your want a new data frame that looks something like this:

 reactor solution headspace date time vol conc.h2

1 G171 N-free N2 9/18/2006 11:12 0.00 NA

2 G171 N-free N2 9/18/2006 14:00 0.00 31.20

3 G171 N-free N2 9/19/2006 9:26 11.35 35.22

...

2. Still working with the hydrogen data, combine the dates and times and convert them to

date/time format. The, calculate the elapsed time for each reactor, i.e. the current date/time minus

the initial date time. (Because each reactor has the same starting date/time, you can use the same

value for each. If this were not the case, you would have to use something like ave. If you are

bored, you can try to use ave anyway, but note that ave will not work with POSIX data.)

3. Read in the data in Eagles.txt, which contains data on the concentration of the chemical alpha-

Chlordane (in ng/g) in bald eagle nestling blood. Calculate the mean, sd, and n of alpha-

Chlodane concentration by site. Try to organize the results as a data frame, and then write out the

data frame to a new file.

4. Calculate your age (as of now) in hours. If you don‘t know what time you were born, assume

it was at noon.

68

7. Exploratory data analysis

Dalgaard 2008: Chapter 4, Faraway 2005: Chapter 1

7.1. Summary statistics

Let‘s demonstrate calculation of summary statistics with one of the soils data sets:

> cu.tox.dat<-read.table("Thakali_Cu_EC50s.txt",header=TRUE)

Just to see what is in it, first:

> names(cu.tox.dat)

[1] "soil" "ec50.cu" "ph.soil" "oc" "ph.sol" "c.cu" "c.na"

[8] "c.mg" "c.k" "c.ca"

Here are some useful functions:

> mean(cu.tox.dat$ec50.cu)

[1] 192.4727

> median(cu.tox.dat$ec50.cu)

[1] 150.5

> sd(cu.tox.dat$ec50.cu)

[1] 159.3130

> var(cu.tox.dat$ec50.cu)

[1] 25380.62

R has a built-in function for summarizing vectors or data frames called summary. This function

is a generic function—what it returns is dependent on the type of data submitted to it
33

. Let‘s

apply summary to the first four columns in the cu.tox.dat data frame:

> summary(cu.tox.dat[,1:4])

 soil ec50.cu ph.soil oc

 Aluminusa :1 Min. : 38.9 Min. :3.360 Min. : 0.410

 Houthalen :1 1st Qu.: 83.1 1st Qu.:4.475 1st Qu.: 0.925

 Kovlinge I :1 Median :150.5 Median :4.800 Median : 1.900

 Kovlinge II:1 Mean :192.5 Mean :4.917 Mean : 4.975

 Montpellier:1 3rd Qu.:210.8 3rd Qu.:5.310 3rd Qu.: 4.800

 Nottingham :1 Max. :570.5 Max. :6.800 Max. :23.300

 (Other) :5

33

 Another use of the summary function is in summarizing the results of statistical models, which is discussed in a

later section.

69

Notice the difference between numerical and categorical variables. The summary function

should probably be your first stop after organizing your data, but before analyzing it—it provides

an easy way to check for wildly erroneous values.

7.2. Histograms and box plots

Boxplots and histograms are simple but useful ways of summarizing data. You can generate a

histogram in R using the function hist.

> cu.tox.dat<-read.table("Thakali_Cu_EC50s.txt",header=TRUE)

> hist(cu.tox.dat$ec50.cu)

This plot can be made to look a little nicer, as can all the plots covered in this workshop (several

arguments, such as xlab, ylab, and main, can be used in most plotting functions). You can also

specify the number or location of breaks in the hist function.

Boxplots are also a good way to summarize data. In the following example, a boxplot is used to

compare concentrations of several cations in the soils.

First, let‘s figure out the order of variables here:

> names(cu.tox.dat)

[1] "soil" "ec50.cu" "ph.soil" "oc" "ph.sol"

[6] "c.cu" "c.na" "c.mg" "c.k" "c.ca"

And then make the plot.

Histogram of cu.tox.dat$ec50.cu

cu.tox.dat$ec50.cu

F
re

q
u

e
n

c
y

0 100 200 300 400 500 600

0
1

2
3

4
5

70

> boxplot(cu.tox.dat[,7:10])

By default, the heavy line shows the median, the box shows the 25th and 75th percentiles, the
“whiskers” show the extreme values, and points show any outliers beyond these34.

Another approach is to plot a single variable by some factor.

> tooth.dat<-ToothGrowth

> tooth.dat$trt<-factor(tooth.dat$dose):tooth.dat$supp

> boxplot(len~trt,data=tooth.dat)

> summary(tooth.dat)

 len supp dose trt

 Min. : 4.20 OJ:30 Min. :0.500 0.5:OJ:10

 1st Qu.:13.07 VC:30 1st Qu.:0.500 0.5:VC:10

 Median :19.25 Median :1.000 1:OJ :10

 Mean :18.81 Mean :1.167 1:VC :10

 3rd Qu.:25.27 3rd Qu.:2.000 2:OJ :10

 Max. :33.90 Max. :2.000 2:VC :10

> boxplot(len~trt,data=tooth.dat)

34 The help file for boxplot.stats provides additional information.

c.na c.mg c.k c.ca

0
2

0
0

4
0

0
6

0
0

8
0

0

71

Note the use of the tilde symbol “~” in the above command. The code len~trt is analogous to

a model formula in this case, and simply indicates that len is described by trt and should be
split up based on the value of this variable. We will see more of this character with the
specification of statistical models.

7.3. Normal quantile and cumulative probability plots

One way to assess the normality of the distribution of a given variable is with a quantile-quantile
plot. This plot shows data values vs. quantiles based on a normal distribution (i.e. a z
distribution).

> qqnorm(cu.tox.dat$ec50.cu)

> qqline(cu.tox.dat$ec50.cu)

0.5:OJ 0.5:VC 1:OJ 1:VC 2:OJ 2:VC

5
1

0
1

5
2

0
2

5
3

0
3

5

72

There definitely seems to be some deviation from normality here. A common distribution for

toxicity data is log-normal—let‘s see if this distribution works any better.

> cu.tox.dat$l.ec50.cu<-log10(cu.tox.dat$ec50.cu)

> qqnorm(cu.tox.dat$l.ec50.cu)

> qqline(cu.tox.dat$l.ec50.cu)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0

Normal Q-Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

73

While R does not have a cumulative probability function in its base packages, it available in at

least one package on CRAN, and it is easy to write your own function. We can make a simple

cumulative probability plot with two lines of code.

> plot(qnorm(ppoints(x)),x,log='y',xaxt="n",xlab="Cumulative

+ probability (%)",ylab="Log Cu EC50")

> axis(1,qnorm(c(0.1,0.25,0.5,0.75,0.9)),labels=c(10,25,50,75,90),

+ las=1,tcl=0.3,mgp=c(0,0.2,0))

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

1
.6

1
.8

2
.0

2
.2

2
.4

2
.6

2
.8

Normal Q-Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

74

R will return the quantiles of a given data set with the quantile function. Note that there are

nine different algorithms available for doing this—you can find descriptions in the help file for

quantile.

> quantile(cu.tox.dat$l.ec50)

 0% 25% 50% 75% 100%

1.589950 1.908806 2.177536 2.322487 2.756256

> quantile(cu.tox.dat$l.ec50, 0.05)

 5%

1.688351

7.4. Dealing with detection limits

Environmental data may contain observations where a given analyte was not detected, often

referred to as nondetect. These data should not be ignored since this would bias your results.

Simple solutions such as setting the nondetects to 1/2 of the detection limit is not a satisfactory

solution either, since 1/2 of the detection limit may be higher or lower than the true values, and

certainly does not include the variability of the true values.

One robust approach to dealing with nondetects is called regression on order statistics, or ROS

(Lee & Helsel 2005). The basic approach is to quantify the data distribution of the detected

values, and then extrapolate the missing nondetects based on the same distribution. This allows

one to calculate unbiased means and standard deviations. In R, this procedure can be done with

the function ros, which is in the package NADA.

1
.6

1
.8

2
.0

2
.2

2
.4

2
.8

Cumulative probability (%)

L
o

g
 C

u
 E

C
5

0

10 25 50 75 90

75

The arguments for ros are shown below, as given in its help file.

ros(obs, censored, forwardT="log", reverseT="exp")

The function requires two vectors: the data (with nondetects replaced with the detection limit)

(obs argument) and a logical vector indicating which values are nondetects (censored

argument). To demonstrate this procedure, let‘s use some data on the concentration of the

chemical alpha-Chlordane in bald eagle nestling blood.

> eagles.dat<-read.table("Eagles.txt",header=T)

> summary(eagles.dat)

 site achlor

 Mea0.00er : 9 Min. :0.375

 CR 306 : 8 1st Qu.:0.375

 Killdeer : 8 Median :1.440

 Rockwell : 8 Mean :1.540

 Ft Seneca : 7 3rd Qu.:2.130

 Magee Marsh: 7 Max. :5.450

 (Other) :100

The detection limit in this study was 0.75 ng/g, but the limit of quantification was 2.0 ng/g. In

this data set, nondetects are set to ½ of the detection limit. Let‘s see what these data look like to

start out.

> qqnorm(eagles.dat$achlor)

76

These data look surprisingly close to normally-distributed. Let's log transform, and add lines at

the detection and quantification limits (we will cover the abline function in a later section).

> qqnorm(log10(eagles.dat$achlor))

> qqnorm(log10(eagles.dat$achlor))

> abline(h=log10(0.75),col="red")

> abline(h=log10(2),col="blue")

-2 -1 0 1 2

1
2

3
4

5

Normal Q-Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

77

The ros function will make estimates for the values of the observations below the detection

limit, and returns the median, mean, and standard deviation of the new, estimated, distribution.

To use it, you need to have a logical vector that indicates which values are nondetects. The

concentrations for these values should be set to the detection limit. Let's start out using the actual

detection limit (as opposed to the quantification limit).

> achlor.dat<-data.frame(conc=eagles.dat$achlor,nondetect=F)

> achlor.dat$nondetect[achlor.dat$conc<2]<-T

> achlor.dat$conc[achlor.dat$conc<2]<-2

> achlor.dat

 conc nondetect

1 2.00 TRUE

2 2.00 TRUE

3 2.00 TRUE

4 2.00 TRUE

5 2.00 TRUE

6 2.33 FALSE

7 2.36 FALSE

...

147 4.14 FALSE

> ros(achlor.dat$conc,achlor.dat$nondetect)

 n n.cen median mean sd

147.000000 106.000000 1.503688 1.698922 0.870380

-2 -1 0 1 2

-0
.4

0
.0

0
.2

0
.4

0
.6

Normal Q-Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

78

Note that this function by default log transforms data before and after estimating values of the

nondetects. This is appropriate for a log-normal distribution, and is relatively robust for

distributions that are not log-normal.

We can see the modeled values by using the data.frame function.

> achlor.ros<-ros(achlor.dat$conc,achlor.dat$nondetect)

> achlor.est<-data.frame(achlor.ros)

> achlor.est

 obs censored pp modeled

1 2 TRUE 0.006739144 0.4342780

2 2 TRUE 0.013478289 0.4946784

3 2 TRUE 0.020217433 0.5369376

4 2 TRUE 0.026956577 0.5708681

5 2 TRUE 0.033695721 0.5998770

6 2 TRUE 0.040434866 0.6255915

7 2 TRUE 0.047174010 0.6489285

8 2 TRUE 0.053913154 0.6704605

9 2 TRUE 0.060652298 0.6905714

10 2 TRUE 0.067391443 0.7095325

...

Of course, the specific estimates are really meaningless; ros is only capable of estimating the

distribution—the individual modeled values are an intermediate step. But, any parameters

estimated from the modeled data are generally unbiased.

> 10^mean(log10(achlor.est$modeled))

[1] 1.506938

By applying the plot function to ros output, you can see the estimated distribution and get a

visual representation of the ros process.

> plot(achlor.ros)

79

Exercises

1. Install and load the ISwR package. Check out the help file for the InsectSprays data frame.

Take a look at the data. Use the summary function to summarize the InsectSprays data

frame. Use tapply to apply the summary function to each type of spray separately. Generate a
boxplot that shows the insect counts as a function of spray type.

2. The file StreamCu.txt contains (generated) data on Cu concentrations in stream water. Values
that were below the detection limit already have the detection limit filled in. Use the ros function
to estimate the sample median, mean, and standard deviation. Keep in mind the expected
distribution of the data. Plot your results.

3. Take a look at the IgM data set that is loaded with the ISwR package. Make a normal quantile
plot for the single variable in it. Are the data closer to a normal or log-normal distribution?

4. Make a cumulative probability plot with the same data used in 3.

-2 -1 0 1 2

Normal Quantiles

V
a

lu
e

0
.5

1
.0

2
.0

5
.0

9
5

9
0

7
5

5
0

2
5

1
0

5

Percent Chance of Exceedance

80

8. One- and two-sample tests (and the R approach to
statistical output)
Crawley 2007: Chapter 8, R-Intro: Section 8.3, Dalgaard 2008: Chapter 5

8.1. t tests

R can be used for one-sample, two-sample, and paired t tests. To demonstrate one sample t tests,

we will use some data from Wilcock et al. (1981) on the measurement of dissolved oxygen (DO)

in reference waters using a chemical method called the Winkler method. The objective here is to

see if there is a bias in the laboratories' determinations.

> DO.dat<-read.table("DO_methods_1.txt",header=TRUE)

> summary(DO.dat)

 lab method ref result

 Min. : 1.00 winkler:36 Min. :1.2 Min. :1.000

 1st Qu.:11.75 1st Qu.:1.2 1st Qu.:1.200

 Median :23.00 Median :1.2 Median :1.310

 Mean :22.58 Mean :1.2 Mean :1.473

 3rd Qu.:33.25 3rd Qu.:1.2 3rd Qu.:1.692

 Max. :45.00 Max. :1.2 Max. :2.800

> t.test(DO.dat$result, mu = 1.2)

 One Sample t-test

data: DO.dat$result

t = 3.8052, df = 35, p-value = 0.0005463

alternative hypothesis: true mean is not equal to 1.2

95 percent confidence interval:

 1.327248 1.618307

sample estimates:

mean of x

 1.472778

This looks like a pretty clear bias.

To demonstrate two-sample tests, let's use a data set included with the ISwR package on energy

expenditure in women as a function of their body mass.

> library(ISwR)

> data(energy)

> ?energy

> energy.dat<-energy

> names(energy.dat)

[1] "expend" "stature"

> boxplot(expend ~ stature, data=energy.dat)

81

> t.test(expend ~ stature, data=energy.dat)

 Welch Two Sample t-test

data: expend by stature

t = -3.8555, df = 15.919, p-value = 0.001411

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -3.459167 -1.004081

sample estimates:

 mean in group lean mean in group obese

 8.066154 10.297778

Note that R uses the Welch procedure to calculate the standard error of the difference. We can
use the classical approach as well.

> t.test(expend ~ stature, data=energy.dat, var.equal=T)

 Two Sample t-test

data: expend by stature

t = -3.9456, df = 20, p-value = 0.000799

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

lean obese

6
7

8
9

1
0

1
1

1
2

1
3

82

 -3.411451 -1.051796

sample estimates:

 mean in group lean mean in group obese

 8.066154 10.297778

For a paired t test, the same function can be used. For this example, let's use some additional DO

measurement data. In this data set, we have electrode and Winkler results for several

laboratories.

> DO.2.dat<-read.table("DO_methods_2.txt",header=T)

> summary(DO.2.dat)

 lab ref wink elect

 Min. : 4.00 Min. :1.2 Min. :1.000 Min. :1.300

 1st Qu.:21.50 1st Qu.:1.2 1st Qu.:1.125 1st Qu.:1.425

 Median :28.00 Median :1.2 Median :1.300 Median :1.700

 Mean :25.73 Mean :1.2 Mean :1.400 Mean :1.695

 3rd Qu.:33.50 3rd Qu.:1.2 3rd Qu.:1.375 3rd Qu.:1.850

 Max. :42.00 Max. :1.2 Max. :2.300 Max. :2.300

> t.test(DO.2.dat$wink, DO.2.dat$elect, paired=T)

 Paired t-test

data: DO.2.dat$wink and DO.2.dat$elect

t = -3.4924, df = 10, p-value = 0.0058

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -0.4839533 -0.1069558

sample estimates:

mean of the differences

 -0.2954545

8.2. The R approach to statistical output

The output from statistical tests in R are contained in objects with specific classes that depend on

the type of test carried out. For example,

> t.test.1<-t.test(DO.dat$result,mu=1.2)

> class(t.test.1)

[1] "htest"

Objects of class htest are lists that contain information on the input and output of a t test. The

output that can be extracted from htest objects can be found in the help file associated with

t.test:

statistic the value of the t-statistic.

parameter the degrees of freedom for the t-statistic.

p.value the p-value for the test.

conf.int a confidence interval for the mean appropriate to the specified alternative

 hypothesis.

83

estimate the estimated mean or difference in means depending on whether it was a

 one-sample test or a two-sample test.

null.value the specified hypothesized value of the mean or mean difference

 depending on whether it was a one-sample test or a two-sample test.

alternative a character string describing the alternative hypothesis.

method a character string indicating what type of t-test was performed.

data.name a character string giving the name(s) of the data.

To demonstrate, say we want P-value and the confidence interval:

> t.test.1$conf.int

[1] 1.327248 1.618307

attr(,"conf.level")

[1] 0.95

> t.test1$p.value

[1] 0.0005463255

To find out what elements are present in a statistical object, you can use the attributes

function, for example:

> attributes(t.test1)

$names

[1] "statistic" "parameter" "p.value" "conf.int" "estimate"

[6] "null.value" "alternative" "method" "data.name"

$class

[1] "htest"

Results can be extracted from other statistical tests in a similar way, although the summary

function must be used in some cases. Examples are shown in following sections.

Exercises

1. Take a look at the help file for the data frame called sleep, which is included in the

datasets package. Perform a t test on these data to determine if the two drugs had different

effects on sleep.

2. Extract the t statistic, P-value, and the confidence interval from the above t test, and put them

in a new data frame. Note that the confidence interval has two values—see if you can put each

one in its own column. Write this data frame out to a text file.

84

9. Classical linear models
Crawley 2007: Chapater 10; Dalgaard 2008: Chapters 6, 7,& 12; R-Intro 2008: Chapter 11, Faraway

2005

9.1. The lm function, model formulas, and statistical output

In R, several classical statistical models can be implemented using one function: lm (for linear

model). The lm function can be used for simple and multiple linear regression, analysis of

variance (ANOVA), and analysis of covariance (ANCOVA). The help file for lm lists the

following.

lm(formula, data, subset, weights, na.action,

 method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,

 singular.ok = TRUE, contrasts = NULL, offset, ...)

The first argument in the lm function call (formula) is where you specify the structure of the

statistical model. This approach is used in other R functions as well, such as glm, gam, and

others. Venables et al. (2006: 50-51) has a useful list of example formulae—some examples are

repeated below. In these examples, the variables x, y, and z are continuous, and A, B, and C are

factors.

y ~ x Simple linear regression of y on x

y ~ x + z Multiple regression of y on x and z

y ~ poly(x,2) Second order polynomial regression, using orthogonal

 polynomials

y ~ x + I(x^2) Second order polynomial regression, explicit powers

y ~ A Single factor ANOVA

y ~ A + B Two-factor ANOVA

y ~ A + B + A:B Two-factor ANOVA with interaction

y ~ A*B Two-factor ANOVA with interaction
y ~ A + B + C + A:B + A:C + B:C

Three-factor ANOVA with secondary interaction term

y ~ (A + B + C)^2 Three-factor ANOVA with secondary interaction term

y ~ (A + B + C)^2 – B:C As above but without B:C interaction

y ~ A + x ANCOVA

There is some similarity between the statistical output in R and in other statistical software

programs. However, by default, R usually gives only basic output. More detailed output can be

retrieved with the summary function. For specific statistics, you can use ―extractor‖ functions,

such as coef or deviance. Output from the lm function is of the class lm, and both default

output and specialized output from extractor functions can be assigned to objects (this is of

course true for other model objects as well). This quality is very handy when writing code that

uses the results of statistical models in further calculations or in compiling summaries.

85

9.2. Linear regression

To demonstrate simple linear regression in R, let's read in a data set on the hardness of some

Australian hardwoods.

> hard.dat<-read.table("Janka.txt",header=T)

> summary(hard.dat)

 density hardness

 Min. :24.70 Min. : 413.0

 1st Qu.:37.77 1st Qu.: 962.8

 Median :41.80 Median :1195.0

 Mean :45.73 Mean :1469.5

 3rd Qu.:56.70 3rd Qu.:1980.0

 Max. :69.10 Max. :3260.0

Our (alternative) hypothesis here is that density is a good predictor of hardness. Let's start out by

seeing what the data look like
35

.

> plot(hard.dat$density, hard.dat$hardness)

35

 We could also have used: plot(hardness~density,data=hard.dat).

30 40 50 60 70

5
0

0
1

5
0

0
2

5
0

0

hard.dat$density

h
a

rd
.d

a
t$

h
a

rd
n

e
s
s

86

This looks like a pretty clear relationship. To fit a linear model, we can use the lm function.

> mod.1<-lm(hardness ~ density, data=hard.dat)

> mod.1

Call:

lm(formula = hardness ~ density, data=hard.dat)

Coefficients:

(Intercept) density

 -1160.50 57.51

R returns only the call and coefficients by default. You can get a lot more information using the

summary function.

> summary(mod.1)

Call:

lm(formula = hardness ~ density, data = hard.dat)

Residuals:

 Min 1Q Median 3Q Max

-338.40 -96.98 -15.71 92.71 625.06

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -1160.500 108.580 -10.69 2.07e-12 ***

density 57.507 2.279 25.24 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 183.1 on 34 degrees of freedom

Multiple R-squared: 0.9493, Adjusted R-squared: 0.9478

F-statistic: 637 on 1 and 34 DF, p-value: < 2.2e-16

Not surprisingly, there is a highly significant relationship here. As mentioned above, the output

from the lm function is an object of class lm. These objects are lists that contain at least the

following elements (you can find this list in the help file for lm):

coefficients a named vector of coefficients

residuals the residuals, that is response minus fitted values.

fitted.values the fitted mean values.

rank the numeric rank of the fitted linear model.

weights (only for weighted fits) the specified weights.

df.residual the residual degrees of freedom.

call the matched call.

terms the terms object used.

contrasts (only where relevant) the contrasts used.

87

xlevels (only where relevant) a record of the levels of the factors used in fitting.

offset the offset used (missing if none were used).

y if requested, the response used.

x if requested, the model matrix used.

model if requested (the default), the model frame used.

na.action (where relevant) information returned by model.frame on the

 handling of NAs.

> class(mod.1)

[1] "lm"

Let's take a look at some of the options R has for dealing with linear model output. To get at

elements listed above, you can simply index the lm object, i.e. call up part of the list
36

.

> mod.1$coeff

(Intercept) density

-1160.49970 57.50667

However, R has several extractor functions designed precisely for pulling data out of statistical

model output. Venables et al. (2008: 53-54) gives a list of extractor functions and a brief

description of the most commonly used ones: add1, alias, anova, coef, deviance,

drop1, effects, family, formula, kappa, labels, plot, predict, print, proj,

residuals, step, summary, and vcov.

> coef(mod.1)

(Intercept) density

-1160.49970 57.50667

> resid(mod.1)

 1 2 3 4 5

 224.0848370 161.3341695 3.5674826 44.3101404 76.3101404

...

As mentioned above, the summary function is a generic function—what it does and what it

returns is dependent on the class of its first argument. Here is a list of what's available from the

summary function for this model
37

:

> names(summary(mod.1))

 [1] "call" "terms" "residuals" "coefficients"

 [5] "aliased" "sigma" "df" "r.squared"

 [9] "adj.r.squared" "fstatistic" "cov.unscaled"

36

 Remember, you don‘t need to specify the entire name of the element you are looking for when you use the $

notation.
37

 Another way to see what various objects contain and how these parts are organized is with the function str,

which returns the structure of objects.

88

> summary(mod.1)[[4]]

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -1160.49970 108.579605 -10.68801 2.065919e-12

density 57.50667 2.278534 25.23845 1.332735e-23

This flexibility is useful, but it makes for some redundancy in R. For many model statistics, there

are three ways to get your data: an extractor function (such as coef), indexing the lm object, and

indexing the summary function. The best approach is to use an extractor function whenever you

can
38

. In some cases, the summary function will return results that you cannot get by indexing or

using extractor functions.

Another function worth mentioning is anova. This function will calculate an analysis of

variance table, which can be used to evaluate the significance of the terms in single models or to

compare two nested models. Although we cannot see a any difference here because we are

dealing with one predictor, unlike the t tests shown when summary is applied to an lm object,

the ANOVA table returned with anova show the results of successive deletion tests, starting at

the bottom and moving upward, i.e. tests are based on Type I sum of squares (SS)
39

.

> anova(mod.1)

Analysis of Variance Table

Response: hardness

 Df Sum Sq Mean Sq F value Pr(>F)

density 1 21345674 21345674 636.98 < 2.2e-16 ***

Residuals 34 1139366 33511

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Once we have fit a model in R, we can generate predicted values using the predict function.

> predict(mod.1)

 1 2 3 4 5 6 7

 259.9152 265.6658 409.4325 472.6899 472.6899 507.1939 581.9525

 ...

This function works for a whole range of statistical models in R—not just lm objects. Of course,

we can treat these predictions as we would any vector, e.g., we can add them to the above plot or

put them back in the original data frame. The predict function can also give confidence and

prediction intervals.

> predict(mod.1,int="conf")

38

 These should remain the same in future versions of R, while it is possible that names will change, so indexing may

not always work the same.
39

 This is different from the default approach used in other statistical software. More discussion on this topic follows

in the section on ANOVA below.

89

 fit lwr upr

1 259.9152 144.4580 375.3724

2 265.6658 150.5990 380.7327

3 409.4325 303.9330 514.9320

4 472.6899 371.2673 574.1125

...

One problem with plotting these predictions directly is that the data will not be sorted, and

(except in the case of a straight line) we will end up with a line that jumps around. A second

problem (again, really only when you are not plotting a straight line) is that some areas may not

have high enough point density to make a smooth line. So, let's set up a new data frame just for

predictions.

> hard.pred.dat<-data.frame(density=density<-seq(10,70,10))

> conf.int<-predict(mod.1,newdata = hard.pred.dat,int="c")

> conf.int

 fit lwr upr

1 -585.43296 -762.1332 -408.7327

2 -10.36621 -144.6918 123.9594

3 564.70054 469.0338 660.3673

4 1139.76729 1072.3190 1207.2155

...

OK, so what is the best way to add these predictions? The function matlines will plot the

columns in a matrix as a function of a single vector. This works well for plotting confidence

intervals and predictions with a single line of code. (Note that the below code does not use the

data frame hard.pred.dat, but it is used to generate the predictions.)

> plot(hard.dat$density,hard.dat$hard)

> matlines(density,conf.int,lty=c(1,2,2), col=c("red","blue","blue"))

90

If we wanted to store the predictions in a data frame, we could have done that in one step.

As was mentioned earlier, the plot function does different things for different classes of objects.

If we supply to it an lm object, we get some useful diagnostic plots.

30 40 50 60 70

5
0

0
1

5
0

0
2

5
0

0

hard.dat$density

h
a

rd
.d

a
t$

h
a

rd

91

500 1000 1500 2000 2500

-4
0

0
0

2
0

0
6

0
0

Fitted values

R
e

s
id

u
a

ls

lm(hardness ~ density)

Residuals vs Fitted

32

31

36

-2 -1 0 1 2

-2
-1

0
1

2
3

4

Theoretical Quantiles

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

lm(hardness ~ density)

Normal Q-Q

32

31

36

92

500 1000 1500 2000 2500

0
.0

0
.5

1
.0

1
.5

Fitted values

S
ta

n
d

a
rd

iz
e

d
 r

e
si

d
u
a

ls

lm(hardness ~ density)

Scale-Location
32

31 36

0.00 0.02 0.04 0.06 0.08 0.10

-2
-1

0
1

2
3

4

Leverage

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

lm(hardness ~ density)

Cook's distance

0.5

1

Residuals vs Leverage

32

36

31

93

To demonstrate multiple linear regression in R, let's use a data set on ozone formation.

> ozone.dat<-read.table("Ozone.txt",header=T)

> summary(ozone.dat)

 rad temp wind ozone

 Min. : 7.0 Min. :57.0 Min. : 2.300 Min. : 1.0

 1st Qu.:113.5 1st Qu.:71.0 1st Qu.: 7.400 1st Qu.: 18.0

 Median :207.0 Median :79.0 Median : 9.700 Median : 31.0

 Mean :184.8 Mean :77.8 Mean : 9.939 Mean : 42.1

 3rd Qu.:255.5 3rd Qu.:84.5 3rd Qu.:11.500 3rd Qu.: 62.0

 Max. :334.0 Max. :97.0 Max. :20.700 Max. :168.0

A quick way to look for relationships between variables in a data frame is with the cor function.

> cor(ozone.dat)

 rad temp wind ozone

rad 1.0000000 0.2940876 -0.1273656 0.3483417

temp 0.2940876 1.0000000 -0.4971459 0.6985414

wind -0.1273656 -0.4971459 1.0000000 -0.6129508

ozone 0.3483417 0.6985414 -0.6129508 1.0000000

To visualize these relationships, we can use pairs.

> pairs(ozone.dat)

rad

60 80 0 50 150

0
1
5
0

3
0
0

6
0

8
0

temp

wind

5
1
5

0 150 300

0
5
0

1
5
0

5 15

ozone

94

There certainly seem to be some interesting relationships. Let's fit a model.

> mod.1<-lm(ozone~rad + temp + wind, data = ozone.dat)

> summary(mod.1)

Call:

lm(formula = ozone ~ rad + temp + wind, data = ozone.dat)

Residuals:

 Min 1Q Median 3Q Max

-40.485 -14.210 -3.556 10.124 95.600

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -64.23208 23.04204 -2.788 0.00628 **

rad 0.05980 0.02318 2.580 0.01124 *

temp 1.65121 0.25341 6.516 2.43e-09 ***

wind -3.33760 0.65384 -5.105 1.45e-06 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 21.17 on 107 degrees of freedom

Multiple R-squared: 0.6062, Adjusted R-squared: 0.5952

F-statistic: 54.91 on 3 and 107 DF, p-value: < 2.2e-16

Let's drop radiation (although it would probably be significant by most standards).

> mod.2<-lm(ozone~temp + wind, data = ozone.dat)

> summary(mod.2)

Call:

lm(formula = ozone ~ temp + wind, data = ozone.dat)

Residuals:

 Min 1Q Median 3Q Max

-42.160 -13.209 -3.089 10.588 98.470

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -67.2008 23.6083 -2.846 0.00529 **

temp 1.8265 0.2504 7.293 5.32e-11 ***

wind -3.2993 0.6706 -4.920 3.12e-06 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 21.72 on 108 degrees of freedom

Multiple R-squared: 0.5817, Adjusted R-squared: 0.574

F-statistic: 75.1 on 2 and 108 DF, p-value: < 2.2e-16

We could also use the update function for model 2—this is especially handy for dealing with

large model formulas.

95

> mod.2<-update(mod.1, ~. -rad)

> summary(mod.2)

Call:

lm(formula = ozone ~ temp + wind, data = ozone.dat)

Residuals:

 Min 1Q Median 3Q Max

-42.160 -13.209 -3.089 10.588 98.470

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -67.2008 23.6083 -2.846 0.00529 **

temp 1.8265 0.2504 7.293 5.32e-11 ***

wind -3.2993 0.6706 -4.920 3.12e-06 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 21.72 on 108 degrees of freedom

Multiple R-squared: 0.5817, Adjusted R-squared: 0.574

F-statistic: 75.1 on 2 and 108 DF, p-value: < 2.2e-16

Let's take a look at the results.

> plot(mod.2)

-20 0 20 40 60 80 100

-5
0

0
5

0
1

0
0

Fitted values

R
e

s
id

u
a

ls

lm(ozone ~ temp + wind)

Residuals vs Fitted

77

34
23

96

-2 -1 0 1 2

-2
-1

0
1

2
3

4
5

Theoretical Quantiles

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

lm(ozone ~ temp + wind)

Normal Q-Q

77

34
23

-20 0 20 40 60 80 100

0
.0

0
.5

1
.0

1
.5

2
.0

Fitted values

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

lm(ozone ~ temp + wind)

Scale-Location

77

34
23

97

It looks like the residuals are not normally distributed, and there seems to be a relationship to the
fiitted values. Since we are attempting to model concentration data, we might consider log-
transforming the values40.

> mod.3<-lm(log10(ozone)~rad + temp + wind, data = ozone.dat)

> summary(mod.3)

Call:

lm(formula = log10(ozone) ~ rad + temp + wind, data = ozone.dat)

Residuals:

 Min 1Q Median 3Q Max

-0.8955655 -0.1301492 -0.0009698 0.1336213 0.5366669

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.1134264 0.2403430 -0.472 0.637934

rad 0.0010921 0.0002418 4.518 1.62e-05 ***

temp 0.0213512 0.0026433 8.078 1.07e-12 ***

wind -0.0267493 0.0068200 -3.922 0.000155 ***

40 R also has a transform function, for transforming variables and maintaining the same variable name.

0.00 0.02 0.04 0.06 0.08 0.10

-2
0

2
4

Leverage

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

lm(ozone ~ temp + wind)

Cook's distance

0.5

1

Residuals vs Leverage

77

30

34

98

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2208 on 107 degrees of freedom

Multiple R-squared: 0.6645, Adjusted R-squared: 0.6551

F-statistic: 70.65 on 3 and 107 DF, p-value: < 2.2e-16

The first obvious difference is that the t value has increased for radiation.

> plot(mod.3)

0.8 1.0 1.2 1.4 1.6 1.8 2.0

-1
.0

-0
.5

0
.0

0
.5

Fitted values

R
e

s
id

u
a

ls

lm(log10(ozone) ~ rad + temp + wind)

Residuals vs Fitted

17

20
77

99

Our residuals look better now as well.

Polynomial regression can be carried out in R using the lm function. Let‘s demonstrate using

wheat yield in the United States.

> wheat.dat<-read.table("Wheat.txt",header=T)

> summary(wheat.dat)

 yr country yield

 Min. :1961 mx:47 Min. :16070

 1st Qu.:1972 us:47 1st Qu.:22849

 Median :1984 Median :26748

 Mean :1984 Mean :30411

 3rd Qu.:1996 3rd Qu.:39432

 Max. :2007 Max. :52274

> wheat.dat$yr.idx<-wheat.dat$yr - 1961

> wheat.us.dat<-subset(wheat.dat,country=="us")

> plot(wheat.us.dat$yr,wheat.us.dat$yield,type="o")

-2 -1 0 1 2

-4
-3

-2
-1

0
1

2
3

Theoretical Quantiles

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

lm(l.ozone ~ rad + temp + wind)

Normal Q-Q

17

20
77

100

> mod.1<-lm(yield~yr.idx + I(yr.idx^2), data=wheat.us.dat)

> summary(mod.1)

Call:

lm(formula = yield ~ yr.idx + I(yr.idx^2), data = wheat.us.dat)

Residuals:

 Min 1Q Median 3Q Max

-3474.86 -1215.17 63.42 1128.11 2918.19

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 16339.195 671.988 24.315 < 2e-16 ***

yr.idx 408.997 67.568 6.053 2.82e-07 ***

I(yr.idx^2) -3.608 1.420 -2.540 0.0147 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1601 on 44 degrees of freedom

Multiple R-squared: 0.8237, Adjusted R-squared: 0.8157

F-statistic: 102.8 on 2 and 44 DF, p-value: < 2.2e-16

To use orthogonal polynomial regression, use the poly function.

> mod.2<-lm(yield~poly(yr.idx,2), data=wheat.us.dat)

1960 1970 1980 1990 2000

1
6

0
0

0
2

0
0

0
0

2
4

0
0

0
2

8
0

0
0

wheat.us.dat$yr

w
h

e
a

t.
u

s
.d

a
t$

y
ie

ld

101

> summary(mod.2)

Call:

lm(formula = yield ~ poly(yr.idx, 2), data = wheat.us.dat)

Residuals:

 Min 1Q Median 3Q Max

-3474.86 -1215.17 63.42 1128.11 2918.19

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 23173.6 233.6 99.20 <2e-16 ***

poly(yr.idx, 2)1 22600.0 1601.4 14.11 <2e-16 ***

poly(yr.idx, 2)2 -4068.1 1601.4 -2.54 0.0147 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1601 on 44 degrees of freedom

Multiple R-squared: 0.8237, Adjusted R-squared: 0.8157

F-statistic: 102.8 on 2 and 44 DF, p-value: < 2.2e-16

> plot(wheat.us.dat$yr.idx,wheat.us.dat$yield,type="o")

> wheat.pred.dat<-data.frame(yr.idx=0:46)

> wheat.pred.dat$yield.pred<-predict(mod.2,newdata=wheat.pred.dat)

> lines(wheat.pred.dat$yr.idx,wheat.pred.dat$yield.pred,

+ col="red")

102

9.3. ANOVA and pairwise comparisons

To demonstrate ANOVA in R, let‘s start with a simple data set distributed with the base

packages called InsectSprays. This dataset shows the effectiveness of six different

insecticides.

> insects.dat<-InsectSprays

> summary(insects.dat)

 count spray

 Min. : 0.00 A:12

 1st Qu.: 3.00 B:12

 Median : 7.00 C:12

 Mean : 9.50 D:12

 3rd Qu.:14.25 E:12

 Max. :26.00 F:12

There are two options for specifying an ANOVA: lm and aov. Really, aov is just a ―wrapper‖

for calling up the lm function. The main difference between aov and lm is in the format of the

output, although a traditional ANOVA table can be produced by applying the anova function to

an lm model.

0 10 20 30 40

1
6

0
0

0
2

0
0

0
0

2
4

0
0

0
2

8
0

0
0

wheat.us.dat$yr.idx

w
h

e
a

t.
u

s
.d

a
t$

y
ie

ld

103

Since the measured variable is a count (number of insects), it is not normally distributed. To

make these data approximate a normal distribution, we can use a square root transformation (Zar

1999)
41

.

> insects.dat$sr.count<-sqrt(insects.dat$count + 3/8)

> mod.1<-aov(sr.count ~ spray, data = insects.dat)

> mod.1

Call:

 aov(formula = sr.count ~ spray, data = insects.dat)

Terms:

 spray Residuals

Sum of Squares 80.52844 22.80262

Deg. of Freedom 5 66

Residual standard error: 0.5877876

Estimated effects may be unbalanced

To get more detailed output, we need to use the summary function.

> summary(mod.1)

 Df Sum Sq Mean Sq F value Pr(>F)

spray 5 80.528 16.106 46.616 < 2.2e-16 ***

Residuals 66 22.803 0.345

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We can specify this same model using the lm function.

> mod.2<-lm(sr.count ~ spray, data = insects.dat)

> summary(mod.2)

Call:

lm(formula = sr.count ~ spray, data = insects.dat)

Residuals:

 Min 1Q Median 3Q Max

-1.21011 -0.38480 -0.02005 0.38054 1.26503

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.8115 0.1697 22.463 < 2e-16 ***

sprayB 0.1143 0.2400 0.476 0.635

sprayC -2.3549 0.2400 -9.814 1.60e-14 ***

sprayD -1.5587 0.2400 -6.496 1.26e-08 ***

sprayE -1.8937 0.2400 -7.892 4.14e-11 ***

41

 Another option is to forget about lm and just use a generalized linear model. This is covered in a later section.

104

sprayF 0.2550 0.2400 1.062 0.292

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5878 on 66 degrees of freedom

Multiple R-squared: 0.7793, Adjusted R-squared: 0.7626

F-statistic: 46.62 on 5 and 66 DF, p-value: < 2.2e-16

The above output gives you some insight into how R carries out ANOVA—it uses linear

regression with dummy variables. You can get more information on the variable coding with the

model.matrix function, which returns the X-matrix for the regression. From the output, it is

clear that spray=A is the reference level.

 (Intercept) sprayB sprayC sprayD sprayE sprayF

1 1 0 0 0 0 0

2 1 0 0 0 0 0

...

71 1 0 0 0 0 1

72 1 0 0 0 0 1

attr(,"assign")

[1] 0 1 1 1 1 1

attr(,"contrasts")

attr(,"contrasts")$spray

[1] "contr.treatment"

To get the same output that aov returns, you can use anova on the lm object:

> anova(mod.2)

Analysis of Variance Table

Response: sr.count

 Df Sum Sq Mean Sq F value Pr(>F)

spray 5 80.528 16.106 46.616 < 2.2e-16 ***

Residuals 66 22.803 0.345

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R has many multiple range tests available, including Tukey‘s HSD test in the base package, and

many others in the multcomp package. The Tukey test is applied using the TukeyHSD function.

Note that this function requires aov output (lm will not work).

> TukeyHSD(mod.1)

 Tukey multiple comparisons of means

 95% family-wise confidence level

Fit: aov(formula = sr.count ~ spray, data = insects.dat)

$spray

 diff lwr upr p adj

B-A 0.1143102 -0.59000479 0.8186251 0.9968245

C-A -2.3549121 -3.05922701 -1.6505971 0.0000000

105

D-A -1.5587119 -2.26302685 -0.8543969 0.0000002

E-A -1.8937416 -2.59805660 -1.1894267 0.0000000

F-A 0.2549576 -0.44935734 0.9592726 0.8943236

C-B -2.4692222 -3.17353717 -1.7649073 0.0000000

D-B -1.6730221 -2.37733701 -0.9687071 0.0000000

E-B -2.0080518 -2.71236676 -1.3037369 0.0000000

F-B 0.1406474 -0.56366751 0.8449624 0.9916328

D-C 0.7962002 0.09188521 1.5005151 0.0177353

E-C 0.4611704 -0.24314454 1.1654854 0.3983576

F-C 2.6098697 1.90555471 3.3141846 0.0000000

E-D -0.3350298 -1.03934471 0.3692852 0.7291427

F-D 1.8136695 1.10935455 2.5179845 0.0000000

F-E 2.1486993 1.44438430 2.8530142 0.0000000

There are many more options for pairwise comparisons in the multcomp package.

To look at ANOVA data, boxplot and barplot can both be useful.

> boxplot(count ~ spray, data=insects.dat,xlab="Spray",ylab="Insect

count",las=1)

A two-factor or multi-factor ANOVA is carried out in a similar way. Let’s use some data from
Zar (1999) on the respiration rate of 3 species of crabs in response to temperature to demonstrate.

> crabs.dat<-read.table("Crabs.txt",header=T)

> summary(crabs.dat)

A B C D E F

0

5

10

15

20

25

Spray

In
s
e

c
t
c
o

u
n

t

106

 sp temp sex resp

 Min. :1 high:24 F:36 Min. :1.000

 1st Qu.:1 low :24 M:36 1st Qu.:1.900

 Median :2 med :24 Median :2.300

 Mean :2 Mean :2.325

 3rd Qu.:3 3rd Qu.:2.900

 Max. :3 Max. :3.600

> crabs.dat$sp<-factor(crabs.dat$sp)

> summary(crabs.dat)

 sp temp sex resp

 1:24 high:24 F:36 Min. :1.000

 2:24 low :24 M:36 1st Qu.:1.900

 3:24 med :24 Median :2.300

 Mean :2.325

 3rd Qu.:2.900

 Max. :3.600

The aov function is designed for balanced designs. We can check for balance by using the

replications function.

> replications(resp~(sp+temp+sex)^3,data=crabs.dat)

 sp temp sex sp:temp

 24 24 36 8

 sp:sex temp:sex sp:temp:sex

 12 12 4

If the replications function returns a vector (it did), you have a balanced design
42

.

Now for the ANOVA.

> mod.1<-aov(resp~sp+temp+sex,data=crabs.dat)

> summary(mod.1)

 Df Sum Sq Mean Sq F value Pr(>F)

sp 2 1.8175 0.9088 15.4869 3.057e-06 ***

temp 2 24.6558 12.3279 210.0927 < 2.2e-16 ***

sex 1 0.0089 0.0089 0.1515 0.6984

Residuals 66 3.8728 0.0587

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Let‘s include interactions. In R interactions are specified using a colon.

> mod.2<-aov(resp~sp+temp+sex+sp:temp+sp:sex+temp:sex,data=crabs.dat)

> summary(mod.2)

42

 A test for balance in R is therefore !is.list(replications(resp~(sp+temp+sex)^3,

data=crabs.dat))—a bit clunky, but it works! See the help file for replications for more information.

107

 Df Sum Sq Mean Sq F value Pr(>F)

sp 2 1.8175 0.9088 23.6829 3.028e-08 ***

temp 2 24.6558 12.3279 321.2767 < 2.2e-16 ***

sex 1 0.0089 0.0089 0.2317 0.63211

sp:temp 4 1.1017 0.2754 7.1776 9.136e-05 ***

sp:sex 2 0.3703 0.1851 4.8249 0.01153 *

temp:sex 2 0.1753 0.0876 2.2839 0.11097

Residuals 58 2.2256 0.0384

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

However, R has a trick for specifying all interactions of a certain order.

> mod.3<-aov(resp~(sp+temp+sex)^2,data=crabs.dat)

> summary(mod.3)

 Df Sum Sq Mean Sq F value Pr(>F)

sp 2 1.8175 0.9088 23.6829 3.028e-08 ***

temp 2 24.6558 12.3279 321.2767 < 2.2e-16 ***

sex 1 0.0089 0.0089 0.2317 0.63211

sp:temp 4 1.1017 0.2754 7.1776 9.136e-05 ***

sp:sex 2 0.3703 0.1851 4.8249 0.01153 *

temp:sex 2 0.1753 0.0876 2.2839 0.11097

Residuals 58 2.2256 0.0384

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> mod.4<-aov(resp~(sp+temp+sex)^3,data=crabs.dat)

> summary(mod.4)

 Df Sum Sq Mean Sq F value Pr(>F)

sp 2 1.8175 0.9088 24.4751 2.715e-08 ***

temp 2 24.6558 12.3279 332.0237 < 2.2e-16 ***

sex 1 0.0089 0.0089 0.2394 0.6266

sp:temp 4 1.1017 0.2754 7.4177 7.752e-05 ***

sp:sex 2 0.3703 0.1851 4.9863 0.0103 *

temp:sex 2 0.1753 0.0876 2.3603 0.1041

sp:temp:sex 4 0.2206 0.0551 1.4850 0.2196

Residuals 54 2.0050 0.0371

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

So, our analysis shows that respiration differs with species and temperature, and that the effect of

temperature is dependent on the species. Additionally, the difference in respiration rates between

sexes is depdent on species (the main effect is actually not significant). What do the results

actually look like? We can use the function interaction.plot to quickly generate some

illuminating plots
43

.

43

 A shorter option is with(crabs.dat,interaction.plot(sp,temp,resp)).

108

> interaction.plot(crabs.dat$sp,crabs.dat$temp,crabs.dat$resp)

> interaction.plot(crabs.dat$sp,crabs.dat$sex,crabs.dat$resp)

1
.5

2
.0

2
.5

3
.0

sp

m
e

a
n

 o
f
 r

e
s
p

1 2 3

 temp

high
med

low
2

.1
2

.2
2

.3
2

.4
2

.5
2

.6

sp

m
e

a
n

 o
f
 r

e
s
p

1 2 3

 sex

F
M

109

This second interaction plot shows why we don‘t see a significant main effect for sex (although

this test is essentially irrelevant, considering that the interaction is significant).

If we want to see the actual mean respiration rates for each combination of levels, we can use the

model.tables function. The output from this function is a list with a class of ―tables.aov‖—

you can extract or manipulate data in it as with any other list.

> model.tables(mod.3,type='means')

Tables of means

Grand mean

2.325

 sp

sp

 1 2 3

2.3458 2.5083 2.1208

 temp

temp

 high low med

3.0458 1.6125 2.3167

 sex

sex

 F M

2.3139 2.3361

 sp:temp

 temp

sp high low med

 1 3.013 1.638 2.388

 2 3.175 2.000 2.350

 3 2.950 1.200 2.213

 sp:sex

 sex

sp F M

 1 2.3583 2.3333

 2 2.4000 2.6167

 3 2.1833 2.0583

 temp:sex

 sex

temp F M

 high 2.9750 3.1167

 low 1.6000 1.6250

 med 2.3667 2.2667

110

As with regression models, we can also apply the plot function to the model output to get

diagnostic plots.

> plot(mod.4)

...

Let’s back up a bit and try to get a better understaning of analysis

of variance in R. Remember that aov is just a wrapper for lm. So,

let’s try lm itself.

> mod.5<-lm(resp~(sp+temp+sex)^2,data=crabs.dat)

> summary(mod.5)

Call:

lm(formula = resp ~ (sp + temp + sex)^2, data = crabs.dat)

Residuals:

 Min 1Q Median 3Q Max

-0.313889 -0.144097 -0.004861 0.135764 0.409722

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.96528 0.08638 34.329 < 2e-16 ***

sp2 0.04167 0.11310 0.368 0.7139

sp3 -0.01250 0.11310 -0.111 0.9124

templow -1.31667 0.11310 -11.642 < 2e-16 ***

tempmed -0.50417 0.11310 -4.458 3.85e-05 ***

sexM 0.09444 0.10324 0.915 0.3641

sp2:templow 0.20000 0.13851 1.444 0.1541

sp3:templow -0.37500 0.13851 -2.707 0.0089 **

sp2:tempmed -0.20000 0.13851 -1.444 0.1541

sp3:tempmed -0.11250 0.13851 -0.812 0.4200

sp2:sexM 0.24167 0.11310 2.137 0.0368 *

sp3:sexM -0.10000 0.11310 -0.884 0.3802

templow:sexM -0.11667 0.11310 -1.032 0.3066

tempmed:sexM -0.24167 0.11310 -2.137 0.0368 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1959 on 58 degrees of freedom

Multiple R-squared: 0.9267, Adjusted R-squared: 0.9102

F-statistic: 56.39 on 13 and 58 DF, p-value: < 2.2e-16

To generate a ANOVA table, we can use the anova function.

> anova(mod.5)

Analysis of Variance Table

Response: resp

 Df Sum Sq Mean Sq F value Pr(>F)

sp 2 1.8175 0.9088 23.6829 3.028e-08 ***

111

temp 2 24.6558 12.3279 321.2767 < 2.2e-16 ***

sex 1 0.0089 0.0089 0.2317 0.63211

sp:temp 4 1.1017 0.2754 7.1776 9.136e-05 ***

sp:sex 2 0.3703 0.1851 4.8249 0.01153 *

temp:sex 2 0.1753 0.0876 2.2839 0.11097

Residuals 58 2.2256 0.0384

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

This should be identical to what summary(aov(...)) returned above.

Don't forget that the ANOVA table that you get with lm objects (e.g. from aov) in R returns tests

based on Type I SS. We can demonstrate that this is the case. First, let‘s try dropping the last

interaction term:

> mod.6<-update(mod.5, ~. - temp:sex)

Now, we can compare the two models with anova.

> anova(mod.5,mod.6)

Analysis of Variance Table

Model 1: resp ~ (sp + temp + sex)^2

Model 2: resp ~ sp + temp + sex + sp:temp + sp:sex

 Res.Df RSS Df Sum of Sq F Pr(>F)

1 58 2.22556

2 60 2.40083 -2 -0.17528 2.2839 0.1110

This result is identical to what we got above (well, with a different number of digits).

If you have an unbalanced design, Type I SS are not what you want. What can you do? You can

use update and anova to compare any two nested models, which allows you to look at the

effect of any one variable, given any number of other variables in the model. For Type III SS,

you can use the drop1 function, which returns results for the effect of single variables given all

other variables in the model. However, this function will not return results for ―main‖ effects if

interactions are included in your model—this is a good thing.
44

> drop1(mod.5,test="F")

Single term deletions

Model:

resp ~ (sp + temp + sex)^2

 Df Sum of Sq RSS AIC F value Pr(F)

44

 And, many R users might say, a shortcoming in SAS. There is a lot of discussion in the R archives on ANOVA

SS. If you are confused, check out: http://cran.r-project.org/doc/FAQ/R-FAQ.html, https://stat.ethz.ch/pipermail/r-

help/2008-February/153740.html, http://markmail.org/message/pjicdzsxdjzvs6en..

112

<none> 2.226 -222.319

sp:temp 4 1.102 3.327 -201.366 7.1776 9.136e-05 ***

sp:sex 2 0.370 2.596 -215.239 4.8249 0.01153 *

temp:sex 2 0.175 2.401 -220.861 2.2839 0.11097

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Lastly, there are other functions available for carrying out ANOVA with Type II SS, e.g Anova

in the car package.

9.4. ANCOVA

Analysis of covariance (ANCOVA) is useful when you have both categorical and continuous

predictor variables. In R, ANCOVA can be carried out using the lm function.

To demonstrate ANCOVA, we will use a data set on copper toxicity to Daphnia magna from

Ryan (2005). The experimental design is a 7 × 3 × 3 factorial design, with 7 dissolved organic

matter (DOM) sources, 3 DOC concentrations, and 3 pH levels. Copper toxicity (expressed as

LC50) was measured for each combination of levels.

> lc50.dat<-read.table("Ogeechee_tox_summary.txt",header=TRUE)

> summary(lc50.dat)

 test n.doc n.ph rep

 Min. : 2.00 Min. : 2 Min. :6 Min. :1.0

 1st Qu.: 37.25 1st Qu.: 2 1st Qu.:6 1st Qu.:1.0

 Median : 73.00 Median : 7 Median :7 Median :1.5

 Mean : 73.00 Mean : 8 Mean :7 Mean :1.5

 3rd Qu.:108.75 3rd Qu.:15 3rd Qu.:8 3rd Qu.:2.0

 Max. :144.00 Max. :15 Max. :8 Max. :2.0

 dom.source ph doc

 Min. :1 Min. :5.860 Min. : 2.000

 1st Qu.:2 1st Qu.:6.220 1st Qu.: 2.250

 Median :4 Median :7.240 Median : 6.725

 Mean :4 Mean :7.155 Mean : 7.972

 3rd Qu.:6 3rd Qu.:7.957 3rd Qu.:14.330

 Max. :7 Max. :8.400 Max. :16.130

 lc50

 Min. : 5.42

 1st Qu.: 23.09

 Median : 64.20

 Mean :126.37

 3rd Qu.:175.36

 Max. :574.82

We need to make dom.source a factor.

> lc50.dat$dom.source<-factor(lc50.dat$dom.source)

113

And, since solute concentrations and LC50s are generally log-normally distributed, and since we

might expect that log LC50 is proportional to log DOC concentration, we will log transform

LC50 and DOC.

> lc50.dat$l.doc<-log10(lc50.dat$doc)

> lc50.dat$l.lc50<-log10(lc50.dat$lc50)

Let‘s start with

> mod.1<-lm(l.lc50 ~ (dom.source + l.doc + ph)^2, data = lc50.dat)

> summary(mod.1)

Call:

lm(formula = l.lc50 ~ (dom.source + l.doc + ph)^2, data = lc50.dat)

Residuals:

 Min 1Q Median 3Q Max

-0.259978 -0.041663 0.009425 0.053572 0.150076

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.81833 0.27024 -14.129 < 2e-16

dom.source2 0.51286 0.28910 1.774 0.078990

dom.source3 1.01760 0.29146 3.491 0.000706

dom.source4 0.68690 0.29100 2.360 0.020117

dom.source5 0.64660 0.28754 2.249 0.026638

dom.source6 0.09499 0.28672 0.331 0.741085

dom.source7 0.31169 0.28617 1.089 0.278596

l.doc 1.88073 0.22770 8.260 4.97e-13

ph 0.69521 0.03737 18.603 < 2e-16

dom.source2:l.doc 0.15330 0.08720 1.758 0.081675

dom.source3:l.doc 0.10787 0.08751 1.233 0.220445

dom.source4:l.doc 0.09537 0.08749 1.090 0.278206

dom.source5:l.doc 0.10160 0.08756 1.160 0.248566

dom.source6:l.doc 0.15615 0.08853 1.764 0.080687

dom.source7:l.doc 0.12921 0.08846 1.461 0.147159

dom.source2:ph -0.10491 0.03950 -2.656 0.009149

dom.source3:ph -0.16600 0.03983 -4.168 6.37e-05

dom.source4:ph -0.11637 0.03968 -2.933 0.004133

dom.source5:ph -0.11465 0.03916 -2.927 0.004200

dom.source6:ph -0.03673 0.03906 -0.940 0.349202

dom.source7:ph -0.06406 0.03896 -1.644 0.103172

l.doc:ph -0.13452 0.03060 -4.396 2.66e-05

(Intercept) ***

dom.source2 .

dom.source3 ***

dom.source4 *

dom.source5 *

dom.source6

dom.source7

114

l.doc ***

ph ***

dom.source2:l.doc .

dom.source3:l.doc

dom.source4:l.doc

dom.source5:l.doc

dom.source6:l.doc .

dom.source7:l.doc

dom.source2:ph **

dom.source3:ph ***

dom.source4:ph **

dom.source5:ph **

dom.source6:ph

dom.source7:ph

l.doc:ph ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.0898 on 104 degrees of freedom

Multiple R-squared: 0.9776, Adjusted R-squared: 0.9731

F-statistic: 216.5 on 21 and 104 DF, p-value: < 2.2e-16

> anova(mod.1)

Analysis of Variance Table

Response: l.lc50

 Df Sum Sq Mean Sq F value Pr(>F)

dom.source 6 0.1962 0.0327 4.0550 0.0010804 **

l.doc 1 16.6982 16.6982 2070.9118 < 2.2e-16 ***

ph 1 19.3704 19.3704 2402.3121 < 2.2e-16 ***

dom.source:l.doc 6 0.0306 0.0051 0.6330 0.7035138

dom.source:ph 6 0.2069 0.0345 4.2759 0.0006842 ***

l.doc:ph 1 0.1558 0.1558 19.3281 2.664e-05 ***

Residuals 104 0.8386 0.0081

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Dropping insignificant predictors (i.e. backward elimination):

> mod.2<-lm(l.lc50 ~ (dom.source + l.doc + ph)^2 - dom.source:l.doc,

data = lc50.dat)

> anova(mod.2)

Analysis of Variance Table

Response: l.lc50

 Df Sum Sq Mean Sq F value Pr(>F)

dom.source 6 0.1962 0.0327 4.1184 0.0009083 ***

l.doc 1 16.6982 16.6982 2103.2746 < 2.2e-16 ***

ph 1 19.3704 19.3704 2439.8537 < 2.2e-16 ***

dom.source:ph 6 0.2006 0.0334 4.2110 0.0007485 ***

115

l.doc:ph 1 0.1580 0.1580 19.9033 1.976e-05 ***

Residuals 110 0.8733 0.0079

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Our final analysis says that DOM source is a significant categorical predictor, and that DOC

concentration and pH both have a significant linear effect on LC50, although the slope of the

response to pH differs among DOM sources and the slope of the response to DOC concentration

differs in response pH values (or vice versa). Let‘s look at regression parameters:

> summary(mod.2)

Call:

lm(formula = l.lc50 ~ (dom.source + l.doc + ph)^2 - dom.source:l.doc,

 data = lc50.dat)

Residuals:

 Min 1Q Median 3Q Max

-0.265161 -0.050208 0.008665 0.056682 0.152552

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.87739 0.26625 -14.563 < 2e-16 ***

dom.source2 0.59756 0.28238 2.116 0.036589 *

dom.source3 1.07257 0.28462 3.768 0.000266 ***

dom.source4 0.73278 0.28372 2.583 0.011113 *

dom.source5 0.69673 0.27989 2.489 0.014298 *

dom.source6 0.18511 0.27915 0.663 0.508637

dom.source7 0.38226 0.27854 1.372 0.172742

l.doc 1.99341 0.21759 9.161 3.26e-15 ***

ph 0.69205 0.03704 18.682 < 2e-16 ***

dom.source2:ph -0.10018 0.03912 -2.561 0.011786 *

dom.source3:ph -0.16208 0.03945 -4.109 7.68e-05 ***

dom.source4:ph -0.11257 0.03931 -2.864 0.005014 **

dom.source5:ph -0.11075 0.03880 -2.854 0.005155 **

dom.source6:ph -0.03245 0.03870 -0.838 0.403597

dom.source7:ph -0.06000 0.03860 -1.554 0.122970

l.doc:ph -0.13543 0.03036 -4.461 1.98e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.0891 on 110 degrees of freedom

Multiple R-Squared: 0.9767, Adjusted R-squared: 0.9735

F-statistic: 307.5 on 15 and 110 DF, p-value: < 2.2e-16

For the coefficients only:

> coef(mod.2)

 (Intercept) dom.source2 dom.source3 dom.source4

 -3.87739361 0.59755833 1.07256669 0.73278355

 dom.source5 dom.source6 dom.source7 l.doc

116

 0.69672694 0.18510862 0.38225760 1.99340957

 ph dom.source2:ph dom.source3:ph dom.source4:ph

 0.69204731 -0.10018229 -0.16208067 -0.11256778

dom.source5:ph dom.source6:ph dom.source7:ph l.doc:ph

 -0.11074601 -0.03244520 -0.05999614 -0.13543281

Using R‘s plot function along with some others, it is possible to very clearly display factorial

data and model fit. Simply applying the plot function to ANOVA or ANCOVA output will give

you some useful diagnostic plots as we have seen with other lm objects.

> par(mfrow=c(2,2))

> plot(mod.2)

...

Here is some more advanced code for plotting these results. One of the resulting seven plots are

shown below the code.

lc50.dat$l.lc50.pred<-predict(mod.2)

lc50.dat$lc50.pred<-10^lc50.dat$l.lc50.pred

lc50.dat$n.ph<-factor(lc50.dat$n.ph)

n.colors<-c("red","blue","green")

par(ask=TRUE)

for(i in levels(lc50.dat$dom.source)) {

 sub.1<-subset(lc50.dat,dom.source==i)

 plot(1,1,type="n",log='xy',xlim=c(1,50),ylim=c(1,2000),xlab="DOC (mg/L)",

 ylab=expression("Dissolved Cu LC50"~~(mu*g/L)),main=paste("DOC",i),las=1)

 box()

 k<-0

 for (j in levels(sub.1$n.ph)) {

 k<-k+1

 sub.2<-subset(sub.1,n.ph==j)

 sub.2<-sub.2[order(sub.2$doc),]

 points(sub.2$doc,sub.2$lc50,pch=k,col=n.colors[k])

 points(sub.2$doc,sub.2$lc50.pred,type="l",col="darkgray")

 }

 if(i==1) legend("topleft", c("pH 6","pH 7","pH 8","Model"),pch=1:4,

 col=c(n.colors[1:3],"darkgray"),lty=c(0,0,0,1),pt.cex=c(1,1,1,0), bty="n")

 text(20,1500,substitute(r^2==x,list(x=signif(cor(sub.2$lc50.pred,sub.2$lc50)^2,

 3))))

}

par(ask=FALSE)

117

Exercises

1. If you haven‘t done so already, install and load the package faraway. You should now have

the data frame mammalsleep in your workspace. Use multiple regression to determine if any

ecological or biological predictors appear to be related to the time mammals spend sleeping

(sleep). Keep a few things in mind: nondream and dream are alternate response variables, so

you can ignore them in your analysis; danger is an overall danger index and so would be

expected to be correlated with predation and exposure. You should probably start out by

calculating a summary and applying the pairs or cor functions to look for correlations.

Produce diagnostic plots after fitting your model. Finally, plot predicted versus observed time

spent sleeping.

2. Install and load the MASS package. You should now have a data frame called cabbages in

your workspace. These data seem to be from a designed experiment to look at the effect of

planting date on head mass and ascorbic acid concentration for two different cultivars. Carry out

an ANOVA to determine if the cultivar (Cult) and planting date (Date) had an effect on the

height weight of the cabbages. Calculate the means for each group, and plot the data to assess

any interaction between the two predictors.

3. Check out the data in the data frame fruitfly, which is part of the faraway package. Carry

out an ANCOVA to determine whether sexual activity has an effect on male fruitfly longevity.

As explained in the help file for the data set, thorax length is known to affect longevity, and thus

should be included as a covariate. You might compare a model with the covariate to one without

1 2 5 10 20 50

1

5

10

50

100

500

1000

DOC 1

DOC (mg/L)

D
is

s
o

lv
e

d
 C

u
 L

C
5

0
g

L

pH 6

pH 7

pH 8

Model

r
2

0.894

118

to see what effect inclusion of thorax length has on your results. Plot the data and model

predictions (a typical plot for a data set with this structure would have longevity versus thorax

length, with different plotting symbols for each of the groups). Check out the diagnostic plots.

4. Read in the data in the file Cactus_width.txt. It contains data on cactus height and width in

areas with and without tortoises. Understroy cover is also included as a possible covariate. Carry

out an ANCOVA to determine if the height:width ratio of these cacti are related to the presence

of tortoises.

119

10. Nonparametric alternatives to t tests and ANOVA

Dalgaard 2008: Chapters 5 & 7

10.1. Wilcoxon signed-rank test

A nonparametric equivalent to the one-sample t test is the Wilcoxon test. Let's apply it to the

same data that we used for the t test examples.

One-sample test:

> wilcox.test(DO.dat$result,mu=1.2)

 Wilcoxon signed rank test with continuity correction

data: DO.dat$result

V = 1000, p-value = 5.155e-07

alternative hypothesis: true location is not equal to 1.2

Warning messages:

1: In wilcox.test.default(DO.dat$result, mu = 1.2) :

 cannot compute exact p-value with ties

2: In wilcox.test.default(DO.dat$result, mu = 1.2) :

 cannot compute exact p-value with zeroes

Two-sample test:

> wilcox.test(expend ~ stature, data=energy.dat)

 Wilcoxon rank sum test with continuity correction

data: expend by stature

W = 12, p-value = 0.002122

alternative hypothesis: true location shift is not equal to 0

Warning message:

In wilcox.test.default(x = c(7.53, 7.48, 8.08, 8.09, 10.15, 8.4, :

 cannot compute exact p-value with ties

Paired test:

> wilcox.test (DO.2.dat$wink, DO.2.dat$elect, paired=T)

 Wilcoxon signed rank test with continuity correction

data: DO.2.dat$wink and DO.2.dat$elect

V = 0, p-value = 0.00903

alternative hypothesis: true location shift is not equal to 0

Warning messages:

1: In wilcox.test.default(DO.2.dat$wink, DO.2.dat$elect, paired = T) :

120

 cannot compute exact p-value with ties

2: In wilcox.test.default(DO.2.dat$wink, DO.2.dat$elect, paired = T) :

 cannot compute exact p-value with zeroes

10.2. Kruskal-Wallis test

The Kruskal-Wallis test is a nonparametric alternative to one-way ANOVA. Here it is applied to

the same data that we use for ANOVA above.

> insects.dat<-InsectSprays

> mod.1<-kruskal.test(count ~ spray, data=insects.dat)

> mod.1

 Kruskal-Wallis rank sum test

data: s.count by spray

Kruskal-Wallis chi-squared = 54.6913, df = 5, p-value = 1.511e-10

We can also make nonparametric pairwise comparisons with these data. In R, you can use the

pairwise Wilcoxon signed-rank test.

> with(insects.dat,pairwise.wilcox.test(count,spray))

 Pairwise comparisons using Wilcoxon rank sum test

data: count and spray

 A B C D E

B 1.00000 - - - -

C 0.00051 0.00051 - - -

D 0.00062 0.00062 0.01591 - -

E 0.00051 0.00051 0.26287 0.69778 -

F 1.00000 1.00000 0.00051 0.00062 0.00051

P value adjustment method: holm

There were 15 warnings (use warnings() to see them)

Excercise

1. Take a look at the help file for the data frame called sleep, which is included in the

datasets package. Perform a Wilcoxon paired-sample test on these data to determine if the two

drugs had different effects on sleep.

121

11. Loops, grouping, and conditional execution
Dalgaard 2008: Sections 2.3 & 10.2, R-Intro: Chapter 9, R-Lang: Section 3.2

With R, it is possible to write script files that can be run later, and also to write functions that can

used for streamlining data analysis or graphics development. Programming in R benefits greatly

from grouping, loops, and constructs for conditional execution. In some cases, interactive R

sessions and simple scripts can also make use of these features.

11.1. Loops and grouping

Loops are a common feature in most programming languages—they allow you to repeat a

command or a set of commands any number of times. In R it is possible to avoid using loops for

many procedures where they would be required in other languages, by taking advantage of

vectorized operations and indexing. Vectorized operations are (generally) more efficient than

loops from both the standpoint of both writing and executing code. However, in some cases,

loops may be more clear, or may be the only option. R has three types of loops: for, while, and

repeat.

A for loop will repeat a set of commands a specified number of times and change the value of a

counter variable with every pass.

> for (i in 1:10) print(i)

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9

[1] 10

The counter variable can be any type of vector.

> some.vector<-c(1,3.45,pi,8.1,0,-100)

> for (j in some.vector) print(j)

[1] 1

[1] 3.45

[1] 3.141593

[1] 8.1

[1] 0

[1] -100

> orgs<-c("Tree","Grass","Snail")

> for (i in orgs) print(i)

[1] "Tree"

[1] "Grass"

[1] "Snail"

122

As you can see from the above examples, the command that follows the for() is executed with

each pass of the loop. If you want to execute more than one command, simply group them using

braces: {}. Any commands present together in braces are executed together—the entire block of

code within the braces is referred to as a compound expression. (Loops are not the only place

where grouping is useful.)

> for (i in 1:5) {

+ x<-i^2

+ z<-i^3

+ print(c(i,x,z))

+ }

[1] 1 1 1

[1] 2 4 8

[1] 3 9 27

[1] 4 16 64

[1] 5 25 125

Of course, loops are generally used for more complicated (and useful) operations. One common

use of loops is to repeat a set of commands for subsets of data. A simple case is to select a

different individual row or column within a data frame with each pass:

> dat<-data.frame(a=letters[1:5],x=rnorm(5))

> dat

 a x

1 a 0.08667766

2 b -1.15645634

3 c 1.31002675

4 d 0.94639152

5 e 0.40411418

> for(i in 1:5) {

+ print(dat[i,])

+ }

 a x

1 a 0.08667766

 a x

2 b -1.156456

 a x

3 c 1.310027

 a x

4 d 0.9463915

 a x

5 e 0.4041142

The code in this loop does nothing more than print the selected row to the screen. However, any

operation could be carried out on the selected data. Of course, anything that can be done with

this approach could be done more efficiently with apply. One place where loops are generally

better than other approaches is when you need to carry out a multi-step or otherwise complicated

123

operation on subsets of data. Producing multi-panel plots is a good example. This type of loop

can often make use of the levels function, which will return the levels of a factor, or unique,

which will return the set of unique elements within a vector.

Let‘s demonstrate this with the data set called heart.rate from the ISwR package. In this

case, since we want multiple commands to be executed with each pass of the loop, we need to

group the commands with braces.

> install.packages("ISwR")

> library(ISwR)

> hr.dat<-heart.rate

> names(hr.dat)

[1] "hr" "subj" "time"

> hr.dat$subj<-factor(hr.dat$subj)

par(mfrow=c(3,3),mar=c(1.5,2,1.5,1.5),oma=c(4,3,2,1))

for (i in levels(hr.dat$subj)) {

 sub.dat<-subset(hr.dat, subj==i)

 plot(hr~time,data=sub.dat,xlab="",ylab="",ylim=c(0,150))

 text(2.5,135,paste("Subject",i))

 box()

}

mtext("Heart rate (beats per minute)",2,1,outer=T)

mtext("Time since treatment (hr)",1,2,outer=T)

124

Another way to do this is with the split function.

hr.lst<-split(hr.dat,hr.dat$subj)

for (i in levels(hr.dat$subj)) {

 sub.dat<-hr.lst[[i]]

 plot(hr~time,data=sub.dat,xlab="",ylab="",ylim=c(0,150))

 text(2.5,135,paste("Subject",i))

 box()

}

mtext("Heart rate (beats per minute)",2,1,outer=T)

mtext("Time since treatment (hr)",1,2,outer=T)

Selecting a different element, row, or column or even a subset within a data frame with each pass

of a for loop is pretty straightforward.But what if you (for some reason) need to select a

different variable with each pass? Let‘s take a look at wind speed data for several weather

stations in the US:

0 30 60 120

0
5
0

1
0
0

1
5
0

Subject 1

0 30 60 120

0
5
0

1
0
0

1
5
0

Subject 2

0 30 60 120

0
5
0

1
0
0

1
5
0

Subject 3

0 30 60 120

0
5
0

1
0
0

1
5
0

Subject 4

0 30 60 120

0
5
0

1
0
0

1
5
0

Subject 5

0 30 60 120

0
5
0

1
0
0

1
5
0

Subject 6

0 30 60 120

0
5
0

1
0
0

1
5
0

Subject 7

0 30 60 120

0
5
0

1
0
0

1
5
0

Subject 8

0 30 60 120

0
5
0

1
0
0

1
5
0

Subject 9

H
e

a
rt

 r
a

te
 (

b
e

a
ts

 p
e

r
m

in
u

te
)

Time since treatment (hr)

125

> wind.dat<-read.table('Ave_wind_US.txt',header=T,sep='\t')

> names(wind.dat)

 [1] "location" "no.yr" "jan" "feb" "mar"

 [6] "apr" "may" "jun" "jul" "aug"

[11] "sep" "oct" "nov" "dec" "ann"

> wind.dat[1,]

 location no.yr jan feb mar apr may jun jul aug

1 13876BIRMINGHAM AP,AL 65 8.1 8.7 9 8.2 6.8 6 5.7 5.4

 sep oct nov dec ann

1 6.3 6.2 7.2 7.7 7.1

What if we wanted to select a different month with each pass of a loop, starting with January?

One option is to use indexing with numbers:

> for(i in 3:15) {

+ print(wind.dat[1,i])

+ }

[1] 8.1

[1] 8.7

[1] 9

[1] 8.2

[1] 6.8

[1] 6

[1] 5.7

[1] 5.4

[1] 6.3

[1] 6.2

[1] 7.2

[1] 7.7

[1] 7.1

Or, we can work with variable names:

> for(i in

c("jan","feb","mar","apr","may","jun","jul","aug","sep","oct","nov",

+ "dec")){

+ print(wind.dat[1,i])

+ }

[1] 8.1

[1] 8.7

[1] 9

[1] 8.2

[1] 6.8

[1] 6

[1] 5.7

[1] 5.4

[1] 6.3

[1] 6.2

[1] 7.2

[1] 7.7

126

There are many other uses of for loops—if you have an idea that seems reasonable, there is a

good chance that you can get it to work. But, keep in mind that you can often using indexing and

functions in place of loops, and end up with cleaner and faster-running code.

The while loop is used to repeat a set of commands until some condition is met. While the

simple example below doesn‘t do much, it should give you an idea of how while loops can be

used.

> par(mfrow=c(1,1))

> r.sum<-0

> i<-1

> while (max(r.sum) < 100) {

+ i<-i + 1

+ r.sum[i]<-r.sum[i-1] + rnorm(n=1,mean=1,sd=5)

+ }

> plot(r.sum,xlab="Iteration",ylab="Cumulative sum",type="o")

Here is a more complicated (and useful) example that uses both for and while loops. This code

calculates the first 10 roots of the equation

 Lbb tan

0 10 20 30 40 50 60 70

0
2

0
4

0
6

0
8

0
1

0
0

Iteration

C
u

m
u

la
ti
v
e

 s
u

m

127

which are required for some analytical mass transfer models.

> L<-7

> r<-NULL

> for (i in 1:10) {

+ b<-pi/4

+ ct<-0

+ while (abs(log10((b + (i-1)*pi)*tan(b)/L))>1E-5){

+ ct<-ct+1

+ b<-ifelse(ct>1,(atan(L/(b + (i-1)*pi)) + b)/2,atan(L/(b + (i-

+ 1)*pi)))

+ }

+ r[i]<-b + (i-1)*pi

+ }

>

> r

 [1] 1.376618 4.174646 7.064024 10.033909 13.058435 16.117683

 [7] 19.199171 22.295364 25.401635 28.515054

It is pretty difficult to keep track of this code if you were to enter it in the GUI directly. We

recommend that you keep your R commands for anything more than the most basic analyses in

script files. In script files, you should follow good programming practice and use indentation to

show the structure of your code:

L<-7

r<-NULL

for (i in 1:20) {

 b<-pi/4

 ct<-0

 while (abs(log10((b+(i-1)*pi)*tan(b)/L))>1E-5){

 ct<-ct+1

 b<-ifelse(ct>1,(atan(L/(b+(i-1)*pi))+b)/2,atan(L/(b+(i-1)*pi)))

 }

 r[i]<-b + (i-1)*pi

}

Here is a graphical representation of this problem (the plot is only large enough to see the first

three roots):

> b<-seq(0,2.5*pi,0.01)

> y<-b*tan(b)

> y[y>20|y< -20]<-NA

> plot(b,y,ylim=c(-10,10),type="l",xaxt='n',ylab='b tan(b)')

> axis(1,at=1:5/2*pi,labels=c(expression(pi/2),expression(pi),

+ expression(3*pi/2),expression(2*pi),expression(5*pi/2)))

> abline(v=r,col='red',lty=2)

> abline(h=7,col='red',lty=2)

128

11.2. Conditional statements

Conditional statements are another ubiquitous feature of programming languages. In R, there are

two conditional statements, if...else and ifelse, each designed for a different application.

The if construct will execute a command if a specified condition is met.

> if (10>3) x<-101

> x

[1] 101

> a<-10

> if (!is.na(a)) print(a)

[1] 10

If you would like several commands to be dependent on a single condition, then simply group
the commands together using braces.

> a<-100

> if (a>3) {

+ print(a)

+ a<-0

-1
0

-5
0

5
1

0

b

b
 t
a

n
(b

)

π 2 π 3π 2 2π 5π 2

129

+ }

[1] 100

> a

[1] 0

The if construct can include an else. The command that follows an else will be executed if

the condition is not met.

> grade<-82

> if (grade > 65) result<-"pass" else result<-"fail"

> result

[1] "pass"

If you need to group commands using braces, just put the else after (but on the same line as) the

closing brace
45

.

> if (your.grade > 65) {

+ result<-"pass"

+ message<-"Nice job"

+ } else {

+ result<-"fail"

+ message<-"See you next semester"

}

> result

[1] "pass"

Of course, you could group multiple commands within nested curly braces.

> your.grade<-82

> if (your.grade > 65) {

+ result<-"pass"

+ print("Way to go")

+ } else {

+ result<-"fail"

+ print("See you next semester")

+ }

[1] "Way to go"

This is important: if...else works only with length-one vectors (i.e. scalars). If you want to

apply an if...else type construct to multiple elements in a data structure, use ifelse.

> grades<-c(82,64,95,54,96,96,92,90,99,72)

> results<-ifelse(grades > 65,"pass","fail")

45

 Another way to do this is by grouping the entire if…else construct.

130

> results

[1] "pass" "fail" "pass" "fail" "pass" "pass" "pass" "pass"

[9] "pass" "pass"

The ifelse construct is handy for adding to data frames new columns which contains values

that are dependent on the value of some other variable(s) in the same data frame.

> flow.dat<-read.table("River_flow.txt",header=TRUE)

> names(flow.dat)

[1] "agency" "site" "date" "discharge"

[5] "flag.discharge"

> flow.dat$site<-factor(flow.dat$site)

> levels(flow.dat$site)

[1] "1509000" "4232730"

> flow.dat$name<-ifelse(flow.dat$site==1509000,"Tioughnioga","Seneca")

> flow.dat[1:3,]

 agency site date discharge flag.discharge name

1 USGS 4232730 2006-01-01 75 P Seneca

2 USGS 4232730 2006-01-02 493 P Seneca

3 USGS 4232730 2006-01-03 1380 P Seneca

> flow.dat[500:502,]

 agency site date discharge flag.discharge name

500 USGS 1509000 2006-05-15 302 A Tioughnioga

501 USGS 1509000 2006-05-16 317 A Tioughnioga

502 USGS 1509000 2006-05-17 286 A Tioughnioga

Much or all of what can be done using ifelse can also be done using indexing. One or the

other approach may make more sense or use less code in some cases.

Exercises

1. Vectorized operations make R code efficient to write and execute. To get an idea of the effect

of this on execution time, calculate the square root of all the integers from one to 10000 two

different ways: as a simple vectorized operation, and within a loop. Time the two methods using

system.time.

2. Read in the data in the file Eagles.txt. Using a loop, create a separate file for each invidual site

that contains the output for the summary function applied to data for the specific site only.

3. Generate a 100 element vector contains random numbers—specify whatever mean you like (or

use the default). Now use ifelse or if...else (whichever is appropriate) to generate a new

vector that contains H where the random number is greater than your specifed mean, and L

where it is lower than your specified mean.

131

12. Graphics II
Murrell 2005, Crawley 2007, Dalgaard 2008

12.1. Arranging multiple plots per page

There are two common ways of putting multiple plots on one page. One way is to modify the

graphic parameter mfrow (or mfcol), with the par function. This is a simple method for setting

the number of plot regions per page, but its one disadvantage is that all of the plot regions are

equally sized. More flexibility is available through use of the layout function
46

. Before we start

describing each of these methods, it is useful to view the current graphic parameters. Query the

settings with par().

> par()

$xlog

[1] FALSE

$ylog

[1] FALSE

...

$mfcol

[1] 1 1

$mfg

[1] 1 1 1 1

$mfrow

[1] 1 1

...

$yaxt

[1] "s"

Since we have not yet modified these settings, these are the defaults (some of them—there are a

total or 70). Note that the default setting for mfcol and mfrow is the two element vector 1,1, i.e.,

c(1,1). This means that plots are arranged on a page in a one row-by-one column fashion, i.e.,

one plot per page. To create a plot layout that consists of four equal sized plot regions, mfrow (or

mfcol) would be set to c(2,2). The difference between mfrow and mfcol is that with mfrow,

the plots are first organized by row, and with mfcol, the plots are first organized by column.

> x<-c(0,1)

> y<-c(0,1)

> par(mfrow=c(2,2))

46

 You can find more flexibility still in the lattice package, which is not covered in this workshop.

132

> plot(x,y,type="n",main="Plot 1")

> plot(x,y,type="n",main="Plot 2")

> plot(x,y,type="n",main="Plot 3")

> plot(x,y,type="n",main="Plot 4")

Or, with a loop:

> for (i in 1:4) plot(x,y,type="n",main=paste("Plot",i))

Notice the order of plots as they are arranged on the page. The plotting starts with the upper left

region of the page, fills out the top row, continues to the second row, and eventually ends in the

bottom right region of the page (i.e., left to right and then top to bottom). If another plot had been

specified, it would have been placed in the upper left region of a new page. With mfcol, plot

order goes from top to bottom before left to right.

There is a lot of blank space around the plots in the above example. The amount of space around

individual plots and aroud the edge of the page as a whole can be adjusted by changing the

values for the parameters mar (margins) and oma (outer margins) (outer margins really only

0.0 0.4 0.8

0
.0

0
.4

0
.8

Plot 1

xval

y
v
a
l

0.0 0.4 0.8

0
.0

0
.4

0
.8

Plot 2

xval

y
v
a
l

0.0 0.4 0.8

0
.0

0
.4

0
.8

Plot 3

xval

y
v
a
l

0.0 0.4 0.8

0
.0

0
.4

0
.8

Plot 4

xval

y
v
a
l

133

make sense when you are creating a figure in a graphics file, which is covered later). The default

setting is mar=c(5.1,4.1,4.1,2.1), which are the margins in ―lines‖ from the bottom

moving clockwise. In the example below, the margins have been reduced
47

.

> par(mfrow=c(2,2),mar=c(4,4,3,1))

> for (i in 1:4) plot(x,y,type="n",main=paste("Plot",i))

The following code displays the areas controlled by mar and oma.

> mars<-c(5.1,4.1,4.1,2.1)

> omas<-c(2,2,2,2)

> par(mfrow=c(2,2),mar=mars,oma=omas)

> for(i in 1:4) {

+ plot(NULL,xlim=c(1,10),ylim=c(1,10),xlab="",ylab="")

47

 We have also reduced the code for producing four plots to a single line using a loop.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Plot 1

xval

y
v
a
l

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Plot 2

xval

y
v
a
l

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Plot 3

xval

y
v
a
l

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Plot 4

xval

y
v
a
l

134

+ box("figure",col="red")

+ for(i in 1:4) mtext(paste("mar[",i,"]",sep=""),side=i,line=4-

+ i,col="red")

+ }

> for(i in 1:4) mtext(paste("oma[",i,"]",sep=""),side=i,line=1,

+ col="blue",outer=TRUE)

More flexibility is allowed with the layout function because plot regions with different sizes

can be specified. First, let‘s reset the mfrow, mar, and oma to the defaults:

> par(mfrow=c(1,1),mar=c(5,4,4,2)+0.1,oma=c(0,0,0,0))

The only required argument to the layout function is mat, which must be a matrix that shows

where each panel should go. For example, take a look at the following matrix.

> matrix(1:4,nrow=2)

 [,1] [,2]

[1,] 1 3

[2,] 2 4

2 4 6 8 10

2
6

1
0

mar[1]

m
a

r[
2

]

mar[3]

m
a

r[
4

]
2 4 6 8 10

2
6

1
0

mar[1]
m

a
r[

2
]

mar[3]

m
a

r[
4

]
2 4 6 8 10

2
6

1
0

mar[1]

m
a

r[
2

]

mar[3]

m
a

r[
4

]

2 4 6 8 10

2
6

1
0

mar[1]

m
a

r[
2

]

mar[3]

m
a

r[
4

]

oma[1]

o
m

a
[2

]

oma[3]

o
m

a
[4

]

135

You can probably guess what kind of a layout this will give when you submit it to layout:

> layout(matrix(1:4,nrow=2))

> for (i in 1:4) plot(x,y,type="n",main=paste("Plot",i))

An easier way to quickly show where your plots will show up is to use the layout.show

function:

> layout.show(4)

0.0 0.4 0.8

0
.0

0
.4

0
.8

Plot 1

xval

y
v
a
l

0.0 0.4 0.8

0
.0

0
.4

0
.8

Plot 2

xval

y
v
a
l

0.0 0.4 0.8

0
.0

0
.4

0
.8

Plot 3

xval
y
v
a
l

0.0 0.4 0.8

0
.0

0
.4

0
.8

Plot 4

xval

y
v
a
l

136

This layout also could have been created by setting mfcol=c(2,2) in a par call. But, layout

can do much more than this. For example, how about something like this?

The only challenge in using layout is in figuring out a matrix that accurately reflects what you

want. In this case, the narrow dimensions of plots 1 & 2 are about half as large as a side of plot 3,

so a 3 × 3 matrix should work. How about this:

> matrix(c(0,1,1,2,3,3,2,3,3),nrow=3)

 [,1] [,2] [,3]

1

2

3

4

Plot 1

Plot 2

Plot 3

137

[1,] 0 2 2

[2,] 1 3 3

[3,] 1 3 3

Note that you can just put a 0 where you don‘t want any plot.

> layout.show(3)

Additional flexibility comes from the heights argument in layout, which allows you to set

the relative height of each row in your matrix.

> layout(matrix(1:9,nrow=3,byrow=TRUE))

> layout.show(9)

1

2

3

138

Compare that to this:

> layout(matrix(1:9,nrow=3,byrow=TRUE),heights=c(0.5,2,1))

> layout.show(9)

Once you get the hang of using layout, it is very easy to manipulate the number, arrangement,

and size of plots in graphical output. However, if multiple plots of equal size are to be created,

specifying mfrow is an easier option.

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

139

12.2. More on the plot function: arguments and values

R allows the user to have fine control over essentially all aspects of graphical output. Some of

the most common optional arguments to the plot function are given in the table below, along

with common values. These arguments primarily allow users to control axis limits and

appearance.

Argument Common values Additional information

cex

0

to

3 (or greater)

Numerical value. Controls size of

plotting text and symbols. No upper

limit, but typically 0.5-2. Default is

1. Is reset to 1 when the layout is

changed.

cex.axis

0

to

3 (or greater)

Magnification for axis annotation,

relative to cex.

col.axis Any color
Color for axis annotation. Default of

"black".

col.lab Any color
Color for axis label. Default of

"black".

font.lab

1

through
5

Font of axis label. 1, plain; 2, bold;

3, italic; 4, bold italic; 5 symbol. See

also family.

font.axis

1

2

3

4
5

Font of axis annotation. 1, plain; 2,

bold; 3, italic; 4, bold italic; 5

symbol. See also family.

las

0

1

2

3

Rotation of axis annotation. 0,

parallel to axis; 1, horizontal; 2,

perpendicular to axis; 3 vertical.

mgp

c(0,0,0)

through

c(5,5,5) (or greater)

Location of axis title, labels, and

line. Default is c(3,1,0). Adjust mgp

to move title and numeric labels

closer to or farther from plot edge.

tcl

0

through

2 (or greater)
Tick mark length.

xaxs

"r"

"i"

Style of x axis interval. Default is

"r", which extends a bit beyond

limits. To stick with specified limits,

use "i".

yaxs
"r"

"i"
Style of y axis interval. See xaxs.

140

The following code and resulting graphics demonstrate some of the options listed in the table

above. (We will cover the text function, which is used below to annotate the plots, in the next

subsection.)

> par(mfrow=c(2,2),mar=c(4,4,2,2))

> x<-1:10;y<-100*x

> plot(x,y,type="n",xlab="Time (days)",ylab="Mass (kg)")

> text(6,500,"las=0\n tcl=-0.5\n col.axis='black'\n cex.axis=

+ 1.0\n(Default options)")

> plot(x,y,type="n",xlab="",ylab="",las=1,tcl=1,col.axis="green",

+ cex.axis=1.5)

> text(6,500,"las=1\n tcl=1\n col.axis='green'\n cex.axis=

+ 1.5")

> plot(x,y,type="n",xlab="Time (days)",ylab="Mass (kg)",las=2,

+ col.lab="red")

> text(6,500,"las=2\n tcl=-0.5\n col.axis='black'\n col.lab='red' \n

+ cex.axis= 1.0")

> plot(x,y,type="n",xlab="Time(days)",ylab="Mass (kg)",las=3,

+ font.lab=2,font.axis=3)

> text(6,500,"las=3\n tcl=-0.5\n col.axis='black'\n cex.axis=

+ 1.0\n font.lab=2 \n font.axis=3")

2 4 6 8 10

2
0
0

6
0
0

1
0
0
0

Time (days)

M
a
s
s
 (

k
g
) las=0

 tcl=-0.5

 col.axis='black'

 cex.axis=

1.0

(Default options)

2 4 6 8 10

200

400

600

800

1000

las=1

 tcl=1

 col.axis='green'

 cex.axis=

1.5

2 4 6 8

1
0

200

400

600

800

1000

Time (days)

M
a
s
s
 (

k
g
) las=2

 tcl=-0.5

 col.axis='black'

 col.lab='red'

cex.axis= 1.0

2 4 6 8

1
0

2
0
0

6
0
0

1
0
0
0

Time(days)

M
a
s
s
 (

k
g

)

las=3

 tcl=-0.5

 col.axis='black'

 cex.axis=

1.0

 font.lab=2

 font.axis=3

141

A complete description of the various plot parameter settings that can be specified as arguments

to plot can be viewed in the help file for par. This will provide a list of the plot parameter

settings that can either be set by specifying values in a par command, or by specifying values as

arguments through the plot function. Note that any parameters that are specified in par will

remain set at the specified value until another value is specified. For example, future plots will be

displayed corresponding to the specified settings. If settings are set in a plot command, they are

only set for that individual plot.

12.2 Adding data to plots

What is the best way to plot multiple data series? The answer probably depends on the details of

your data and plot, as well as your preferred approach to writing R code (e.g., as short and

efficient as possible versus easy-to-understand). You can plot multiple data series with one plot

call by using its vectorized capabilities, but this isn‘t the most straightforward option, and

doesn‘t work well with lines. Functions that add data to an existing plot include points, lines,

and curve. For this set of examples, let‘s revisit some data we‘ve looked at previously on

fruitfly longevity.

> library(faraway)

> summary(fruitfly)

 thorax longevity activity

 Min. :0.6400 Min. :16.00 isolated:25

 1st Qu.:0.7600 1st Qu.:46.00 one :25

 Median :0.8400 Median :58.00 low :25

 Mean :0.8224 Mean :57.62 many :24

 3rd Qu.:0.8800 3rd Qu.:70.00 high :25

 Max. :0.9400 Max. :97.00

Let‘s select just a few activity levels, to keep things simple.

> ff.dat<-subset(fruitfly,activity %in% c("isolated","low","high"))

To start, let‘s produce one plot with different series for each activity condition. This example

demonstrates the vectorized usage of the col argument. In this case, different colors are

automatically used for observations with different values for activity:

> plot(ff.dat$thorax,ff.dat$longevity,col=ff.dat$activity)

142

This simple approach can also be applied with character or factor data—just use as.numeric as

needed
48

. Moreover, you can use the same type of expression to produce a different plotting

symbol for each group. The downside with this approach is that you are stuck with whichever

colors or symbols happen to correspond with the numeric data that are in your data set. A more

sophisticated and flexible approach is to use indexing or ifelse to use a vector of colors or

plotting symbols that are based on the value of activity. This is most clear if done in a few

separate steps

> cols<-ifelse(ff.dat$activity=="isolated","black",

+ ifelse(ff.dat$activity=="low",'blue','red'))

> symbs<- ifelse(ff.dat$activity=="isolated",1,

+ ifelse(ff.dat$activity=="low",2,5))

> plot(ff.dat$thorax,ff.dat$longevity,

+ xlab="Thorax length (mm)",ylab="Longevity (d)",

+ pch=symbs,col=cols,las=1)

48

 When applied to character data, as.numeric will sort the unique values alphabetically, and assign integer values.

0.65 0.70 0.75 0.80 0.85 0.90 0.95

2
0

4
0

6
0

8
0

ff.dat$thorax

ff
.d

a
t$

lo
n

g
e

v
it
y

143

The downside with this approach is that it is a bit complicated, and it doesn't work well with

lines. It may be easier to just add points or lines to a plot that already exists. The points

function can be used to add points or lines to an existing plot. The code below will produce a plot

that is identical to the one just above.

> plot(ff.dat$thorax,ff.dat$longevity,type="n",

+ xlab="Thorax length (mm)",ylab="Longevity (d)",

+ pch=1,col=ff.dat$activity,las=1)

> points(ff.dat$thorax[ff.dat$activity=="isolated"],

+ ff.dat$longevity[ff.dat$activity=="isolated"],pch=1)

> points(ff.dat$thorax[ff.dat$activity=="low"],

+ ff.dat$longevity[ff.dat$activity=="low"],pch=2,col="blue")

> points(ff.dat$thorax[ff.dat$activity=="high"],

+ ff.dat$longevity[ff.dat$activity=="high"],pch=5,col="red")

Lines can also be added to a plot with points.

> plot(ff.dat$thorax,ff.dat$longevity,type="n",

+ xlab="Thorax length (mm)",ylab="Longevity (d)",las=1)

> x<-seq(0.65,0.92,length=20)

> y<-50*x

> points(x,y,type="l")

0.65 0.70 0.75 0.80 0.85 0.90 0.95

20

40

60

80

Thorax length (mm)

L
o

n
g

e
v
it
y
 (

d
)

144

But, the lines function requires a little less code.

> lines(x,y)

Line color, weight, and pattern can be specified in any function that plots lines. Line type,

controlled by lty, is very flexible and therefore a bit complicated. The easiest approach is to use

just use the integers 0 to 6. For (many) more options, see the lty entry in the help file for par.

> lines(x,y+10,lwd=2,col="red",lty=2)

> lines(x,y+20,lwd=1,col="blue",lty="solid")

> lines(x,y+rnorm(20,30,10),lwd=1.5,col="orange",lty=3242)

0.65 0.75 0.85 0.95

20

40

60

80

Thorax length (mm)

L
o

n
g

e
v
it
y
 (

d
)

145

If you can arrange your data as a matrix (this requires that all series have identical x values),
three functions for plotting multiple series simultaneously are available. We could add all these

lines at once using the matlines function. The single command below will do the same thing
that three separate commands did above.

> matlines(x,matrix(c(y,y+20,y+rnorm(20,30,10)),nrow=20),

+ lwd=c(2,1,1.5),col=c("red","blue","orange"),lty=c(2,1,1))

For adding multiple series as points, an analogous function matpoints is available. And, to

generate a plot and add multiple series of points or lines at once, use matplot.

What if you want to plot multiple data series on a single plot, but with different axes? There are
at least two ways to do this, and although both are easy, they may not be easy to remember. In

the first method, use par to set the limits of the y axis.

> plot(1:10,runif(10))

> par(usr=c(par('usr')[1:2],0,100))

> axis(4)

> lines(1:10,rnorm(10,50,25),col="red")

0.65 0.75 0.85 0.95

20

40

60

80

Thorax length (mm)

L
o

n
g

e
v
it
y
 (

d
)

146

The alternative is to plot a new plot over a previous one, setting axes and other arguments to

FALSE so they don't show up. Then, set par(new=TRUE) (this tells R that the plotting device is

on a new page already, and that it is therefore OK to go ahead and plot), and finally, submit the

command to produce a new plot. To generate the same example shown above, you could use the

following code. This approach is very flexible, because there is no limit to what type of plots can

be overlaid. But, you need to be sure that your plots align as you think they do.

> plot(1:10,rnorm(10,50,25),ylim=c(0,100),axes=FALSE,xlab="",

+ ylab="",col="red",type="l")

> axis(4)

The curve function is used for plotting functions. Given alone, it will create a plot, but if

submitted after a plot call has already been made with the argument add=TRUE, it will add a new

line to the plot. This function is the easiest way to see visualize a function.

> curve(sin(x),-10,10)

2 4 6 8 10

0
.2

0
.4

0
.6

0
.8

1:10

ru
n

if
(1

0
)

0
2

0
4

0
6

0
8

0
1

0
0

147

If you want to add model predictions to a plot, we can of course use lines or points after we

have generated predictions. If you want to plot model predictions as a function of the only

predictor variable, the flexible abline function is easier. Let's demonstrate with the fruit fly

data.

> plot(ff.dat$thorax,ff.dat$longevity,

+ xlab="Thorax length (mm)",ylab="Longevity (d)",

+ pch=symbs,col=cols,las=1)

> mod<-lm(longevity ~ thorax,data=ff.dat,subset=activity=="low")

> abline(mod,col="blue")

-10 -5 0 5 10

-1
.0

-0
.5

0
.0

0
.5

1
.0

x

s
in

(x
)

148

The abline function can only be used for straight lines (unlike points, lines, and curve).

With it, you can specify a slope and intercept manually, or plot horizontal or vertical lines.

> abline(a=200,b=-200,col="red",lty=5)

> abline(v=mean(ff.dat$thorax),col="darkgray",lty="dotted")

> abline(h=mean(ff.dat$longevity),col="orange",lwd=2.5)

0.65 0.75 0.85 0.95

20

40

60

80

Thorax length (mm)

L
o

n
g

e
v
it
y
 (

d
)

149

12.3. Annotating plots

Let's start with an important addition to a plot—a legend. The legend function in R is perhaps a
little less automatic than in other graphics software, but once you get the hang of it, you may
appreciate its flexibility. Let's generate a plot using, again, the fruit fly data.

> plot(ff.dat$thorax,ff.dat$longevity,

+ xlab="Thorax length (mm)",ylab="Longevity (d)",

+ pch=symbs,col=cols,las=1)

There are many optional arguments for the legend function (see the help file for a list), but
most of the time, you just need to specify a location, the text labels, and plotting characters or
lines. For example, using the plot generated.

> legend(0.65,85,c("isolated","low","high"),pch=c(1,2,5),

+ col=c("black","red","blue"))

0.65 0.75 0.85 0.95

20

40

60

80

Thorax length (mm)

L
o

n
g

e
v
it
y
 (

d
)

150

This function has some handy shortcuts for positioning a legend—instead of specifying x and y

coordinates, you can just use "top","bottom","left","right","middle", or combinations of these.

You can also use lines in place of plotting symbols, or you can combine lines and plotting

symbols.

> plot(ff.dat$thorax,ff.dat$longevity,type="n",

+ xlab="Thorax length (mm)",ylab="Longevity (d)",las=1)

> legend("topleft",c("isolated","low","high"),pch=c(1,2,5),

+ col=c("black","red","blue"))

> legend("bottomleft",c("isolated","low","high"),lty=1:3,

+ col=c("black","red","blue"),bty="n")

> legend("topright",c("isolated","low","high","model"),

+ pch=c(1,2,5,-1),lty=c(0,0,0,1),col=c("black","red","blue","purple"))

> legend("bottomright",c("isolated","low","high","model 1","model 2"),

+ pch=c(21,2,5,-1,6),lty=c(0,0,0,2,1),pt.bg="red",

+ col=c("black","red","blue","purple","darkgreen"))

0.65 0.75 0.85 0.95

20

40

60

80

Thorax length (mm)

L
o

n
g

e
v
it
y
 (

d
) isolated

low

high

151

Notice that it can be a little tricky to get combinations of lines and symbols. The trick is to use

lty=0 for no line and pch= - 1 for no plotting symbol.

To add text to a plot, you can use the text or the mtext functions. These two functions are

similar, but mtext is for adding text in the plot margins.

> plot(ff.dat$thorax,ff.dat$longevity,

+ xlab="Thorax length (mm)",ylab="Longevity (d)",

+ pch=symbs,col=cols,las=1)

> text(0.7,80,"Mean longevity")

> mtext("Fruit fly longevity",side=3,line=1,cex=3,col="gray")

0.65 0.75 0.85 0.95

20

40

60

80

Thorax length (mm)

L
o

n
g

e
v
it
y
 (

d
)

isolated
low

high

isolated

low
high

isolated
low

high
model

isolated
low
high

model 1
model 2

152

Both text and mtext have several optional arguments that can be used to adjust font, size, or

color (as is demonstrated in the mtext command above). See the help file for par for more

information.

With the function arrows, it is easy to create arrows and specify a color, head length and angle,

and line characteristics. Again, see the help file for par for more information. Note that text and

arrows are both vectorized functions. Let's add a line and an arrow to the plot we just made.

> abline(h=mean(ff.dat$longevity),lty=2)

> arrows(0.7,75,0.75,mean(ff.dat$longevity),length=0.2,col="red")

0.65 0.70 0.75 0.80 0.85 0.90 0.95

20

40

60

80

Thorax length (mm)

L
o

n
g

e
v
it
y
 (

d
)

Mean longevity

Fruit fly longevity

153

Polygons of any shape can be added to a plot in R.

> polygon(x=c(0.8,0.8,1,1),y=c(0,mean(ff.dat$longevity),

+ mean(ff.dat$longevity),0),density=50,col="orange")

> polygon(x=c(0.6,0.6,0.8,0.8),y=c(0,mean(ff.dat$longevity),

+ mean(ff.dat$longevity),0),col="gray")

> box()

0.65 0.70 0.75 0.80 0.85 0.90 0.95

20

40

60

80

Thorax length (mm)

L
o

n
g

e
v
ity

 (
d

)
Mean longevity

Fruit fly longevity

154

A more interesting example of using polygon showing the vectorized nature of the vertices
follows:

> x<-seq(-3,3,0.01)

> y<-dnorm(x)

> plot(x,y,type="l")

> polygon(c(1,x[x>=1]),c(y[x==3],y[x>=1]),

+ col="blue")

We will cover the dnorm function later, but as you might guess, it is associated with the normal
distribution. This figure shows that you can specify a vector for the vertices, and the resulting
polygon appears to have smooth edges.

0.65 0.70 0.75 0.80 0.85 0.90 0.95

20

40

60

80

Thorax length (mm)

L
o

n
g

e
v
ity

 (
d

)
Mean longevity

Fruit fly longevity

155

Equations and symbols can be added to figures by using the expression function for the value

for any argument that accepts text. The syntax for writing equations and symbols with function

can be viewed by typing:

> demo(plotmath)

The code below shows just a few uses of expression.

> plot(ff.dat$thorax,ff.dat$longevity,type="n",

+ xlab=expression("Thorax length"~~(10^3~mu*m)),

+ ylab="Longevity (d)",las=1)

> text(0.8,40,expression(bar(y)==sum(frac(y[i],m),i==1,m)))

> text(0.8,60,expression(y[i]==sqrt(x[i]^2+z[i]^2)))

> text(0.8,80,expression(integral(f(x)*dx,a,b)))

-3 -2 -1 0 1 2 3

0
.0

0
.1

0
.2

0
.3

0
.4

x

y

156

If you are not happy with the default axes that R produces, you can produce custom ones using

the axis function. The only required argument is side (1=bottom, 2=left, 3= top, 4=right).

Some examples are shown below.

> plot(ff.dat$thorax,ff.dat$longevity,

+ xlab="Thorax length (mm)",ylab="Longevity (d)",

+ pch=symbs,col=cols,las=1,axes=F)

> axis(1,at=7:9/10)
> axis(2,at=2:9*10,labels=F,tcl=-0.2)

> axis(2,at=c(20,40,60,80))

> axis(3,at=7:9/10,labels=c("small","medium","large"))

> box()

0.65 0.75 0.85 0.95

20

40

60

80

Thorax length 10
3

m

L
o

n
g

e
v
it
y
 (

d
)

y
i 1

m yi

m

yi xi
2

zi
2

a

b

f x dx

157

All these possibilities for adding "stuff" to plots may seem a bit overwhelming. We do not

recommend that you try to memorize all of them. Instead, use the functions we covered as you

need them. As if this wasn't complicated enough, each function accepts numerous optional

arguments that are not listed in the corresponding help file. These arguments adjust graphical

parameters, and you can find information on them in the help file for par. If you think that some

option should exist (What if I want to rotate text in text? Can I change the line thickness of an

arrow? Shouldn't I be able to align a text label based on its center?) it probably does—take a

look at the par help file.

12.4. Other high-level plotting functions

Many other high level plotting functions are available in R. We are not going to cover many, and

won't cover any in detail, but we hope the code given below gives you some idea of possibilities.

More information can be found online, and in books on R graphics (e.g., Murrell 2005).

> par(mfrow=c(2,2))

> cu.tox.dat<-read.table("Thakali_Cu_EC50s.txt",header=TRUE)

> barplot(cu.tox.dat$ec50.cu, names.arg=as.numeric(cu.tox.dat$soil),

+ ylab=expression("Cu EC50 "~(mu*g/L)),xlab="Soil")

> contour(volcano)

> image(volcano)

> persp(volcano,theta=30,phi=15,d=1.5,expand=0.3,box=FALSE,shade=0.3)

Thorax length (mm)

L
o

n
g

e
v
it
y
 (

d
)

0.7 0.8 0.9

2
0

4
0

6
0

8
0

small medium large

158

And, for plotting factor data, check out two options.

> mosaicplot(Titanic, main="Survival on the Titanic", color = TRUE)

> squirrel.dat<-read.table("Squirrel_color.txt",header=T)

> squirrel.dat$black<-factor(squirrel.dat$black)

> spineplot(black~dist2ctr,data=squirrel.dat,breaks=100,

+ col=c('gray70','gray25'))

12.5. Graphics output

R can be used to produce graphics output in a variety of graphical formats. Output is directed to

a particular output ―device‖ that dictates the output format that will be produced. The device

must be opened in order to receive graphical output, and then it must be closed to complete the

output.

6 2 7 11 3 8 4 5 1 10 9

Soil

C
u
 E

C
5
0

g
L

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

 1
0
0

 1
00

 1
1
0

 110

 110

 110

 120

 130

 140

 150

 160

 1
60

 170

 180

 1
9
0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

159

For example, to create a pdf file that contains some of the plots we produced above, we start by

opening the device.

> pdf("Plots.pdf",height=11,width=8.5)

Now we can go ahead and add our plots to the pdf file. In this case, we first change some of the

plotting parameters.

> par(mfrow=c(2,2),oma=c(1,1,1,1))

> # First plot

> plot(ff.dat$thorax,ff.dat$longevity,

+ xlab="Thorax length (mm)",ylab="Longevity (d)",

+ pch=symbs,col=cols,las=1)

> mod<-lm(longevity ~ thorax,data=ff.dat,subset=activity=="low")

> abline(mod,col="blue")

> # Second plot

> plot(ff.dat$thorax,ff.dat$longevity,

+ xlab="Thorax length (mm)",ylab="Longevity (d)",

+ pch=symbs,col=cols,las=1)

> text(0.7,80,"Mean longevity")

> mtext("Fruit fly longevity",side=3,line=1,cex=3,col="gray")

> abline(h=mean(ff.dat$longevity),lty=2)

> arrows(0.7,75,0.75,mean(ff.dat$longevity),length=0.2,col="red")

> # Third plot

> x<-seq(-3,3,0.01)

> y<-dnorm(x)

> plot(x,y,type="l")

> polygon(c(1,x[x>=1]),c(y[x==3],y[x>=1]),

+ col="blue")

> # Fourth plot

> plot(ff.dat$thorax,ff.dat$longevity,type="n",

+ xlab=expression("Thorax length"~~(10^3~mu*m)),

+ ylab="Longevity (d)",las=1)

> text(0.8,40,expression(bar(y)==sum(frac(y[i],m),i==1,m)))

> text(0.8,60,expression(y[i]==sqrt(x[i]^2+z[i]^2)))

> text(0.8,80,expression(integral(f(x)*dx,a,b)))

We have to close the device when we are finished.

> dev.off()

If you run the above code, you should end up with a new pdf file in your working directory.

160

In addition to pdf files, R can create bmp, jpeg, png, and tiff files, as well as postscript files. For

example:

> png(file="Fig.png",width=4,height=4,units="in",res=400)

> filled.contour(volcano)

> dev.off()

A png file cannot be more than one page (neither can jpeg, bmp, or tiff), so if multiple pages are

desired, they must be in different files. It is very easy to create multiple graphics files in a single

command: just insert %02d (or %01d or %03d. . .) in the file name
49

.

> png(file="Fig%02d.png",width=4,height=4,units="in",res=400)

> image(volcano)

> contour(volcano)

> filled.contour(volcano)

> dev.off()

This code produces three files: Fig01.png, Fig02.png, and Fig03.png (but it could produce more).

Conversely, pdf and postscript files can contain multiple pages.

Each of the graphics output types has several optional arguments, e.g., for adjusting the size and

quality of the resulting files.

Exercises

1. Produce a two-panel plot like the one shown below. (Hint: you can use the plot fuction to

make the plots, but recall that there is an easier way.) Now plot both series on a single plot. See

if you can do this using more than one approach.

49

 The expression %02d tells R to number the files using a two-digit number. The default file name value actually

uses this option.

161

2. Check out the data in the data frame Loblolly (in the datasets package), on the growth of
loblolly pine trees from different stocks. Create the following plot, or something similar (note
that you will need to convert height from ft to m).

-10 -5 0 5 10

-1.0

-0.5

0.0

0.5

1.0

x

S
in

e
(x

)

-10 -5 0 5 10

-1.0

-0.5

0.0

0.5

1.0

x
C

o
s
in

e
(x

)

0 5 10 15 20 25

5

10

15

20

Age (yr)

H
e

ig
h

t (
m

)

311
307

329

162

3. Read in the data on wind speed in US cities in the file Ave_wind_US.txt (note that you need to

specify the tab separator explicitly, because the column of names contains spaces). Using a loop,

produce a histogram like the one below for each month.

Export each one of the 12 plots produced to a separate jpeg file. Then, try exporting all the plots

to a single pdf file, but six per page.

Wind speed, jan

Wind speed (m/s)

D
e

n
s
it
y

0 10 20 30 40 50

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

163

4. Using the Janka.txt dataset that was used earlier for the lm example, create the following plots.

You will have to use layout to get plotting regions of different size. Export this plot to a pdf
file.

Histogram of Wood Density

Wood Density

F
re

q
u
e
n
c
y

20 30 40 50 60 70

0
3

6
Mean hardness

= 1470

Mean density
= 45.7

30 40 50 60 70

500

1000

1500

2000

2500

3000

Wood Density

W
o
o
d
 H

a
rd

n
e
s
s

data series
linear model

Mean Hardness

500

1000

1500

2000

2500

3000

164

13. Functions
Crawley 2007: 47, R-Intro: Chapter 10, R-Lang: Chapter 4

13.1. Writing functions

User-definied functions are a very useful feature of R. Once defined, these functions are stored

internally, and effectively do not differ from the functions that come with any R packages.

Functions can be entered directly into the R GUI or saved in a script file that can be later loaded.

It is also possible to store your function calls (or a source call to a script) in a special file

Rprofile.site so that they are loaded every time you start R.

To define a function in R, use the following syntax.

> function_name<-function(arg1,arg2,arg3) expression1

If your function requires more than one command (all but the simplest functions will), you can

use braces to group them.

Here is a simple function for calculating the geometric mean of a set of numbers.

> geomean<-function(x) 10^mean(log10(x))

Here our function name is geomean, and it expects a single argument x. Braces are not needed

for grouping since there is only one expression. Also note that the result of your expression does

not need to be assigned to anything—it is automatically returned when you call up the

expression. Let's test out this function.

> x<-c(100,1000,10000)

> geomean(x)

[1] 1000

Let's look at a more complicated example. Let's say we want a function that will calculate the

fraction of sample variance explained by a model (while statistical model output in R generally

give this or similar information, in some cases it is necessary to calculate this separately, for

example when the model calculations are made by a separate piece of software).

r2<-function(meas,mod) {

 tss<-sum((meas - mean(meas))^2)

 e<-(mod - meas)^2

 1.0 - sum(e)/tss

}

To test this function out, let's use the an example of a simple linear regression from above.

> hard.dat<-read.table("Janka.txt",header=T)

> mod.1<-lm(hardness ~ density, data = hard.dat)

> hard.dat$hard.pred<-predict(mod.1)

> hard.dat

165

 density hardness hard.pred

1 24.7 484 259.9152

2 24.8 427 265.6658

3 27.3 413 409.4325

...

36 69.1 3140 2813.2115

> r2(meas=hard.dat$hardness,mod=hard.dat$hard.pred)

[1] 0.9493278

Note that the variables defined within the function are not available outside the function—they

are locally stored (i.e. they are not global) and are lost when R exits the function.

> tss

Error: object "tss" not found

As with all the functions we covered, you can use both named and positional arguments.

> r2(hard.dat$hardness,hard.dat$hard.pred)

[1] 0.9493278

If you ever forget the arguments or their order, just use the args function (or type the function

name without parentheses to see the complete code).

> args(r2)

function (meas, mod)

NULL

It is possible (and very common) to call up functions from within other functions. For example,

let's say you want a specific variation on the plot function so that the result always looks a

certain way.

plot4me<-function(x,y,z) {

 plot(x,y,xlab="Some x variable",ylab="some y variable",pch=21, bg="blue")

 points(x,z,pch=21,bg="red")

 legend("topleft",c("X","Y"),pch=21,pt.bg=c("blue","red"))

}

> a<-rnorm(15)

> b<-2*a

> c<-1.5*a - 2

> plot4me(a,b,c)

166

When you write functions like this, it often makes sense to retain the option for the user to

modify some of the arguments within the nested function(s). For example, with the above

function plot4me, there are several optional plotting functions that cannot be modified, e.g. cex,

mgp. We can leave room for these arguments by adding ... (an ellipsis) to the end of the

argument list when you define your function.

plot4me<-function(x,y,z,...) {

 plot(x,y,xlab="Some x variable",ylab="some y variable",

 pch=21,bg="blue",...)

 points(x,z,pch=21,bg="red",...)

 legend("topleft",c("X","Y"),pch=21,pt.bg=c("blue","red"))

}

This code tells R that if there are any additional arguments passed to the function plot4me (in

addition to x, y, and z), they should be passed to both plot and points. This is very handy,

and saves a lot of code. One warning: any additional arguments will be passed to all the nested

functions that contain ..., so there is a bit of inflexibility here.

plot4me<-function(x,y,z,...) {

 plot(x,y,xlab="Some x variable",ylab="some y variable",pch=21,

 bg="blue",...)

 points(x,z,pch=21,bg="red",...)

-2 -1 0 1 2

-4
-2

0
2

4

Some x variable

s
o

m
e

 y
 v

a
ri

a
b

le

X
Y

167

 legend("topleft",c("X","Y"),pch=21,pt.bg=c("blue","red"))

}

Now we can modify the cex argument.

> plot4me(a,b,c,cex=3)

> plot4me(a,b,c,cex=3,log="x")

Warning messages:

1: In xy.coords(x, y, xlabel, ylabel, log) :

 4 x values <= 0 omitted from logarithmic plot

2: In plot.xy(xy.coords(x, y), type = type, ...) :

 "log" is not a graphical parameter

It is very easy to make a vectorized function—simply use expressions that carry out vectorized

operations. Here is a simple example for converting lb (mass) to kg.

> lb2kg<-function(x) 0.453592*x

> weights<-rnorm(10,mean=175,sd=9)

> weights

 [1] 180.2066 175.0223 167.4249 167.5359 168.7322 165.2813 174.4403

175.7840 171.4901

[10] 167.9036

-2 -1 0 1 2

-4
-2

0
2

4

Some x variable

s
o

m
e

 y
 v

a
ri

a
b

le

X

Y

168

> lb2kg(weights)

[1] 81.74029 79.38870 75.94259 75.99295 76.53558 74.97028

 [7] 79.12472 79.73420 77.78655 76.15971

A slightly more complicated example is given below. The alk2ic function converts an

alkalinity to a dissolved inorganic carbon concentration.

alk2ic<-function(alk,pH) {

 H<-10^-pH

 K1<-10^-6.352

 K2<-10^-10.329

 2E-5*alk*(((H/K1)+1+(K2/H))/(1+2*(K2/H)))

}

> alkalinity<-c(55,62.1,45.1)

> ph<-c(7.23,8.10,7.75)

> alk2ic(alkalinity,ph)

[1] 0.0012445716 0.0012566845 0.0009355203

The flow control structions that were discussed earlier can, of course, be used in functions.

alk2ic<-function(alk,pH) {

 if (max(alk)<500) {

 H<-10^-pH

 K1<-10^-6.352

 K2<-10^-10.329

 2E-5*alk*(((H/K1)+1+(K2/H))/(1+2*(K2/H)))

 } else print("Error: alkalinity too high for dilute solution assumption")

}

> alkalinity<-c(55,62.1,45.1)

> ph<-c(7.23,8.10,7.75)

> alk2ic(alkalinity,pH)

[1] 0.0012445716 0.0012566845 0.0009355203

> alkalinity<-c(550,62.1,45.1)

> alk2ic(c(alkalinity,700),c(pH,9.5))

[1] "Error: alkalinity too high for dilute solution assumption"

Here is a different way of solving the same problem:

alk2ic<-function(alk,pH) {

 ifelse (alk<500, {

 H<-10^-pH

 K1<-10^-6.352

 K2<-10^-10.329

 2E-5*alk*(((H/K1)+1+(K2/H))/(1+2*(K2/H)))

 },NA)

}

> alk2ic(alkalinity,ph)

[1] NA 0.0012566845 0.0009355203

169

When you are writing simple functions, such as those shown above, it is pretty easy to debug

your function. If you have a more complicated function, it can be very difficult to isolate a

problem in your code, since the function acts like black box. However, you can use the debug

function to step through your function code one line at a time, all the while being able to see the

value of internal variables. For example, to debug the alk2ic function, submit:

> debug(alk2ic)

and then call it up. Once you have flagged a function using debug, you won't notice anything

different until you call it up. To move through the function, just hit enter. R will print the line of

code that it is about to submit on the line before the prompt. You can have R evaluate any other

code by typing it at the prompt.

Exercises

1. Write a function for calculting the root mean square error (RMSE), which is often used to

compare model predictions to observed values. RMSE is given by

2

, ,

1

n

p i o i

i

x x

RMSE
n

where
,p ix is i

th
 predicted value, and

,o ix is the i
th

 observed value. Generate some model

predictions somehow, and test your function.

2. The density of puer water (in kg/L or g/mL) can be approximated by the following equation.

 -5 -6 2 -8 3 -10 40.9999 + 4.892 10 - 7.410 10 + 3.998 10 - 1.233 10T T T T

where T = temperature in °C. Write a function to calculate the density of water given a

temperature and a temperature unit. Include the option to use °C, °F, and K. Note that °C = (°F –

32)×9/5 = K – 273.15. Test your function to make sure it works, and that it is vectorized.

3. R does not have a function in the base packages for error bars, but they can easily be added

using arrows. Write a function that will add error bars to either a plot, and test it out.

4. This is tricky. The merge function is really handy, but one limitation is that it can only merge

two data frames at once. Try to come up with a function that can merge any number of data

frames. Test your function. Hint: we recommend that you store the data frames as lists.

170

14. Generalized linear models

Crawley 2007: Chapter 13, R-Intro: Section 11.6.2, Faraway 2005b

14.1. The glm function

Generalized linear models (GLMs) are a very flexible class of statistical models. The generic

form of a GLM is given by

 0 1 1 2 2... m mg E Y x x x

where g is the link function, E Y represents the expected values of the response variable (i.e.,

the observed values minus the error) , 1x through mx are predictors, and 0 through m are

coefficients. In R, GLM models can be specified using the glm function. There are eight

different error distributions available in glm, including binomial and poisson, each with a default

link function. Arguments and default argument values can be found in the help file for glm:

glm(formula, family = gaussian, data, weights, subset,

 na.action, start = NULL, etastart, mustart,

 offset, control = glm.control(...), model = TRUE,

 method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL,

 ...)

The glm function can be used for data that do not follow the normal distribution. For example,

when a response variable is a binomial (e.g. presence/absence, dead/alive) or a proportion (i.e. a

value between zero and unity). In this case, errors are not normally distributed, since values

greater than unity or less than zero are not possible (instead we need to use a binomial

distribution), and the relationship between a predictor and response variable is not linear (but can

be linearlized by applying the logit transformation). To carry out logistic regression in glm, we

just need to specify a binomial distribution and a logistic link function (the logistic link function

is the default for the binomial distribution in glm). You can see a list of the available

distributions and their default link functions in the help file for family.

family(object, ...)

binomial(link = "logit")

gaussian(link = "identity")

Gamma(link = "inverse")

inverse.gaussian(link = "1/mu^2")

poisson(link = "log")

quasi(link = "identity", variance = "constant")

quasibinomial(link = "logit")

quasipoisson(link = "log")

To demonstrate, let's read in the results of a single Cu toxicity test with Daphnia magna.

> tox.dat<-read.table("Cu_tox_test.txt",header=T)

> tox.dat

 cu alive tot

171

1 1.20 20 20

2 8.19 20 20

3 14.29 18 20

4 22.21 11 20

5 30.68 4 20

6 47.45 2 20

7 59.21 0 20

With the data in tox.dat, we can specify the model using one of two forms—either specify the

response as a fraction and specify an argument weights, which is the total number of

organisms, so that R can calculate the number dead and alive, or we can use a matrix with the

number dead and the number alive as the response variable. Both methods are shown.

> tox.dat$dead<-tox.dat$tot-tox.dat$alive

> tox.dat$prop.dead<-tox.dat$dead/tox.dat$tot

> tox.dat

 cu alive tot dead prop.dead

1 1.20 20 20 0 0.00

2 8.19 20 20 0 0.00

3 14.29 18 20 2 0.10

4 22.21 11 20 9 0.45

5 30.68 4 20 16 0.80

6 47.45 2 20 18 0.90

7 59.21 0 20 20 1.00

Now for the regression.

> mod.1<-glm(prop.dead~cu,binomial,weights=tot,data=tox.dat)

> summary(mod.1)

Call:

glm(formula = prop.dead ~ cu, family = binomial, data = tox.dat,

 weights = tot)

Deviance Residuals:

 1 2 3 4 5 6 7

-0.7689 -1.4015 -0.3770 0.7625 0.8531 -1.8014 0.3306

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.41625 0.76028 -5.809 6.29e-09 ***

cu 0.17425 0.03067 5.681 1.34e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 119.8180 on 6 degrees of freedom

Residual deviance: 7.3608 on 5 degrees of freedom

AIC: 22.887

172

Number of Fisher Scoring iterations: 5

For the other (matrix) method, we can create a matrix using cbind.

> resp<-cbind(tox.dat$dead,tox.dat$alive)

> mod.2<-glm(resp~cu,binomial,data=tox.dat)

> summary(mod.2)

Call:

glm(formula = resp ~ cu, family = binomial, data = tox.dat)

Deviance Residuals:

 1 2 3 4 5 6 7

-0.7689 -1.4015 -0.3770 0.7625 0.8531 -1.8014 0.3306

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.41625 0.76028 -5.809 6.29e-09 ***

cu 0.17425 0.03067 5.681 1.34e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 119.8180 on 6 degrees of freedom

Residual deviance: 7.3608 on 5 degrees of freedom

AIC: 22.887

Number of Fisher Scoring iterations: 5

Let's take a look at the data and model predictions.

> predict.dat<-data.frame(cu=seq(0,60,2))

> predict.dat$prop.dead<-predict(mod.1,newdata=predict.dat,

+ type="response")

> plot(tox.dat$cu, tox.dat$prop.dead,xlab=expression("Dissolved Cu"

+ ~(mu*g/L)),ylab="Proportion Dead",las=1,pch=21,bg="green",cex=1.2)

> lines(predict.dat$cu,predict.dat$prop.dead,col="blue")

173

The glm function is very flexible. To demonstrate a very different application, let‘s read in the

data on insect numbers in response to insecticide spraying. This data set was analyzed above

using an ANOVA, but recall that it required a transformation of the response.

> insects.dat<-InsectSprays

> summary(insects.dat)

 count spray

 Min. : 0.00 A:12

 1st Qu.: 3.00 B:12

 Median : 7.00 C:12

 Mean : 9.50 D:12

 3rd Qu.:14.25 E:12

 Max. :26.00 F:12

In this case, we want to carry out an ANOVA, but the GLM lets us use an appropriate

distribution for count data: the Poisson distribution. Note that the default link function for the

Poisson distribution is log.

> mod.1<-glm(count~spray,poisson,data=insects.dat)

> summary(mod.1)

Call:

glm(formula = count ~ spray, family = "poisson", data = insects.dat)

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

Dissolved Cu g L

P
ro

p
o

rt
io

n
 D

e
a

d

174

Deviance Residuals:

 Min 1Q Median 3Q Max

-2.3852 -0.8876 -0.1482 0.6063 2.6922

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.67415 0.07581 35.274 < 2e-16 ***

sprayB 0.05588 0.10574 0.528 0.597

sprayC -1.94018 0.21389 -9.071 < 2e-16 ***

sprayD -1.08152 0.15065 -7.179 7.03e-13 ***

sprayE -1.42139 0.17192 -8.268 < 2e-16 ***

sprayF 0.13926 0.10367 1.343 0.179

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

 Null deviance: 409.041 on 71 degrees of freedom

Residual deviance: 98.329 on 66 degrees of freedom

AIC: 376.59

Number of Fisher Scoring iterations: 5

To get an ANOVA table, we can use the anova function.

> anova(mod.1,test="Chisq")

Analysis of Deviance Table

Model: poisson, link: log

Response: count

Terms added sequentially (first to last)

 Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 71 409.04

spray 5 310.71 66 98.33 4.979e-65

To get diagnostic plots, use the plot function.

> plot(mod.1)

175

Exercises

1. Organism response to metal is often a function of the logarithm of metal concentration. Repeat

the above example on logistic regression, but use log10(cu) as the predictor variable.

Additionally, try to fit a probit regression model to the data (just use

binomial(link="probit")). Which model provides the best fit? Plot measured data and

predictions from all three models.

2. The file Squirrel_color.txt contains observations on squirrel color in and near Syracuse. Carry

out logistic regression to determine if the proportion of squirrels that are black increases as one

moves toward the city center. Make sure you take a look at the data to decide how to specify the

model formula. Try to plot the data to see if it is consistent with the model results.

3. The data frame esoph, from the datasets package, contains data on a case-control study of

esophogeal cancer. Determine if age group, alcohol consumption, and tobacco usage had an

effect on the occurrence of cancer. Check out the help file for the data set to get more

information on the predictor variables if needed. Note that the predictors are ordered factors—R

will automatically use orthogonal polynomials for regression (as you can see by applying the

model.matrix function).

176

15. Generalized additive models

Crawley 2008: Chapter 18

15.1. The gam function

If glm is not flexible enough for you, more flexibility can be found using generalized additive

models (GAMs). GAMs can be used for analyzing the relationships between a continuous

dependent variable and one to many predictors. A generic form for a GAM is given in the

following equation.

 0 1 1 2 2 ... m mg E Y f x f x f x

Here, E Y is the expected value of the dependent variable, g is the link function (analogous to

the link function in GLM), and 1f through mf are parametric (e.g. a linear response) or

nonparametric (e.g. a smoothing function) functions that are applied to the predictor variables 1x

through mx . The flexibility of GAMs make this approach useful for cases where relationships

between variables is complex and not easily captured by a typical linear or nonlinear model, or

where there is no reason to assume that the relationship between variables should follow a

particular form. Unlike the other approaches that we have discussed for modeling the effect of

continuous predictors on a dependent variable, generalized additive models (GAM) do not

require the assumption of any particular mathematical relationship between predictor(s) and a

dependent variable.

Multiple packages provide functionality for fitting GAMs. We use the gam function from the

package mgcv package. As with glm, gam is a very flexible function, and the following

treatment only scratches the surface.

We need to install and load the mgcv package.

> install.packages("mgcv")

...

> library(mgcv)

This is mgcv 1.4-1.1

Also install the package gamair, which contains the data sets used in Wood (2006).

> install.packages("gamair")

> library(gamair)

You can see a list of the data sets available by typing

> ?gamair

177

Let's take a look at the co2s data set, which contains atmospheric CO2 concentrations at the

South Pole for the last 50 years or so.

> data(co2s)

> summary(co2s)

 co2 c.month month

 Min. :313.2 Min. : 1.0 Min. : 1.000

 1st Qu.:325.1 1st Qu.:127.5 1st Qu.: 3.000

 Median :337.7 Median :254.0 Median : 6.000

 Mean :338.2 Mean :254.0 Mean : 6.473

 3rd Qu.:351.2 3rd Qu.:380.5 3rd Qu.: 9.000

 Max. :365.2 Max. :507.0 Max. :12.000

 NA's : 80.0

> plot(co2 ~ c.month,type="l",xlab="Months since Jan 1957",

+ ylab=expression(CO[2]~~"concentration"~~(ppm[v])),data=co2s)

With the gam function, model formulae are expressed similarly to lm and glm. From the help file

for the gam function:

gam(formula,family=gaussian(),data=list(),weights=NULL,subset=NULL,

 na.action,offset=NULL,control=gam.control(),method=gam.method(),

 scale=0,knots=NULL,sp=NULL,min.sp=NULL,H=NULL,gamma=1,

 fit=TRUE,paraPen=NULL,G=NULL,in.out,...)

0 100 200 300 400 500

3
2

0
3

3
0

3
4

0
3

5
0

3
6

0

Months since Jan 1957

C
O

2
c
o

n
c
e

n
tr

a
ti
o

n
p

p
m

v

178

When specifying a formula in gam, use s(x1) to indicate that a smoothing function should be

applied to predictor x1.

OK, so let's fit a GAM. Note that there are some NAs in the data set—we are going to remove

them from the start.

> co2.dat<-na.omit(co2s)

> mod.1<-gam(co2 ~ c.month + s(month), data = co2.dat)

In this model, we are assuming a linear response to the time since 1957, and a smoothed

response to the month of the year.

> summary(mod.1)

Family: gaussian

Link function: identity

Formula:

co2 ~ c.month + s(month)

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.076e+02 1.962e-01 1568.0 <2e-16 ***

c.month 1.074e-01 6.225e-04 172.5 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

 edf Ref.df F p-value

s(month) 3.342 3.842 5.035 0.000688 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.986 Deviance explained = 98.6%

GCV score = 3.034 Scale est. = 2.996 n = 427

Let's try an alternate model.

> mod.2<-gam(co2 ~ s(c.month) + s(month), data = co2.dat)

> summary(mod.2)

Family: gaussian

Link function: identity

Formula:

co2 ~ s(c.month) + s(month)

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

179

(Intercept) 338.24515 0.01308 25869 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

 edf Ref.df F p-value

s(c.month) 8.980 9.480 130546.9 <2e-16 ***

s(month) 5.921 6.421 132.9 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 1 Deviance explained = 100%

GCV score = 0.075826 Scale est. = 0.073002 n = 427

How do the models look?

> plot(co2 ~ c.month,pch=1,cex=0.4,col='blue',

+ xlab="Months since Jan 1957",ylab=expression(CO[2]~

+ ~"concentration"~~(ppm[v])),data=co2.dat)

> lines(co2.dat$c.month,predict(mod.1),col='red')

> lines(co2.dat$c.month,predict(mod.2),col='green')

> legend("topleft",c("Measured","GAM 1","GAM 2"),pch=1,

+ pt.cex=c(0.5,0,0),lty=c(0,1,1),col=c("blue","red","green"),bty='n')

> plot(mod.2,residuals=T)

0 100 200 300 400 500

3
2

0
3

3
0

3
4

0
3

5
0

3
6

0

Months since Jan 1957

C
O

2
c
o

n
c
e

n
tr

a
ti
o

n
p

p
m

v

Measured

GAM 1

GAM 2

180

0 100 200 300 400 500

-2
0

-1
0

0
1

0
2

0

c.month

s
(c

.m
o

n
th

,8
.9

8
)

2 4 6 8 10 12

-2
0

-1
0

0
1

0
2

0

month

s
(m

o
n

th
,5

.9
2

)

181

While GLMs and GAMs are very flexibles approaches for statistical modeling, they certainly

don't represent the full range of statistical models that can be carried out in R. R can also be used

for mixed effect models (lme4, nlme, and mgcv packages), tree-based models (tree package),

and local regression models (loess function). These topics are covered in the respective

package documentation and several books on R. See the information in the section on R

documents below.

Exercises

1. The file isolation.txt (from Crawley 2008) contains data on the presence of a particular species

of bird on some islands. Apply a GAM to quantify and test the effects of island size and isolation

(distance from mainland) on the presence of this species.

2. The data frame mtcars contains data (from 1974) on cars' fuel economny. Use GAM to

quantify and test the effects of the potential predictors on fuel economy. See the help file for

mtcars for more information.

182

16. Nonlinear regression

Dalgaard 2008: Chapter 16, Ritz & Streibig 2009

16.1. The nls function

R has some powerful algorithms for nonlinear regression. Let's demonstrate this with a data

frame called Puromycin, which is included in the datasets package. This data set contains

data on the reaction rate of an enzymatic reaction with and without treatment with the antibiotic

puromycin.

> puromycin.dat<-Puromycin

> plot(rate ~ conc, las = 1, xlab = "Substrate concentration (ppm)",

+ ylab = "Reaction velocity (counts/min/min)", pch=

+ as.numeric(state),col=as.numeric(state),main="Puromycin data",

+ data=puromycin.dat)

> legend("topleft",c("Treated","Untreated"),pch=1:2,col=1:2,bty="n")

To model these data, let's use the Michaelis-Menten equation:

 max

1 m

V x
y

K x

0.0 0.2 0.4 0.6 0.8 1.0

50

100

150

200

Puromycin data

Substrate concentration (ppm)

R
e

a
c
ti
o

n
 v

e
lo

c
it
y
 (

c
o

u
n

ts
/m

in
/m

in
)

Treated

Untreated

183

The asymptote maxV is the maximum reaction velocity, and mK is the Michaelis-Menten constant.

Let‘s fit a model to the ―treated‖ group—as with lm and other functions, this can be specified in

the subset argument in the nls function call, but we will just make a subset of the original data

frame that contains only these data.

> puromycin.dat<-subset(Puromycin,state=="treated")

> mod.1<-nls(rate ~ Vm*conc/(K + conc),data=puromycin.dat,

+ start=c(Vm=250,K=0.1),trace=TRUE)

3993.976 : 250.0 0.1

1196.486 : 212.02378920 0.06342989

1195.456 : 212.63961223 0.06405238

1195.449 : 212.67946886 0.06411461

1195.449 : 212.68333056 0.06412064

1195.449 : 212.68370347 0.06412122

By specifying trace=TRUE, we get nls to print out its iterations as it runs. The first column

gives the sum of residuals (sum of squares), and parameter estimates follow in the order they are

specified in the start argument setting (headings would be nice though).

> summary(mod.1)

Formula: rate ~ Vm * conc/(K + conc)

Parameters:

 Estimate Std. Error t value Pr(>|t|)

Vm 2.127e+02 6.947e+00 30.615 3.24e-11 ***

K 6.412e-02 8.281e-03 7.743 1.57e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 10.93 on 10 degrees of freedom

Number of iterations to convergence: 5

Achieved convergence tolerance: 8.813e-06

The extractor functions that we used earlier for lm output can also be used with nls output. For

example:

> coef(mod.1)

 Vm K

212.68357944 0.06412103

> predict(mod.1)

 [1] 50.56601 50.56601 102.81096 102.81096 134.36161 134.36161

 [7] 164.68469 164.68469 190.83292 190.83292 200.96883 200.96883

The performance of the Gauss-Newton algorithm that does the work in nls can be dependent on

the quality of initial guesses you give it. If you provide guesses reasonably close to the true

184

values, nls will probably do a good job. If you provide very poor guesses, nls may not be able to

find least-squares estimates. For some common models that can be linearized, R has self-starting

functions, which estimate starting values automatically using data transformations and linear

regression. Here is an example of the models fit in the example above, but this time, a self-

starting function (SSmicmen) is used:

> mod.2<-nls(rate ~ SSmicmen(conc,Vm,K),data=puromycin.dat)

> summary(mod.2)

Formula: rate ~ SSmicmen(conc, Vm, K)

Parameters:

 Estimate Std. Error t value Pr(>|t|)

Vm 2.127e+02 6.947e+00 30.615 3.24e-11 ***

K 6.412e-02 8.281e-03 7.743 1.57e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 10.93 on 10 degrees of freedom

Number of iterations to convergence: 0

Achieved convergence tolerance: 1.917e-06

Comparing the results of the model fitting exercises, we see that the self-starting function

provided the same parameter estimates as the nls in which we had to specify initial guesses.

Now let's make some model predictions and show them on a new figure.

> mod.dat<-data.frame(conc=seq(0,1.2,0.01))

> mod.dat$rate.pred<-predict(mod.1,newdata=mod.dat)

> plot(puromycin.dat$conc,puromycin.dat$rate,xlab="Substrate

+ concentration (ppm)",ylab=expression("Reaction velocity"~~

+ (counts~min^"-2")),las=1)

> lines(mod.dat$conc,mod.dat$rate.pred)

185

The nls function is very flexible, and can, in theory, be used with any model that you can

specify within the function call. Common nonlinear models are given in Crawley (2007: Table

20.1) and Ritz & Steibig (2008: Table B.1). Several of these models have associated self-starting

functions in R.

Asymptotic models:

Michaelis-Menton

2-parameter asymptotic exponential

3-parameter asymptotic exponential

S-shaped models:

2-parameter logistic

3-parameter logistic

4-parameter logistic

Weibull

Gompertz

Humped curves:

Ricker curve

First-order compartment

Bell-shaped

Biexponential

0.0 0.2 0.4 0.6 0.8 1.0

50

100

150

200

Substrate

concentration (ppm)

R
e

a
c
ti
o

n
 v

e
lo

c
it
y

c
o

u
n
ts

m
in

-2

186

Use of the nls function is not limited to models that can be specified as an algebraic expression.

The formula argument can actually be a call to another function, and so it is possible to use

nls to calibrate a complicated numeric model, for example.

As mentioned above, the nls function uses (by default) the Gauss-Newton algorithm, which

does not perform well for all data. A similar function, nls.lm, available in the minpack.lm

package, uses the Levenberg-Marquardt algoritm, which may be more reliable. We have had

good luck with nls.lm on problems that nls has had difficultly with.

Exercises

1. Read in the data in the file Dimethyl-death.txt. This file contains fabricated data on the

concentration of the toxicant dimethyl-death in a water body over time, following a spill. Time

(t) is given in days, while concentration is in g/L. Fit a first-order decay model to these data

using the function nls. First-order decay is described by:

0

tc c e

where c is the concentration at time t, 0c is the initial concentration, and is the decay

constant. Calculate the half-life (
ln(2)

). Be sure to use the coef function. Plot the data and the

model predictions. Hint: if you need some help in estimating the starting value for , note that

the slope of ln(c) vs. t provides one. Try fitting a similar model, but with some low ―background‖

concentration of dimethyl-death.

2. The data set DNase, from the datasets package, contains data on the measured optical density

of protein solutions. Create a subset that consits of only a single run, and fit a logistic model

using a self-starter function (see the help file for SSlogis for more information).

187

17. Survival Analysis
Dalgaard 2002: Chapter 12, Crawley 2008: Chapter 25

17.1. Log-rank test and Cox proportional hazards model

The analysis of lifetimes is an important topic within many fields of study including biology,

medicine, toxicology, and engineering. In ecotoxicology, standardized toxicity tests often consist

of dosing studies designed to determine an LC50 for a substance when organisms are exposed

for fixed duration (e.g. a 96-h LC50). Survival analysis allows for the more rigorous

investigation of the combined effects of concentration and exposure duration on lifetimes. R

supports a wide range of tools for the analysis of survival data, including methods to evaluate the

effects of multiple treatments (both continuous and discrete) simultaneously.

The organization of survival data for analysis in R is geared toward what you might expect with

human-based data; data are organized so that each row represents an individual subject (e.g.

person). It is essential to understand that we are dealing with time to death in the following

examples, not simply the fraction of individuals surviving.

When analyzing survival data, it is necessary to indicate when subjects are removed from the

study due to something other than death by the cause of interest. This is referred to as censoring

in survival analysis. An example of censoring that is relevant to aquatic toxicity testing is a

daphnid being crushed by a pipette during the course of the experiment. This death would not be

attributed to the toxicant, so the organism would have to be censored from the dataset. Another

case of censoring involves organisms that are still alive by the end of the experiment. We do not

know when these organisms will die, so we do not have a complete understanding of their

lifetime.

For this we will use two experiments on survival of Daphnia exposed to copper.

> install.packages('survival')

> library(survival)

> daph.surv<-read.table("Daphnids_surv.txt", header=T)

> attach(daph.surv)

> daph.surv

 exp.id c.cu tt.death status

1 1a 64 2 1

2 1a 64 2 1

3 1a 64 2 1

4 1a 64 2 1

5 1a 64 3 1

6 1a 64 3 1

7 1a 64 3 1

8 1a 64 3 1

9 1a 64 3 1

10 1a 64 4 1

11 1a 64 4 1

12 1a 64 4 1

188

13 1a 64 9 1

14 1a 64 9 1

15 1a 64 21 0

16 1a 64 21 0

17 1a 64 21 0

18 1a 64 21 0

19 1a 64 21 0

20 1a 64 21 0

...

40 1b 48 21 0

This data frame contains two blocks of 20 rows (although only the first set of complete blocks is

shown). Each row corresponds to a single organism, and in column tt.death, the time to death

(in days) of that organisms is recorded. In this example, the column status contains a value of

1 if the organisms was dead at the end of the experiment, and a value of 0 if the organism did not

die. This is used for censoring.

The function survfit is used to generate an estimate of a survival curve (i.e. the trajectory of

survival over time). This function requires at least a survival object that contains the data. The

function Surv can be used to generate a survival object, which simply combines the time to

death and censor data into a single vector.

> mod1=survfit(Surv(tt.death,status)~exp.id)

> summary(mod1)

Call: survfit(formula = Surv(tt.death, status) ~ exp.id)

 exp.id=1a

 time n.risk n.event survival std.err lower 95% CI upper 95% CI

 2 20 4 0.80 0.0894 0.643 0.996

 3 16 5 0.55 0.1112 0.370 0.818

 4 11 3 0.40 0.1095 0.234 0.684

 9 8 2 0.30 0.1025 0.154 0.586

 exp.id=1b

 time n.risk n.event survival std.err lower 95% CI upper 95% CI

 1 20 1 0.95 0.0487 0.859 1.000

 3 19 2 0.85 0.0798 0.707 1.000

 4 17 1 0.80 0.0894 0.643 0.996

 9 16 1 0.75 0.0968 0.582 0.966

 20 15 1 0.70 0.1025 0.525 0.933

This is a tabular summary of the survival function at the times when a death occurred. The output

corresponds to the time at which an event occurred (i.e. a death), the number at risk of dying

during that time interval (the number present), the number dying during that time interval, and

the value of the survival function at each time interval. This is typically viewed graphically, and

can be accomplished as follows:

> plot(mod1,ylab="Survivorship",xlab="Days",lty=c(1,2),las=1)

189

This shows the results for exp.id=1a as a solid line and the results for exp.id=2 as a dashed

line. Note that the end of the survival curve shows a "+" symbol, which indicates where

censoring occurred. In both experiments, some organisms still remained alive. When a single

survival curve is plotted, 95% confidence intervals are included by default, but we can also force

them to be added to our current plot by specifying the argument conf.int=T. This can get

confusing when there are multiple curves plotted, but you can specify different colors for each

series:

> plot(mod1,ylab="Survivorship",xlab="Days",conf.int=T,

+ col=c("blue","red"), lty=c(1,2),las=1)

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Days

S
u

rv
iv

o
rs

h
ip

190

R contains a tool for comparing different survival curves, which is much more desirable than

comparing various point estimates from the curves. In this case, we might want to test if the two

survival curves shown above are identical. For this, R uses the log-rank test, which is invoked

with the survdiff function:

> survdiff(Surv(tt.death,status)~exp.id)

Call:

survdiff(formula = Surv(tt.death, status) ~ exp.id)

 N Observed Expected (O-E)^2/E (O-E)^2/V

exp.id=1a 20 14 8.6 3.38 6.82

exp.id=1b 20 6 11.4 2.55 6.82

 Chisq= 6.8 on 1 degrees of freedom, p= 0.00901

From this analysis, we would conclude that the survival curves do appear to be different.

There are other methods for conducting survival analysis in R, including the Cox proportional

hazards model (semi-parametric) and Accelerated Failure Time (AFT) models (parametric).

Cox's Proportional-Hazards Model uses a baseline hazard function (t) (hazard is the

instantaneous risk of death), which can take any form. Covariates (i.e. predictor variables) are

assumed to have a linear effect on hazard, and the relative effect of a covariate on hazard is

always constant (i.e. the ratio of hazards is independent of time, hence the name proportional-

hazards). The Cox proportional-hazards model can be applied using the coxph function.

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Days

S
u

rv
iv

o
rs

h
ip

191

> mod2<-coxph(Surv(tt.death,status)~exp.id)

> summary(mod2)

Call:

coxph(formula = Surv(tt.death, status) ~ exp.id)

 n= 40

 coef exp(coef) se(coef) z p

exp.id1b -1.23 0.292 0.492 -2.5 0.012

 exp(coef) exp(-coef) lower .95 upper .95

exp.id1b 0.292 3.42 0.111 0.767

Rsquare= 0.159 (max possible= 0.967)

Likelihood ratio test= 6.94 on 1 df, p=0.00844

Wald test = 6.24 on 1 df, p=0.0125

Score (logrank) test = 7.02 on 1 df, p=0.00806

To plot model predictions, we can use the survfit function within a plot command, as above.

Note that we need to use a new data frame to generate model predictions for both treatments.

> cox.plot.data<-data.frame(exp.id=c('1a','1b'))

> plot(survfit(mod2,newdata=cox.plot.data),conf.int=T,

+ col=c("blue","red"),lty=c(1,2))

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

192

Exercise

1. Use the dataset rats, which is included with the survival package, to fit a Cox's

proportional hazard model. This dataset has survival times (time) for rats that were injected with

a carcinogen, and then treated with one of two drugs (rxn = 1 or 0). Fit a Cox's proportional

hazard model to these data to determine if the drugs had differing effects on survival time.

193

18. Distributions and simulations

Crawley 2007: Chapter 7, Dalgaard 2008: Chapter 3, Kuhnert & Venables 2005: pp. 38-40

18.1. Available distributions

Many of the distributions associated with statistical modeling have been built into R. There are

nearly 30 such distributions, including normal (norm), t (TDist), and F (FDist). These

distributions can be used for simulating data, determining quantiles, probabilities, and density

functions. For each distribution, R has four functions available, the names of which start with a

prefix (p, q, d, r, which represent distribution, quantile, density, and random, respectively) and

the distribution name. For example, to calculate a cumulative probability for the normal

distribution:

> pnorm(2.5,mean=0,sd=1)

[1] 0.9937903

The first argument is a quantile or a vector of quantiles, which simply represent the number of

standard deviations from the mean.

Suppose that we wanted to know the cumulative probabilities associated with a vector of

quantiles representing 1, 2, and 3 standard deviations above and below the mean (i.e. z values):

> pnorm(-3:3)

[1] 0.001349898 0.022750132 0.158655254 0.500000000 0.841344746

[6] 0.977249868 0.998650102

We can calculate two-tail results by difference. For example, for the probability of obtaining a

value that was within one standard deviation of the mean:

> pnorm(1)-pnorm(-1)

[1] 0.6826895

The density function is not used as frequently as the other four functions associated with the

distributions, but one of its uses is to provide the well-known shape of various distributions. In

the case of the normal distribution, this is of course, the bell-shaped curve. The probability

density represents the slope of the cumulative probability distribution. The area under a specified

section of the density curve represents the probability of obtaining a value from within that

interval. However, we just demonstrated that it was easy to do that with pnorm.

> curve(dnorm(x),-3,3,ylab="Density")

194

Either a single quantile or a vector of quantiles (i.e. z values) is the necessary argument for the

pnorm and dnorm functions. Since the quantile function is the inverse of the probability function,

a probability or a vector of probabilities is the necessary argument for qnorm. Suppose we

wanted to know the quantile below which 50% of the distribution lies.

> qnorm(0.5)

[1] 0

Lastly, rnorm and analogous functions return (pseudo-)random samples.

> r.100<-rnorm(100)

Let‘s see what it looks like.

> hist(r.100)

-3 -2 -1 0 1 2 3

0
.0

0
.1

0
.2

0
.3

0
.4

x

D
e

n
s
it
y

195

18.2. Monte Carlo simulations
Robert & Casella 2010

R is a great language for Monte Carlo simulations. Although it is possible to carry out

sophisticated simulations, we will cover some very simple examples in this section. Say we are

interested in determining if the river flow from two different rivers is different. This sounds like

it could be an appropriate situation for using a t test. Using the River_flow.dat dataset, let‘s

conduct a t test to see if the flow is different for two different rivers.

rivers.dat<-read.table("River_flow.txt",header=T)

> names(rivers.dat)

[1] "agency" "site" "date" "discharge"

[5] "flag.discharge"

There are two different rivers in this dataset, so subset them so that we have 2 different

dataframes. It has also been noticed that some of the observations are ―NA‖, meaning that values

were not reported.

> river1.dat<-na.omit(subset(rivers.dat,site==1509000))

> river2.dat<-na.omit(subset(rivers.dat,site==4232730))

> t.test(river1.dat$discharge,river2.dat$discharge)

Histogram of r.100

r.100

F
re

q
u

e
n

c
y

-3 -2 -1 0 1 2

0
5

1
0

1
5

2
0

196

 Welch Two Sample t-test

data: river1.dat$discharge and river2.dat$discharge

t = -5.4734, df = 721.814, p-value = 6.096e-08

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -386.0811 -182.2323

sample estimates:

mean of x mean of y

 701.0356 985.1923

This result suggests that the mean flow from each river is in fact different. After conducting this

t-test, you might wonder how appropriate this method is for this test, since you have assumed

that the assumptions were not violated. In this case, the assumption that the data are normally

distributed. Lets take a look at the distributions:

> par(mfrow=c(2,2))

> hist(river1.dat$discharge)

> hist(river2.dat$discharge)

> qqnorm(river1.dat$discharge)

> qqline(river1.dat$discharge)

> qqnorm(river2.dat$discharge)

> qqline(river2.dat$discharge)

Histogram of river1.dat$discharge

river1.dat$discharge

F
re

q
u
e
n
c
y

0 2000 4000 6000

0
5
0

1
0
0

1
5
0

Histogram of river2.dat$discharge

river2.dat$discharge

F
re

q
u
e
n
c
y

0 500 1500 2500

0
2
0

4
0

6
0

8
0

-3 -2 -1 0 1 2 3

0
2
0
0
0

4
0
0
0

6
0
0
0

Normal Q-Q Plot

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

-3 -2 -1 0 1 2 3

0
1
0
0
0

2
0
0
0

Normal Q-Q Plot

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

197

The data do not appear to be normally distributed. Perhaps the non-parametric alternative, the

Wilcoxon signed rank test, would have been more appropriate, or maybe a log transformation

might have helped. It looks like it would help with river1.dat, but maybe not with

river2.dat. Log transform the data and see what they look like:

> river1.dat$l.discharge=log10(river1.dat$discharge)

> river2.dat$l.discharge=log10(river2.dat$discharge)

> qqnorm(river1.dat$l.discharge)

> qqline(river1.dat$l.discharge)

> qqnorm(river2.dat$l.discharge)

> qqline(river2.dat$l.discharge)

This did appear to help with the river1.dat dataset, but not so much for the river2.dat dataset.

Now we wonder how adversely the t-test method is affected by violation of assumptions. This

will probably not answer the original question dealing with assessing the difference in the mean

flows for each river, but it will be an interesting exercise, nonetheless.

We can answer this general question regarding violation of assumptions with a simple Monte

Carlo simulation. The example that follows is a slightly modified version of an example

described in Alberts (2007).

We want to determine the true significance level of a t test, given various population

distributions and variances.

For this, the true significance level is calculated as the probability that the absolute value of the

calculated t statistic is greater than or equal to the calculated critical t-value. To do this, we have

to write some code to calculate the pooled standard deviation (sp) and the t-statistic (t).

,
2

)1()1(22

nm

snsm
s

yx

p

-3 -2 -1 0 1 2 3

2
.5

3
.0

3
.5

Normal Q-Q Plot

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

-3 -2 -1 0 1 2 3

1
.5

2
.0

2
.5

3
.0

Normal Q-Q Plot

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

198

nm
s

yx
t

p

11
*

 ,

where m and n are the sample sizes, 2

xs and 2

ys are the standard deviations, and x and y are the

means. In R this can look like:

> sp<-sqrt(((m-1)*sd(x)^2+(n-1)*sd(y)^2)/(m+n-2))

> t<-(mean(x)-mean(y))/(sp*sqrt(1/m+1/n))

Normally, it would be beneficial to write this into a function, but that will not be covered until

the next section, so for now we will specify this code for each simulation that we will conduct.

To set up the simulation, we will need to take random samples from the first population, and

random samples from the second population. This can be easily accomplished with rnorm. Then

we will need to compute the t-statistic from the two samples, and we will have to determine if

the absolute value of the t-statistic is equal to or greater than the critical t-value. When this

occurs, it represents a rejection of the null hypothesis that there is no difference in means.

For each simulation, we will keep track of the number of null hypothesis rejections, and we will

use that to estimate the true significance level, which is calculated by the number of null

hypothesis rejections divided by the total number of simulations. Let‘s set up the first problem:

a<-0.05

m<-20

n<-20

n.sim<-10000

n.reject<-0

for (i in 1:n.sim) {

 x<-rnorm(m,mean=10,sd=2)

 y<-rnorm(n,mean=10,sd=2)

 sp<-sqrt(((m-1)*sd(x)^2+(n-1)*sd(y)^2)/(m+n-2))

 t<-(mean(x)-mean(y))/(sp*sqrt(1/m+1/n))

 if (abs(t)>qt(1-a/2,n+m-2)) {

 n.reject<-n.reject+1

 }

}

> est.sig.level<-n.reject/n.sim

> est.sig.level

[1] 0.0489

From this simulation, we see that the estimated true significance level is 0.0489, which is very

close to our specified alpha (a) of 0.05. The simulation above tested a situation in which the

distributions were the same, but what happens if we specify different distributions? In the river

flow example above, it looked like the first river had nearly log-normally distributed data, and

the second river had a strange distribution of data. Lets see what happens if we assume that the

199

first set of samples comes from a log normal distribution, and the second set of samples comes

from a normal distribution:

n.reject<-0

for (i in 1:n.sim) {

 x<-rlnorm(m,mean=log(10),sd=log(2))

 y<-rnorm(n,mean=10,sd=2)

 sp<-sqrt(((m-1)*sd(x)^2+(n-1)*sd(y)^2)/(m+n-2))

 t<-(mean(x)-mean(y))/(sp*sqrt(1/m+1/n))

 if (abs(t)>qt(1-a/2,n+m-2)) {

 n.reject=n.reject+1

 }

}

> est.sig.level<-n.reject/n.sim

> est.sig.level

[1] 0.1469

In this case, it appears that the estimated actual significance level is highly affected by the type

of distribution. So, a violation of the normal distribution assumption appears to be cause for

concern. Lets now consider the effect of unequal variance.

n.reject<-0

for (i in 1:n.sim) {

 x<-rnorm(m,mean=10,sd=3)

 y<-rnorm(n,mean=10,sd=1)

 sp<-sqrt(((m-1)*sd(x)^2+(n-1)*sd(y)^2)/(m+n-2))

 t<-(mean(x)-mean(y))/(sp*sqrt(1/m+1/n))

 if (abs(t)>qt(1-a/2,n+m-2)) {

 n.reject<-n.reject+1

 }

}

> est.sig.level<-n.reject/n.sim

> est.sig.level

[1] 0.056

It appears that the significance level is much less affected by violation of the equality of variance

assumption. We can also use this simulation to look at the importance of sample size. Let‘s say

that we were only able to collect 3 samples from each population:

a<-0.05

m<-3

n<-3

n.sim<-10000

n.reject<-0

for (i in 1:n.sim) {

 x<-rnorm(m,mean=10,sd=2)

 y<-rnorm(n,mean=10,sd=2)

 sp<-sqrt(((m-1)*sd(x)^2+(n-1)*sd(y)^2)/(m+n-2))

 t<-(mean(x)-mean(y))/(sp*sqrt(1/m+1/n))

 if (abs(t)>qt(1-a/2,n+m-2)) {

 n.reject<-n.reject+1

 }

}

200

> est.sig.level<-n.reject/n.sim

> est.sig.level

[1] 0.0542

This suggests that the true significance level is not largely affected by the sample size. However,

this is not saying that the power of the tests is not affected. This is simply a testament to the

central limit theorem. A different type of test can be constructed to look at the effect of sample

size on the power of a t test. To evaluate the power of a t test, we can simply make some minor

modifications to the code that we have been using. For this example, lets say that the actual

difference in means is 1, and the standard deviation is 2. We will set the sample size at 30, and

we will run the Monte Carlo simulation. Again, we will keep track of the number of rejections.

With different means specified, the resulting calculation will provide us with an estimate of the

probability that the test will correctly reject the null hypothesis when it is false (i.e. the power).

m<-30

a<-0.05

n.sim<-10000

n.reject<-0

for (i in 1:n.sim) {

 x<-rnorm(m,mean=8,sd=2)

 y<-rnorm(m,mean=9,sd=2)

 sp<-sqrt(((m-1)*sd(x)^2+(m-1)*sd(y)^2)/(m+m-2))

 t<-(mean(x)-mean(y))/(sp*sqrt(1/m+1/m))

 if (abs(t)>qt(1-a/2,m+m-2)) {

 n.reject<-n.reject+1

 }

}

est.power<-n.reject/n.sim

> est.power

[1] 0.4786

The power is not very high, so in this case, it might be advisable to increase the number of

observations. We could write a little more code to iteratively determine the sample size that is

required to achieve a power of 0.8, but R has built-in functions for that. The function

power.t.test can be used to calculate power. Let‘s use that function for comparison with our

Monte Carlo results. We have to specify the sample size, the true difference in means, and the

standard deviation:

> power.t.test(n=30,delta=1,sd=2)

 Two-sample t test power calculation

 n = 30

 delta = 1

 sd = 2

 sig.level = 0.05

 power = 0.477841

 alternative = two.sided

201

 NOTE: n is number in *each* group

From this, it is apparent that the Monte Carlo results are very similar to the results of the explicit

calculation of power.

18.3. Numerical simulations

Although R may not be as capable as Matlab or Octave nor as flexible as Fortran (nor as capable)

for simulation modeling, it is possible to carry out numerical modeling with R. Use of vectors,

matrices, arrays, and lists, as well as vectorized operations, can make for very compact and

efficient code. The package deSolve contains some powerful ordinary differential equation

(ODE) solvers.

> install.packages("deSolve")

> library(deSolve)

The ODE solvers available in deSolve require the initial state of a vector of state variables, plus a

function that will calculate the state variable. A simple example is shown below.

Let‘s model population growth of a predator-prey system using the Lotka-Volterra equations.

pops.calc<-function(t,y,parms) {

 a<-parms$a

 b<-parms$b

 g<-parms$g

 d<-parms$d

 dprey.dt<-y[1]*(a - b*y[2])

 dpred.dt<- -y[2]*(g - d*y[1])

 return(list(c(dprey.dt,dpred.dt)))

}

a<-2

b<-0.2

g<-0.4

d<-0.01

prey<-20

pred<-20

times<-c(0,1:2400/100)

pp.sys.out<-lsoda(c(prey,pred),times,pops.calc,parms=list(a=a,b=b,g=g,d=d))

plot(pp.sys.out[,1],pp.sys.out[,2],type="l",col="red")

points(pp.sys.out[,1],pp.sys.out[,3],type="l",col="blue")

legend("topleft",c("Prey","Predator"),lty=1,col=c("red","blue"),bty="n")

202

Here is a slightly more complicated (and useful) example. Say we want to simulate the diffusion
of Na+ through groundwater.

The flux of Na+ movement across each boundary is given by:

c

j D
x

∆
= −

∆

where c = concentration (mass/length3) and x = position (length). Concentration is given by:

3

m
c

width
=

where m = mass of Na+ in our model cells (or layers) and width = the width of our model cells.
Lastly, let’s assume that there is an infinite pool with 1500 mg/L Na+ at the far left side of the
system, and an infinite pool with no Na+ at the far right.

0 5 10 15 20

0
5

0
1

0
0

1
5

0

pp.sys.out[, 1]

p
p

.s
y
s
.o

u
t[
,
2

]

Prey
Predator

m1 m2 m3 mi

203

Set up function for calculating derivatives

diff.calc<-function (t,y,parms) {

 D<-parms$D

 w<-parms$w

 por<-parms$por

 c<-y

 flux<- -D*diff(c(1500,c,0))/w

 dc.dt<- -diff(flux)/(w*por)

 return(list(dc.dt=dc.dt))

}

Set model parameters

D<-0.5 # m2/yr

times<-c(0,1:3,2*2:99,10*20:100)

w<-1.0

por<-0.5

dimens<-100

Set initial concentrations

c<-rep(0,dimens)

Now solve system

na.diff.out<-ode.band(c,times,diff.calc,nspec=1,parms=list(D=D,w=w,por=por))

plot(na.diff.out[,1],na.diff.out[,11],type='l',xlab="Time (yr)",ylab="Na

concentration (mg/L)",las=1,main="10 m from source")

0 200 400 600 800 1000

0

200

400

600

800

1000

10 m from source

Time (yr)

N
a

 c
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/L
)

204

plot((w-0.5)*(1:dimens),na.diff.out[1,-1],type='l',ylim=c(0,1500),

xlab="Distance from source (m)",ylab="Na concentration

(mg/L)",las=1,col="gray",main="Concentration profiles")

lines((w-0.5)*(1:dimens),na.diff.out[2,-1],col="red")

lines((w-0.5)*(1:dimens),na.diff.out[57,-1],col="blue")

lines((w-0.5)*(1:dimens),na.diff.out[62,-1],col="green")

legend("topright",c("0 years","1 year","500 years","1000

years"),lty=1,col=c("gray","red","blue","green"),bty="n")

Of course, one could come up with an analytical expression for this (relatively) simple scenario,

but the approach used in this example can be used to implement much more complicated models.

Exercises

1. Use Monte Carlo simulation to estimate the 95% confidence limits for population size (N)

estimates for 5 and 10 years, when the intrinsic rate of natural increase (r) is 0.3 yr
-1

 (with

standard deviation of 0.1 yr
-1

) and the initial population size (No) is 200. The quantile function

will be useful for summarizing the results of the simulation. For this example, assume

exponential growth (i.e. N=Noe
rt
, where t = time in years). If you are really ambitious, create a

simulation that estimates the confidence limits for 1 through 20 years, create a summary table,

and summarize the results with a plot.

2. Use Monte Carlo to estimate the constant . This can be tricky to set-up, and will probably be

easiest if you deal with only 1 quadrant of the figure below. For this, you might want to think of

throwing darts at a dartboard and quantify the number of hits within the circle vs. within the

0 10 20 30 40 50

0

500

1000

1500

Concentration profiles

Distance from source (m)

N
a

 c
o

n
c
e

n
tr

a
ti
o

n
 (

m
g

/L
)

0 years

1 year

500 years

1000 years

205

square. The number of hits within each area (i.e. circle or square) is proportional to the area of

that portion. Therefore, if you are only dealing with ¼ of the figure:

4
14

1

2

2

r

r

squareindartsofnumber

circleindartsofnumber

Hint: you will have to use the Pythagorean theorem to determine if your ―dart‖ lands within the

circle. Also, think about the type of distribution you will need to use for your random sampling!

Create a figure that summarizes your analysis. Show points in red if they are within your circle,

and points in blue if they are outside the circle.

3. Write a simple program that simulates exponentional population growth using the ODE solver

lsoda.

4. Bored? Here is a challenge. Using Newton‘s laws of gravity and motion, develop a simulation

model of the Earth‘s orbit around the Sun using lsoda. Relevant laws are:

Newton‘s law of gravitation:

2

21

r

mm
GF

where F = force (N), G = gravitational constant (6.67428 × 10
-11

 m
3
 kg

-1
 s

-1
), m = mass (kg), and

r = distance between objects (m).

Newton‘s second law of motion:

 maF

radius =

1 inch

206

where a = acceleration (m s
-2

).

Constants:

Earth‘s mass: 5.9736 × 10
24

 kg

Sun‘s mass: 1.9891 × 10
30

 kg

Perihelion (shortest distance between Earth and Sun): 1.4709 × 10
11

 m (147 million km)

Maximum orbital velocity: 30.287 km/s

And, for checking your results:

Aphelion (greatest distance between Earth and Sun): 1.521 × 10
11

 m (152 million km)

Minimum orbital velocity: 29.29 km/s

207

19. Batch processing
R-Intro: Appendix B

19.1. Running R in batch mode

For most uses of R, it is perfectly efficient to write and save script files, and call them up in the R

GUI with the source function, or even paste code directly into the R GUI. Of course, simple

analyses can be typed directly into the R GUI. However, for automating data analysis, it is

possible to execute an R script without opening the R GUI, using the Windows Command

Prompt, Bash shell in Cygwin, or other shells. As listed in the BATCH help file, the command for

running an R script in batch mode is:

R CMD BATCH [options] infile [outfile]

One useful option is --no-save, which will prevent R from saving your workspace to a file

named .RData.

If you ever get the following error:

'R' is not recognized as an internal or external command, operable

program or batch file.

it means that Windows cannot find the R software. In this case, you need to manually add the

directory that contains the R executable to your computer‘s list of directories that it should look

in for executables, i.e. the Path variable. With Windows XP, this is Control Panel

Performance and Maintenance System Advanced tab Environment Variables find

and highlight Path in the list Click Edit, and then add ;C:\Program Files\R\R-

2.8.1\bin (or whatever path is correct) to the list. For more information or for other operating

systems, search online.

As an example, let's create a script file with the following code:

Set up function for calculating derivatives

diff.calc<-function (t,y,parms) {

 D<-parms$D

 w<-parms$w

 por<-parms$por

 c<-y

 flux<- -D*diff(c(1500,c,0))/w

 dc.dt<- -diff(flux)/(w*por)

 return(list(dc.dt=dc.dt))

}

Set model parameters

D<-0.5 # m2/yr

times<-c(0,1:3,2*2:99,10*20:100)

w<-1.0

por<-0.5

dimens<-100

208

Set initial concentrations

c<-rep(0,dimens)

Now solve system

na.diff.out<-ode.band(c,times,diff.calc,nspec=1,parms=list(D=D,w=w,por=por))

Open a pdf for exporting plots

pdf("Na_diffusion_sim.pdf",width=8,height=11)

 par(mfrow=c(2,1),oma=c(2,5,2,5))

 plot(na.diff.out[,1],na.diff.out[,11],type='l',xlab="Time (yr)",ylab=

 "Na concentration (mg/L)",las=1,main="10 m from source")

 plot((w-0.5)*(1:dimens),na.diff.out[1,-1],type='l',ylim=c(0,1500),

 xlab="Distance from source (m)",

 ylab="Na concentration (mg/L)",las=1,col="gray",

 main="Concentration profiles")

 lines((w-0.5)*(1:dimens),na.diff.out[2,-1],col="red")

 lines((w-0.5)*(1:dimens),na.diff.out[57,-1],col="blue")

 lines((w-0.5)*(1:dimens),na.diff.out[62,-1],col="green")

 legend("topright",c("0 years","1 year","500 years",

 "1000 years"),lty=1,col=c("gray","red","blue","green"),bty="n")

dev.off()

If we save this file as Na_diff_sim.R, we can call it up with the following command in the

Windows Command Prompt.

> R CMD BATCH Na_diff_sim.R

The simulation runs, and the pdf is created.

Once you are familiar with running R via batch mode, it will be trivial to integrate R scripts with

other software. For example, you may want to make some type of predictions using an external

numerical model, and export the results for plotting in R. To do this, simply write a batch file

that first calls the numerical model, and then calls an R script that plots the results.

209

20. Specialized packages, related documents, and additional
information
User contributions to the CRAN website have made R very capable for many specialized

analyses. Before writing a new function or developing a code-intensive analysis, it is a good idea

to search CRAN to see if someone has already solved the problem for you.

If you typically carry out a certain type of analyses, say econometrics or ―environmetrics‖, there

are collections of useful packages on the CRAN website called task views. You can find a list of

all the task views at http://cran.r-project.org/web/views/. For econometrics, for example, you

should look at the econometrics task view. To install all the packages in a task view, you first

need to have the ctv package installed.

> install.packages("ctv")

trying URL

'http://lib.stat.cmu.edu/R/CRAN/bin/windows/contrib/2.8/ctv_0.5-1.zip'

Content type 'application/zip' length 222936 bytes (217 Kb)

opened URL

downloaded 217 Kb

package 'ctv' successfully unpacked and MD5 sums checked

The downloaded packages are in

 C:\Documents and Settings\Sasha\Local

Settings\Temp\RtmpkEfLER\downloaded_packages

updating HTML package descriptions

> library(ctv)

Then, to load a task view, say envirometrics for analysis of environmental and ecological data:

> install.views("Environmetrics")

will install the few dozen or so packages included in the task view.

There are also many books on R available—check out the list on CRAN: http://www.r-

project.org/doc/bib/R-publications.html. In addition to general texts, e.g. Dalgaard (2008) and

Crawley (2008), there are books dedicated to specific types of analyses, such as Introductory

Time Series with R (Cowpertwait & Metcalfe 2009) and Generalized Additive Models: An

Introduction with R (Wood 2006). Many of these authors have posted R code and data sets

online.

Lastly, there are several free documents on R on CRAN: http://cran.r-project.org/other-

docs.html, including documents in multiple languages. After checking out Venables et al. (2008),

you might want to look at these documents next.

http://cran.r-project.org/other-docs.html
http://cran.r-project.org/other-docs.html

210

References
Note: the R-something documents (R-Intro, R-Data, R-Lang) can be downloaded from CRAN

(http://cran.r-project.org/manuals.html).

Albert, J. 2007. Bayesian Computation with R. New York: Springer.

Cowpertwait, P., Metcalfe, A. 2009. Introductory Time Series with R. New York: Springer.

Crawley, Michael J. 2007. The R Book. Chichester, England: Wiley.

Dalgaard, Peter. 2008. Introductory Statistics with R. 2nd ed. New York: Springer.

Faraway, J. 2002. Practical Regression and ANOVA using R. Available at: http://cran.r-

project.org/other-docs.html.

Faraway, J. 2005a. Linear Models with R. New York: Chapman and Hall/CRC.

Faraway, J. 2005b. Extending the Linear Model with R: Generalized Linear, Mixed Effects and

Nonparametric Regression Models. New York: Chapman and Hall/CRC.

Lee, L., Helsel, D. 2005. Statistical analysis of environmental data containing multiple detection

limits: S-language software for regression on order statistics. Computers in Geoscience 31: 1241-

1248.

MeasuringWorth 2010. What Was the U.S. GDP Then? Annual Observations in Table and

Graphical Format for years 1790 to the Present. http://www.measuringworth.org/usgdp/

Murrell, P. 2005. R Graphics. London: CRC Press.

Qui, X., R. Hites. 2008. Dechlorane Plus and Other Flame Retardants in Tree Bark from the

Northeastern United States. Environmental Science and Technology 42: 31-36.

R Development Core Team. 2008. R Data Import/Export. (R-Data)

R Development Core Team. 2008. R Language Definition. (R-Lang)

Ritz, C., Streibig, J. 2009. Nonlinear Regression with R. New York: Springer.

Robert, C., Castella, G. 2010. Introducing Monte Carlo Methods with R. New York: Springer.

Spector, Phil. 2008. Data Manipulation with R. New York: Springer.

Thakali, S., H.E. Allen, D.M. Di Toro, A.A. Ponizovsky, C.P. Rooney, F.J. Zhao, and S.P.

McGrath. 2006. A terrestrial biotic ligand model. 1. Development and application of Cu and Ni

toxicities to barley root elongation in soils. Environmental Science and Technology 40: 7085-

7093.

Venables, W. N., D. M. Smith, and the R Development Core Team. 2008. An Introduction to R.

(R-Intro)

Wilcock, R. J., C. D. Stevenson, and C. A. Roberts. 1981. An Interlaboratory Study of Dissolved

Oxygen in Water. Water Research 15: 321-325.

Wood, S. N. 2006. Generalized Additive Models: An Introduction with R. Boca Raton, FL:

Chapman & Hall/CRC.

Zar, Jerrold H. 1999. Biostatistical Analysis. 4th ed. Upper Saddle River, NJ: Prentice Hall.

http://cran.r-project.org/manuals.html
http://cran.r-project.org/other-docs.html
http://cran.r-project.org/other-docs.html

211

Appendix 1. Solutions to exercises

Section 1. Introduction to R
#1.

128*2

256+12

268/2

134-128

#2. A vector. A data frame.

#3.

#4.

my.name<-"Sasha Hafner"

my.name-10

class(my.name)

?class

#5.

??"generalized additive"

Section 2. Vectors, matrices, and arrays
1.

x<-1:10

log10(x)

#2.

x<-seq(0,2*pi,length.out=100)

y<-sin(2*x - 0.5)

min(y)

max(y)

#3.

v1<-rnorm(10)

v2<-rnorm(10)

v3<-rnorm(10)

v4<-rnorm(10)

v5<-rnorm(10)

s<-v1+v2+v3+v4+v5

s

mean(s)

#4.

matrix(1:25,nrow=5,byrow=T)

#5.

This can be set up using matrix algebra:

C%*%X = R

212

Set up a coefficient matrix:

C<-matrix(c(27.2,32,-10.8,1,-1.48,0,409.1,0,13.5),nrow=3,byrow=T)

A response matrix

R<-matrix(c(401.2,0,2.83),nrow=3)

Now solve for X

X<-solve(C)%*%R

X

or

X<-solve(C,R)

X

Check solution

C%*%X

Section 3. Data frames, data import, and data export
1.

read.table("Thakali_Ni_EC50s.txt",header=T)

ni.dat<-read.table("Thakali_Ni_EC50s.txt",header=T)

ni.dat

ni.dat<-read.table("Thakali_Ni_EC50s.txt",header=T,sep="\t")

wheat.dat<-read.table("Wheat.txt",header=T)

wheat.dat<-read.table("Wheat.txt",header=T,sep="\t")

2.

names(ni.dat)

min(ni.dat$ph.soil)

max(ni.dat$ph.soil)

ni.dat$l.ec50.ni<-log10(ni.dat$ec50.ni)

ni.dat

3.

ni.m.dat<-

data.frame(ec50=mean(ni.dat$ec50.ni),ph=mean(ni.dat$ph.soil),oc=mean(n

i.dat$oc))

write.table(ni.m.dat,"Ni_EC50_means1.out")

write.table(ni.m.dat,"Ni_EC50_means3.out",row.names=F,sep="\t")

4. There are a few ways to produce a file that you can read into R: select,

copy, and then paste the data into a text file (will produce a tab-delimited

file); use the “Save as” option in Excel to save the data as a tab delimited

text file (*.txt), as a comma-delimited file (*.csv), or as a space-delimited

file (*.prn) (except for this last option, you would have to add quotes

around the site names).

This doesn’t work because there are spaces in the site names:

beetles.dat<-read.table("Carion_beetles.txt",header=TRUE)

This does:

213

beetles.dat<-read.table("Carion_beetles.txt",header=TRUE,sep="\t")

Or, if you used csv:

beetles.dat<-read.table("Carion_beetles.csv",header=TRUE,sep=",")

Section 4. Graphics, part I
#1.

x<-seq(-2*pi,2*pi,0.05)

y<-cos(x)

dat<-data.frame(x=x,y=y)

plot(datx,daty,type="l")

plot(datx,daty,type="l",lty=4,col="darkgray")

plot(datx,daty,type="l",lty="52",col="darkgray")

#2.

ochem.dat<-read.table("Oxychem.txt",header=T)

names(ochem.dat)

plot(ochem.dat$dist,ochem.dat$dechlor,pch=21,bg="blue",xlab="Distance

from OxyChem (km)",ylab="Conc. in tree bark (ng/kg)",main="Dechlorane Plus

contamination")

plot(ochem.dat$dist,ochem.dat$dechlor,pch=21,bg="blue",log="xy",xlab="Distanc

e from OxyChem (km)", ylab="Conc. in tree bark (ng/kg)",main="Dechlorane Plus

contamination")

plot(ochem.dat$dist,ochem.dat$dechlor,pch=2,col="red",log="xy",xlab="Distance

from OxyChem (km)", ylab="Conc. in tree bark (ng/kg)",main="Dechlorane Plus

contamination")

For a better log axis (a bit more advanced)

source('Functions.R') # This is the file of functions that we provided

plot(ochem.dat$dist,ochem.dat$dechlor,axes=FALSE,pch=2,col="red",log="xy",

xlab="Distance from OxyChem (km)", ylab="Conc. in tree bark

(ng/kg)",main="Dechlorane Plus contamination")

logaxis(1,1,1000)

logaxis(2,0.01,100)

Section 5. Manipulating data, part I
1.

gdp.dat<-read.table("US_GDP.txt",header=T)

gdp.dat[1:10,c("year","gdp.real")]

gdp.dat[gdp.dat$year>1799 & gdp.dat$year<1900,"gdp.nom"]

gdp1800s.dat<-subset(gdp.dat,year>=1800 & year<1900)

2.

match(max(gdp.dat$gdp.real),gdp.dat$gdp.real)

gdp.dat[order(gdp.dat$gdp.real),]

3.

cvtort.dat<-read.table("Cacti_v_tort.txt",header=T)

names(cvtort.dat)

cvtort.2.dat<-subset(cvtort.dat,tortoises=="Yes")

214

Section 6. Manipulating data, part II
#1.

react.dat<-read.table("Reactors.txt",header=T)

h2.dat<-read.table("Biohydrogen.txt",header=T)

all.dat<-merge(react.dat,h2.dat)

all.dat

2.

There are two steps involved in conversion to a date-time object

h2.dat$date.time<-as.POSIXct(paste(h2.dat$date,h2.dat$time),format='%m/%d/%Y

%H:%M')

There are at least two ways to calculate the elapsed time

h2.dat$time.e<-h2.dat$date.time - as.POSIXct('2006-09-18 11:12:00')

h2.dat$time.e<-difftime(h2.dat$date.time,'2006-09-18 11:12:00',units='hours')

And, to get rid of the units label

h2.dat$time.e<-as.numeric(h2.dat$time.e)

Here is an alternate approach using ave

h2.dat$date.time<-as.numeric(h2.dat$date.time)

h2.dat$time.e<-

ave(as.numeric(h2.dat$date.time),h2.dat$reactor,FUN=function(x) x-x[1])

And another approach, which does essentially what ave does:

h2.dat$time.e<-

unsplit(lapply(split(h2.dat$date.time,h2.dat$reactor),function(x) x-

x[1]),f=h2.dat$reactor)

3.

eagles.dat<-read.table("Eagles.txt",header=T)

summary(eagles.dat)

Gives you the data you want, but not good for data frames

by(eagles.dat$achlor,eagles.dat$site,mean)

by(eagles.dat$achlor,eagles.dat$site,sd)

by(eagles.dat$achlor,eagles.dat$site,length)

This will give you a data frame

eagles.summ.dat<-data.frame(mean=tapply(eagles.dat$achlor,

eagles.dat$site,mean),SD=tapply(eagles.dat$achlor,eagles.dat$site,sd),

n=tapply(eagles.dat$achlor,eagles.dat$site,length))

write.table(eagles.summ.dat,"Eagle_summary.out")

4.

now<-Sys.time()

bd<-as.POSIXlt("1978-01-02 23:12")

age<- now - bd

age

age<-difftime(now,bd,units="hours")

age

215

Section 7. Exploratory data analysis
1.

install.packages("ISwR")

library(ISwR)

insects.dat<-InsectSprays

summary(insects.dat)

tapply(insects.dat$count,insects.dat$spray,summary)

or

by(insects.dat$count,insects.dat$spray,summary)

or

aggregate(insects.dat$count,list(spray=insects.dat$spray),summary)

boxplot(count~spray,data=insects.dat,xlab="Spray",ylab="Count",las=1)

2.

cu.dat<-read.table("StreamCu.txt",header=T)

cu.dat

Assume log-normal dist

cu.ros<-ros(cu.dat$cu,cu.dat$nondetect)

cu.ros

plot(cu.ros)

If we want the geomean

cu.est<-data.frame(cu.ros)

cu.est$l.cu.mod<-log10(cu.est$modeled)

cu.est

mean(cu.est$l.cu.mod)

sd(cu.est$l.cu.mod)

10^mean(cu.est$l.cu.mod)

Another option for log statistics

cu.ros<-ros(log10(cu.dat$cu),cu.dat$nondetect,forwardT=NULL)

cu.ros

3.

summary(IgM)

IgM

qqnorm(IgM)

qqline(IgM)

Try log-transformed

qqnorm(log10(IgM))

qqline(log10(IgM))

4.

Find range in ppoints

range(ppoints(IgM))

plot(qnorm(ppoints(IgM)),sort(IgM),log="y",xaxt="n")

axis(1,qnorm(c(0.001,0.01,0.1,0.1,0.5,0.9,0.99,0.999)),c(0.001,0.01,0.1,0.1,0

.5,0.9,0.99,0.999))

Section 8. One- and two-sample tests
#1.

?sleep

summary(sleep)

t.test(extra~group,data=sleep)

#2.

sleep.tt<-t.test(extra~group,data=sleep)

216

names(sleep.tt)

attributes(sleep.tt) # Gives two rows

sleep.tt.summ.dat<-

data.frame(tstat=sleep.tt$parameter,Pval=sleep.tt$p.value,CI=sleep.tt$conf.in

t)

sleep.tt.summ.dat<-

data.frame(tstat=sleep.tt$parameter,Pval=sleep.tt$p.value,LCL=sleep.tt$conf.i

nt[1],UCL=sleep.tt$conf.int[2])

A bit shorter

sleep.tt.summ.dat<-

with(sleep.tt,data.frame(tstat=parameter,Pval=p.value,LCL=conf.int[1],UCL=con

f.int[2]))

write.table(sleep.tt.summ.dat,"Sleep_ttest.out")

Section 9. Classical linear models
#1.

mammalsleep

summary(mammalsleep)

Note that there are some missing values. We can leave them in, and lm will

skip any observations that contain them, but let’s delete them from the

start

Let’s focus on the variables we are going to use

s.dat<-na.omit(mammalsleep[,-(3:4)])

pairs(s.dat)

cor(s.dat)

Danger indices are highly correlated, so I am going to pick one

mod.1<-lm(sleep ~ body + brain + lifespan + gestation + predation,data=s.dat)

summary(mod.1)

summary(mod.2<-update(mod.1, ~. - body))

summary(mod.3<-update(mod.2, ~. - lifespan))

summary(mod.4<-update(mod.3, ~. - brain))

plot(mod.4)

Elephants have a lot of leverage (rule-of-thumb is 2p/n). Try dropping.

summary(mod.5<-update(mod.4,subset=body<2000))

Or, for clarity

s.dat<-subset(s.dat,body<2000)

mod.5<-lm(sleep ~ gestation + predation,data=s.dat)

summary(mod.5)

plot(mod.5)

prplot(mod.5,1)

prplot(mod.5,2)

Plot results

preds<-predict(mod.5,int='c')

preds<-preds[order(preds[,1]),]

plot(predict(mod.5),s.dat$sleep)

matlines(preds[,1],preds,lty=c(1,2,2),col=c('black','red','red'))

preds2<-predict(mod.5,int='p')

preds2<-preds2[order(preds2[,1]),]

matlines(preds2[,1],preds2[,-1],lty=3,col='blue'))

#2.

install.packages('MASS')

library(MASS)

cab.dat<-cabbages

summary(cab.dat)

To plot the data

217

interaction.plot(Date,Cult,HeadWt,data=cab.dat)

Or, something like this

plot(HeadWt ~ as.numeric(Date),data=cab.dat,col=as.numeric(cab.dat$Cult),

pch=as.numeric(cab.dat$Cult))

mod<-aov(HeadWt ~ (Cult + Date)^2, data = cab.dat)

summary(mod)

model.tables(mod,type="mean")

plot(mod)

#3.

library(faraway)

ff.dat<-fruitfly

summary(ff.dat)

plot(longevity ~ thorax, pch=as.numeric(ff.dat$activity),col=ff.dat$activity,

data=ff.dat)

legend('topleft',levels(ff.dat$activity),pch=1:5,col=1:5)

mod1<-lm(longevity ~ (thorax + activity)^2, data = ff.dat)

anova(mod1)

mod2<-update(mod1, ~. - thorax:activity)

anova(mod2)

summary(mod2)

plot(mod2)

Try with a log transformation to eliminate heteroscedasticity

mod3<- lm(log10(longevity) ~ thorax + activity, data = ff.dat)

anova(mod3)

summary(mod3)

plot(mod3)

plot(longevity ~ thorax, pch=as.numeric(ff.dat$activity),col=ff.dat$activity,

data=ff.dat)

legend('topleft',levels(ff.dat$activity),pch=1:5,col=1:5)

Code for adding predictions is a bit more advanced (there are many

different ways to do this

preds<-10^predict(mod3)

for(i in 1:5) {

 lines(ff.dat$thorax[as.numeric(ff.dat$activity)==i],

 preds[as.numeric(ff.dat$activity)==i],col=i)

}

An alternate approach

preds<-10^predict(mod3,newdata=data.frame(thorax=rep(thorax<-

seq(0.6,0.95,length.out=20),5),

activity=rep(levels(ff.dat$activity),each=20)))

matlines(thorax,matrix(preds,nrow=20),col=1:5,lty=1)

#4.

cact.dat<-read.table("Cactus_width.txt",header=T)

summary(cact.dat)

cact.dat$hw.ratio<-cact.dat$height/cact.dat$width

cact.dat$tortoise<-factor(cact.dat$tortoise)

mod.1<-lm(hw.ratio~tortoise + understory,data=cact.dat)

summary(mod.1)

anova(mod.1)

Some plotting options

coplot(hw.ratio ~ understory|tortoise, data = cact.dat)

plot(cact.dat$understory,cact.dat$hw.ratio,type="n")

points(cact.dat$understory[cact.dat$tortoise==1],cact.dat$hw.ratio[cact.dat$t

ortoise==1],col="red")

218

points(cact.dat$understory[cact.dat$tortoise==0],cact.dat$hw.ratio[cact.dat$t

ortoise==0],col="blue")

Section 10. Nonparametric alternatives to t tests and ANOVA
1.

sleep.dat<-sleep

split(sleep.dat,sleep.dat$group)

by(sleep.dat$extra,sleep.dat$group,mean)

boxplot(extra~group,data=sleep.dat)

wilcox.test(extra~group,data=sleep.dat)

Section 11. Groups, looping, and conditional execution
#1.

n<-1000000

x<-1:n

system.time(for (i in 1:n) { sqrt(x[i]) })

system.time(sqrt(x))

#2.

eagles.dat<-read.table("Eagles.txt",header=TRUE)

See what we have

summary(eagles.dat)

Note that there are other ways to do this. . .

eagles.lst<-split(eagles.dat,eagles.dat$site)

for(i in levels(eagles.dat$site)) {

 write.table(summary(eagles.lst[[i]]),paste(i,"out",sep="."))

}

#3.

x<-rnorm(100)

a<-ifelse(x>0,"H","L")

Section 12. Graphics II
1.

par(mfrow=c(1,2))

curve(sin,-10,10,col="red",las=1,xlab="x",ylab="Sine(x)")

curve(cos,-10,10,col="blue",lty=2,las=1,xlab="x",ylab="Cosine(x)")

Now for both series on one plot

First method

curve(sin,-10,10,col="red",las=1,xlab="x",ylab="Sine(x) or Cosine(x)")

curve(cos,-10,10,col="blue",lty=2,las=1,add=TRUE)

Second method

curve(sin,-10,10,col="red",las=1,xlab="x",ylab="Sine(x) or Cosine(x)")

par(new=TRUE)

curve(cos,-10,10,col="blue",lty=2,las=1,axes=F,xlab="",ylab="")

Third method

x<-seq(-10,10,0.1)

y<-sin(x)

z<-cos(x)

matplot(x,cbind(y,z),col=c("red","blue"),las=1,xlab="x",ylab="Sine(x) or

Cosine(x)",lty=1:2,type="l")

219

2.

ll.dat<-Loblolly

ll.dat$height<-ll.dat$height*0.3048

summary(ll.dat)

plot(height~age,type="n",xlab="Age (yr)",ylab="Height

(m)",las=1,xlim=c(0,25),data=ll.dat)

points(ll.dat$age[ll.dat$Seed==307],ll.dat$height[ll.dat$Seed==329],pch=1,col

="red",type="o")

points(ll.dat$age[ll.dat$Seed==311],ll.dat$height[ll.dat$Seed==307],pch=6,col

="blue",type="o")

points(ll.dat$age[ll.dat$Seed==311],ll.dat$height[ll.dat$Seed==311],pch=22,co

l="black",type="o")

legend("topleft",legend=c(311,307,329),pch=c(1,6,22),col=c("red","blue","blac

k"))

3.

Code for plots

for (i in names(wind.dat)[3:14]) {

 hist(wind.dat[,i],xlim=c(0,50),ylim=c(0,0.25),freq=FALSE,

 col="lightgray",xlab="Wind speed (m/s)",ylab="Density",

 main=paste("Wind speed,",i),breaks=10)

}

jpeg files first

jpeg("Wind%02d.jpg",height=4,width=4,units="in",res=300)

 for (i in names(wind.dat)[3:14]) {

 hist(wind.dat[,i],xlim=c(0,50),ylim=c(0,0.25),freq=FALSE,

 col="lightgray",xlab="Wind speed (m/s)",ylab="Density",

 main=paste("Wind speed,",i),breaks=10)

 }

dev.off()

pdf("Wind.pdf",height=11,width=8.5)

 for (i in names(wind.dat)[3:14]) {

 hist(wind.dat[,i],xlim=c(0,50),ylim=c(0,0.25),freq=FALSE,

 col="lightgray",xlab="Wind speed (m/s)",ylab="Density",

 main=paste("Wind speed,",i),breaks=10)

 }

dev.off()

4.

hard.dat<-read.table("Janka.txt",header=T)

layout(matrix(c(1,1,2,3,3,4,3,3,4),ncol=3,byrow=T))

layout.show(4)

hist(hard.dat$density,xlab="Wood Density",col="grey",main="Histogram of Wood

Density")

plot(1,type="n",xlab="",ylab="",axes=F)

mtext(paste("Meanhardness\n=",signif(mean(hard.dat$hardness),3)),

side=3,line=0,cex=0.8)

mtext(paste("Mean density\n=",signif(mean(hard.dat$density),3)),side=3,line=-

3,cex=0.8)

220

plot(hard.dat$density,hard.dat$hardness,xlab="Wood density",pch=23,

bg="green", ylab="Wood Hardness",las=1)

abline(lm(hard.dat$hardness~hard.dat$density),lty=2,col="red")

legend("topleft",c("data series","linear model"), pch=c(23,-1),

pt.bg="green", lty=c(0,2), col=c("black","red"),bty="n")

mean.hard<-mean(hard.dat$hardness)

mean.dens<-mean(hard.dat$density)

lines(c(20,mean.dens),c(mean.hard,mean.hard),lty=5)

lines(c(mean.dens,mean.dens),c(240,mean.hard),lty=5)

text(40,2200,"Mean Hardness",pos=3)

arrows(40,2200,33,mean.hard,length=0.2,angle=20)

boxplot(hard.dat$hardness,las=1,col="blue")

dev.off()

Section 13. Functions
1.

rmse<-function(obs,pred) {

 sqrt(sum((pred-obs)^2)/length(obs))

}

Generate model predictions

x<-1:100

y<-2*x + rnorm(100,5)

y.pred<-predict(lm(y ~ x))

rmse(y,y.pred)

Compare to

sd(y)

2.

wdens<-function(T,units='C') {

 if (sum(units==c('C','F','K'))==0) return(paste('Error, expect C, F, or

 K for units, got',units))

 if (units=='K') T<-T - 273.15

 if (units=='F') T<-(T - 32)*5/9

 if (max(T)>100 | min(T)<0) return('Temperature outside 0-100 C range')

 0.9999 + 4.8916e-05*T - 7.4098E-06*T^2 + 3.9982E-08*T^3 - 1.2329E-10*T^4

}

Test it

wdens(0:30,'K')

wdens(274:295,'K')

3.

ebars<-function(x,y,y.upper,y.lower,angle=90,length=0.02,...) {

 arrows(x,y,x,y.upper,angle=angle,length=length,...)

 arrows(x,y,x,y.lower,angle=angle,length=length,...)

}

Test it, using InsectSprays

221

dat<-data.frame(mean=tapply(InsectSprays$count,list(InsectSprays$spray),

mean),sd= tapply(InsectSprays$count,list(InsectSprays$spray),sd))

plot(dat$mean)

ebars(1:6,dat$mean,dat$mean+datsd,datmean-dat$sd,col='red')

Or

x<-barplot(dat$mean,ylim=c(0,25))

ebars(x,dat$mean,dat$mean+datsd,datmean-dat$sd,lwd=2,col='green')

4.

mmerge<-function(dframes,bys,...) {

 m.dat<-dframes[[1]]

 if (length(dframes)>2) {

 for (i in 2:length(dframes)) {

 m.dat<-merge(m.dat,dframes[[i]],

 by.x=bys[[i-1]],by.y=bys[[i]],...)

 }

 }

 m.dat

}

Test it

react.dat<-read.table("Reactors.txt",header=T)

h2.dat<-read.table("Biohydrogen.txt",header=T)

junk.dat<-data.frame(bottle=levels(react.dat$reactor),nothing=1:15)

junk.dat$nothing[5:8]<- -20

test.dat<-mmerge(list(react.dat,h2.dat,junk.dat),

list('reactor','reactor','bottle'))

test.dat

Section 14. Generalized linear models

#1.

tox.dat<-read.table("Cu_tox_test.txt",header=T)

tox.dat$dead<-tox.dat$tot-tox.dat$alive

tox.dat$prop.dead<-tox.dat$dead/tox.dat$tot

tox.dat$l.cu<-log10(tox.dat$cu)

mod.1<-glm(prop.dead~cu,binomial,weights=tot,data=tox.dat)

mod.2<-glm(prop.dead~l.cu,binomial,weights=tot,data=tox.dat)

mod.3<-glm(prop.dead~l.cu,binomial(link="probit"),weights=tot,data=tox.dat)

summary(mod.1)

summary(mod.2)

summary(mod.3)

Make predictions

tox.pred.dat<-data.frame(cu=x<-seq(0.001,60,1),l.cu=log10(x))

tox.pred.dat$pred.1<-predict(mod.1,newdata=tox.pred.dat,type="response")

tox.pred.dat$pred.2<-predict(mod.2,newdata=tox.pred.dat,type="response")

tox.pred.dat$pred.3<-predict(mod.3,newdata=tox.pred.dat,type="response")

And plot them

plot(tox.dat$cu,tox.dat$prop.dead,pch=21,bg="green",xlab=expression("Cu

concentration"~~(mu*g/L)),ylab="Proportion dead",las=1)

lines(pred.1~cu, col="blue",data=tox.pred.dat)

lines(pred.2~cu, col="red",data=tox.pred.dat)

222

lines(pred.3~cu, col="green",data=tox.pred.dat)

legend("topleft",c("Logistic","Logisic

(log)","Probit"),lty=1,col=c("blue","red","green"),bty="n")

#2.

squirrel.dat<-read.table("Squirrel_color.txt",header=T)

summary(squirrel.dat)

squirrel.dat$black<-factor(squirrel.dat$black)

mod.1<-glm(black~dist2ctr,binomial,data=squirrel.dat)

summary(mod.1)

boxplot(squirrel.dat$dist2ctr~squirrel.dat$black)

Try to visualize data

plot(squirrel.dat$dist2ctr,squirrel.dat$black) # Hard to see much

plot(black~dist2ctr,data=squirrel.dat) # Useful but what is it? See

?plot.factor

spineplot(black~dist2ctr,data=squirrel.dat,breaks=100,col=c('gray70','gray25'

))

#3.

esoph.dat<-esoph

summary(esoph.dat)

Are alcohol and tobacco consumption groups ordered factors? They should be.

is.ordered(esoph.dat$alcgp)

is.ordered(esoph.dat$tobgp)

is.ordered(esoph.dat$agegp)

All in one line of code

mod.1<-glm(cbind(ncases,ncontrols) ~ agegp + alcgp + tobgp, data = esoph.dat,

family=binomial)

summary(mod.1)

Section 15. Generalized additive models
#1.

library(mgcv)

isolation.dat<-read.table("Isolation.txt",header=T)

summary(isolation.dat)

mod.1<-gam(incidence~s(area)+s(isolation),binomial,data=isolation.dat)

summary(mod.1)

plot(mod.1,resid=T,cex=3)

One way to view data

plot(isolation.dat$area,isolation.dat$isolation,pch=isolation.dat$incidence,c

ol=isolation.dat$incidence+1)

legend('topright',c('Absent','Present'),pch=0:1,col=1:2)

#2.

cars.dat<-mtcars

summary(cars.dat)

mod.1<-gam(mpg~s(disp)+s(hp)+s(wt),data=cars.dat)

summary(mod.1)

plot(mod.1,resid=T,cex=3)

One way to view these data

coplot(mpg ~ disp | factor(cyl), data=cars.dat, rows=1)

Section 16. Nonlinear regression
#1.

223

dimethyl.dat<-read.table("Dimethyl-death.txt",header=T)

summary(dimethyl.dat)

plot(dimethyl.dat$t,log(dimethyl.dat$dmd.conc))

Plot suggests a guess of around 4/100 = 0.04 per d for rate

mod.1<-nls(dmd.conc~c0*exp(-d*t),start=list(c0=100,d=0.04),data=dimethyl.dat)

summary(mod.1)

coef(mod.1)

pred.dat<-data.frame(t=1:110)

pred.dat$conc.pred<-predict(mod.1,newdata=pred.dat)

plot(dimethyl.dat$t,dimethyl.dat$dmd.conc,pch=24,bg="red",xlab="Time

(days)",ylab="DMD concentration (g/L)",las=1)

lines(pred.dat$t,pred.dat$conc.pred,col='red')

Model with background concentration

mod.2<-nls(dmd.conc~c0*exp(-d*t) + bg,start=list(c0=100,d=0.04,bg=5),

data=dimethyl.dat)

summary(mod.2)

pred.dat$conc.pred.2<-predict(mod.2,newdata=pred.dat)

lines(pred.dat$t,pred.dat$conc.pred.2,col='blue')

#2.

summary(DNase)

dnase.dat<-subset(DNase,Run==5)

summary(dnase.dat)

plot(dnase.dat$conc,dnase.dat$density)

mod.1<-nls(density~SSlogis(conc,Asym,xmid,scal),data=dnase.dat)

summary(mod.1)

Section 18. Distributions and simulations
1.

n.i<-2

n.years<-10

Generate 1000 estimates of r to work with

r<-rnorm(1000,mean=0.3,sd=0.1)

Let’s go for 20 years

pred.dat<-data.frame(year=year<-0:20)

Use outer to make calculations, and keep all estimates in a matrix

pop<-outer(year,r,FUN=function(yr,r) n.i*exp(r*yr))

Calculate 5% and 95% percentile (note that we have to transpose a matrix)

pred.dat[,c('pop.lower','pop.med','pop.upper')]<-t(apply(pop,1,function(x)

quantile(x,c(0.05,0.5,0.95))))

plot(pred.dat$year,pred.dat$pop.upper,xlab='Time

(year)',ylab='Population',las=1,type='l',lty=2)

lines(pred.dat$year,pred.dat$pop.med,lty=1)

lines(pred.dat$year,pred.dat$pop.lower,lty=2)

#2.

Recommended approach—no loops

calculate pi with one call to runif, and use a data frame

n.samples<-10000

x<-runif(n.samples,0,1)

y<-runif(n.samples,0,1)

hyp<-sqrt(x^2+y^2)

pi.dat=data.frame(x=x,y=y,hyp=hyp)

n.in<-sum(pi.dat$hyp<1)

pi.est=4*n.in/n.samples

pi.est

224

plot(pi.dat$x,pi.dat$y,col=ifelse(pi.dat$hyp<1,'red','blue'),

xlab="x",ylab="y",pch=21,cex=0.5,asp=1)

Calculation using a loop, without figure

n.sim<-10000

n.in.circle<-0

for (i in 1:n.sim) {

 x<-runif(1,0,1)

 y<-runif(1,0,1)

 hyp<-sqrt(x^2+y^2)

 if (hyp<=1) { n.in.circle<-n.in.circle+1 }

}

pi.est<-4*n.in.circle/n.sim

pi.est

Calculated pi and draws a figure while working through the loop

Looks cool

n.sim<-10000

n.in.circle<-0

plot(0,0,type="n",xlim=c(0,1),ylim=c(0,1),ylab="y",xlab="x",asp=1)

for (i in 1:n.sim) {

 x<-runif(1,0,1)

 y<-runif(1,0,1)

 hyp<-sqrt(x^2+y^2)

 if (hyp<=1) {

 n.in.circle<-n.in.circle+1

 points(x,y,pch=21,col="red",bg="red",cex=0.5)

 }

 if (hyp>1) {

 points(x,y,pch=21,col="blue",bg="blue",cex=0.5)

 }

}

pi.est<-4*n.in.circle/n.sim

pi.est

legend("topleft",paste("estimate of pi=",pi.est),bty="n")

#3.

install.packages("deSolve")

library(deSolve)

pop.calc<-function(t,y,parms) {

 dy.dt<-y*parms$r

 return(list(dy.dt))

}

t<-0:100

out<-lsoda(1,t,func=pop.calc,parms=list(r=0.1))

plot(t,out[,2],xlab='Time',ylab='Population')

#4.

orb.calc calculates four derivatives: dx/dt, dz/dt, dv(x)/dt, and dv(y)/dt

orb.calc<-function(t,y,parms) {

 m.s<-parms$m.s

 m.e<-parms$m.e

 G<-parms$G

 x<-y[1]

225

 z<-y[2]

 v.x<-y[3]

 v.z<-y[4]

 # Calculate force (N) acting on Earth--Newton's law of gravitation

 d<-sqrt(x^2 + z^2)

 F.x<- -x/d*m.s*m.e*G/d^2

 F.z<- -z/d*m.s*m.e*G/d^2

 # Calculate acceleration (m/s2) based on Newton's second law of motion

 a.x<-F.x/m.e

 a.z<-F.z/m.e

 # Summarize

 dv.x.dt<-a.x # dv(x)/dt (m/s^2)

 dv.z.dt<-a.z # dv(y)/dt (m/s^2)

 dp.x.dt<-v.x # dx/dt (m/s)

 dp.z.dt<-v.z # dy/dt (m/s)

 # Collison with sun

 if(d<=6.96E8) dv.x.dt<-dv.z.dt<-dp.x.dt<-dp.z.dt<-0

 # Return output

 return(list(c(dp.x.dt,dp.z.dt,dv.x.dt,dv.z.dt)))

}

orb.mod solves ODEs

orb.mod<-function(m.s=1.98892E30,m.e=5.9742E24,x0=0,z0=147098290000,v.x=-

30287,v.z=0,G=6.67428E-11,times=0:365*86400) {

 out<-data.frame(lsoda(c(x=x0,z=z0,v.x=v.x,v.z=v.z),times,orb.calc,

 parms=list(m.s=m.s,m.e=m.e,G=G)))

 out$d<-sqrt(out$x^2 + out$z^2)

 return(data.frame(out))

}

Now write function to call up and plot results intermittently

orb.plot<-function(m.s=1.98892E30,m.e=5.9742E24,x0=0,z0=147098290000,

 v.x=-30287,v.z=0,G=6.67428E-11,time=365,step=5,t.pause=0.2,

 new.plot=T) {

 steps<-ceiling(max(time)/step)

 if(new.plot==T) {

 plot(x0/1E9,z0/1E9,xlim=c(-160,160),ylim=c(-160,160),xlab='x

 location (million km)',ylab='y location (million

 km)',asp=1,las=1)

 points(0,0,pch=21,cex=2,bg='yellow')

 }

 for (i in 0:steps) {

 out<-orb.mod(m.s=m.s,m.e=m.e,x0=x0,z0=z0,v.x=v.x,v.z=v.z,G=G,

 times=86400*c(max(0,(i-1)*step),i*step))

 points(out$x[1]/1E9,out$z[1]/1E9,pch=21,col='white',bg='white')

 text(out$x[1]/1E9,out$z[1]/1E9,as.character(ceiling(i*step)),

 col='gray',cex=0.5)

 points(out$x[2]/1E9,out$z[2]/1E9,pch=21,col='blue',bg='blue')

 x0=out$x[2]

 z0=out$z[2]

 v.x=out$v.x[2]

226

 v.z=out$v.z[2]

 Sys.sleep(t.pause)

 }

}

Check it out

orb.plot()

orb.plot(v.x=-10000,new.plot=F)

orb.plot(v.x=-3000,new.plot=F)

orb.plot(v.x=-35000,time=700,new.plot=F,t.pause=0.1)

orb.plot(v.x=-45000,time=1000,new.plot=F,t.pause=0.1)

Appendix 2. list of data files and their sources
We thank James Gibbs, Amy Roe, and Joe Besessi for sharing data for this workshop. Data from

USGS were downloaded from the USGS Surface-Water Data site (http://waterdata.usgs.gov/

nwis/sw). Data from published papers were either copied from the paper itself or the online

supporting information. Data labeled FAO are from the UN Food and Agriculture Organization

(www.fao.org). Data from Kuhnert & Venables were downloaded from http://cran.r-

project.org/doc/contrib/Kuhnert+Venables-R_Course_Notes.zip. Data from books were either

entered manually or downloaded from associated websites. For other sources, see the list of

references.

File Source

Oxychem.txt Qui & Hites 2008

River_flow.txt USGS

Cacti_v_tort.txt James Gibbs

Muddy_Crk.txt USGS

Thakali_Ni_EC50s.txt Thakali et al. 2006

Thakali_Cu_EC50s.txt Thakali et al. 2006

Eagles.txt Amy Roe

DO_methods_1.txt Wilcock et al. 1981

DO_methods_2.txt Wilcock et al. 1981

Janka.txt Kuhnert & Venables

Ozone.txt Crawley 2008

Wheat.txt FAO

Crabs.txt Zar 1999

Ogeechee_tox_summary.txt Personal data

Cu_tox_test.txt Personal data

Carion_beetles.xls James Gibbs

Stream_Cu.txt Generated data

Daphnids.txt Personal data

Cactus_width.txt James Gibbs

Squirrel_color.txt James Gibbs

Isolation.txt Crawley 2008

Dimethyl-death.txt Generated data

Biohydrogen.txt Personal data

US_GDP.txt MeasuringWorth 2010

Mammal_sleep.txt Faraway 2005

http://waterdata.usgs.gov/
http://www.fao.org/
http://cran.r-project.org/doc/contrib/Kuhnert+Venables-R_Course_Notes.zip.
http://cran.r-project.org/doc/contrib/Kuhnert+Venables-R_Course_Notes.zip.

227

Disclaimer:
The views expressed in this workbook do not necessarily represent the views of USDA or the

United States.

	Objective
	1. Introduction to R
	1.1. R overview and history
	1.2. Finding and installing R
	1.3. Running R: GUI & scripts
	1.4. R basics: commands, expressions, assignments, operators, objects
	1.5. R data types
	1.6. R data structures
	1.7. Functions, arguments, and packages
	1.8. Missing, indefinite, and infinite values
	1.9. Getting help
	Exercises

	2. Vectors, matrices, and arrays
	2.1. Creating and working with vectors
	2.2. Vector arithmetic, some common functions, and vectorized operations
	2.3. Matrices and arrays
	Exercises

	3. Data frames, data import, and data export
	3.1. Reading data from files
	3.2. Creating data frames manually
	3.3. Working with data frames
	3.4. Writing data to files
	Exercises

	4. Graphics, part I
	4.1. Introduction to the plot function
	Exercises

	5. Manipulating data, part I
	5.1. Modes, classes, attributes, length, and coercion
	5.2. Indexing, sub-setting, splitting, sorting, and locating data
	5.3. Factors
	Exercises

	6. Manipulating data, part II
	6.1. Combining data
	6.2. Aggregating and summarizing data
	6.3. Dates and times
	6.4. Reshaping data
	Exercises

	7. Exploratory data analysis
	7.1. Summary statistics
	7.2. Histograms and box plots
	7.3. Normal quantile and cumulative probability plots
	7.4. Dealing with detection limits
	Exercises

	8. One- and two-sample tests (and the R approach to statistical output)
	8.1. t tests
	8.2. The R approach to statistical output
	Exercises

	9. Classical linear models
	9.1. The lm function, model formulas, and statistical output
	9.2. Linear regression
	9.3. ANOVA and pairwise comparisons
	9.4. ANCOVA
	Exercises

	10. Nonparametric alternatives to t tests and ANOVA
	10.1. Wilcoxon signed-rank test
	10.2. Kruskal-Wallis test
	Excercise

	11. Loops, grouping, and conditional execution
	11.1. Loops and grouping
	11.2. Conditional statements
	Exercises

	12. Graphics II
	12.1. Arranging multiple plots per page
	12.2. More on the plot function: arguments and values
	12.2 Adding data to plots
	12.3. Annotating plots
	12.4. Other high-level plotting functions
	12.5. Graphics output
	Exercises

	13. Functions
	13.1. Writing functions
	Exercises

	14. Generalized linear models
	14.1. The glm function
	Exercises

	15. Generalized additive models
	15.1. The gam function
	Exercises

	16. Nonlinear regression
	16.1. The nls function
	Exercises

	17. Survival Analysis
	17.1. Log-rank test and Cox proportional hazards model
	Exercise

	18. Distributions and simulations
	18.1. Available distributions
	18.2. Monte Carlo simulations
	18.3. Numerical simulations
	Exercises

	19. Batch processing
	19.1. Running R in batch mode

	20. Specialized packages, related documents, and additional information
	References
	Appendix 1. Solutions to exercises
	Section 1. Introduction to R
	Section 2. Vectors, matrices, and arrays
	Section 3. Data frames, data import, and data export
	Section 4. Graphics, part I
	Section 5. Manipulating data, part I
	Section 6. Manipulating data, part II
	Section 7. Exploratory data analysis
	Section 8. One- and two-sample tests
	Section 9. Classical linear models
	Section 10. Nonparametric alternatives to t tests and ANOVA
	Section 11. Groups, looping, and conditional execution
	Section 12. Graphics II
	Section 13. Functions
	Section 14. Generalized linear models
	Section 15. Generalized additive models
	Section 16. Nonlinear regression
	Section 18. Distributions and simulations

	Appendix 2. list of data files and their sources
	Disclaimer:

