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Objective 
The objective of this workshop is to introduce participants to data analysis and graphics with R. 

The range of analysis that can be completed, and the types of graphics that can be created in R 

are astounding. In addition to the wide variety of functions available in the "base" packages that 

are installed with R, more than 2400 contributed packages are available for download, each with 

its own suite of functions. Some of the individual packages are the subject of entire books. 

Obviously, this workshop will not cover every type of analysis or plot that R can be used for, or 

even every subtlety associated with each function covered in this workshop. However, after 

completing this workshop, you should be comfortable with the basic tools for carrying out 

typical data analyses and generating publication- and presentation-quality graphics in R. Given 

the inherent flexibility of R and of the functions that are covered in this workshop, we hope these 

basic tools will go a long way toward meeting your data analysis and data presentation needs. 

Furthermore, the experience that you gain in this workshop should give you a familiarity with the 

use of R, the Comprehensive R Network Archive (CRAN) site, and the R language, all of which 

will facilitate acquisition and use of other packages for specialized data analysis. Lastly, the brief 

introduction to some more advanced topics, such as writing functions and batch processing, can 

serve as a starting point for the development of time-saving procedures for data analysis and 

presentation. We hope you continue to use and learn R. Considering the number of people that 

are using and contributing to R, the number of books and other documents dedicated to R, and 

R's inherent flexibility, the data analysis and graphics development possiblities seem endless. 
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1. Introduction to R  
Crawley 2007: Chapter 1;  Dalgaard 1997: Chapter 1; R-Intro: Sections 1 & 2, R-Lang: Section 2 

1.1. R overview and history 

R is a software system for computations and graphics. According to the R FAQ (http://cran.r-

project.org/doc/FAQ/R-FAQ.html#R-Basics), “[i]t consists of a language plus a run-time 

environment with graphics, a debugger, access to certain system functions, and the ability to 
run programs stored in script files.‖  R was originally developed in 1992 by R. Ihaka and R. 

Gentleman at the University of Auckland (New Zealand). The R language is a ―dialect‖ of the S 

language
1
, which was developed (principally) by J. Chambers at Bell Laboratories. This software 

is currently maintained by the R Development Core Team, which consists of more than a dozen 

people, and includes Ihaka, Gentleman, and Chambers. Additionally, many other people have 

contributed code to R since it was first released. The source code for R is available under the 

GNU General Public License, meaning that users can modify, copy, and redistribute the software 

or derivatives, as long as the modified source code is made available. R is regularly updated, 

however, changes are usually not major. 

1.2. Finding and installing R 

R is available for Windows, Mac, and Linux operating systems. Installation files and instructions 

can be downloaded from the Comprehensive R Archive Network (CRAN) site at http://cran.r-

project.org/. Although the graphical user interface (GUI) differs slightly across systems, the R 

commands do not. 

1.3. Running R: GUI & scripts 

There are two basic ways to use R on your machine: through the GUI, where R evaluates your 

code and returns results as you work, or by writing, saving, and then running R script files
2
. R 

script files (or scripts) are just text files that contain the same types of R commands that you can 

submit to the GUI. Scripts can be submitted to R using the Windows command prompt, other 

shells, batch files, or the R GUI. All the code covered in this workbook will work if directy typed 

into the GUI, or it can be saved in a script file which can then be submitted to R
3
. Working 

directly in the R GUI is great for the early stages of code development, where a lot of 

experimentation and trial-and-error occurs. For any code that you want to save, rerun, and 

modify, you should consider working with R scripts. A useful approach is to work with both 

simultaneously—testing and perfecting code in the GUI before saving it in a script file. 

 

                                                 

 

 
1
 The S language is also used in the commercial software S-PLUS, which is very similar to R. 

2
 Note that the R GUI is command-line driven.  To get around writing code altogether there are some icon-driven 

programs that interface with R, e.g. R Commander (http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/). But, we 

recommend you stick to writing R commands yourself.  The developer of R Commander, John Fox, wrote: ―I must 

confess that I'm not terribly enamored of menu/dialog box interfaces to statistical software. . . One of my design 

goals was to wean users from the GUI to writing commands. . .‖ 
3
 There is at least one difference between scripts and the GUI: with scripts, the results are not automatically 

printed—to manually print to the output file, use the function print. 

http://cran.r-project.org/
http://cran.r-project.org/
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/
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So, how do you work with scripts?  Any simple text editor works—you just need to be able to 

save text in the ASCII format, i.e. ―unformatted‖ text. You can save your scripts and either call 

them up using the command source("file_name.R") in the R GUI, or, if you are using a 

shell (e.g. Windows command prompt) then type R CMD BATCH file_name.R4. The Windows 

and Mac versions of the R GUI come with a pretty basic script editor, shown below (the window 

in the center). This editor allows you to edit and create scripts, and also submit commands with 

the click of a button. 

 

 
 

 

Unforunately, this editor isn‘t very good—the Windows version does not even have syntax 

highlighting
5
. 

  

There are some useful (in some cases free) text editors available that can be set up with R syntax 

highlighting and other features. TINN-R is a free text editor that is designed specifically for 

working with R script files
6
. Notepad++ is a general purpose text editor, but includes syntax 

highlighting and the ability to send code directly to R with the NppToR plugin
7
. For serious code 

                                                 

 

 
4
 To execute R scripts in batch mode, Windows needs to know where to find the R executable—you can do this by 

adding the file location to the Environment variable. 
5
 The Mac version does have syntax highlighting, as well as some other nice features. 

6
  You can find more information and download the program here: http://www.sciviews.org/Tinn-R/. Note that an 

old version of TINN-R (1.17.2.4) is more flexible (and easier to set up) than newer versions, but we encourage you 

to check out newer versions. TINN-R 1.17.2.4 seems to be buggy in Windows Vista. 
7
 Notepad++ can be downloaded here: http://notepad-plus-plus.org/download. NppToR is available here: 

http://sourceforge.net/projects/npptor/. 
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writing, you might want to check out Emacs
8
, which is a powerful text editor that becomes a 

tailor-made R code editor when you add the ESS plugin. A list of text editors that work well with 

R can be found here: http://www.sciviews.org/_rgui/projects/Editors.html. 

1.4. R basics: commands, expressions, assignments, operators, 
objects  

The instructions you give R are called commands. The basic approach to using the R GUI is to 

type a command and hit enter—R evaluates what you typed and prints the result.  

 
> 1+1 

[1] 2 

 

Notice a couple things about the above code. The > character is the prompt that will always be 

present in the GUI—it is used throughout this workbook to show which lines are commands 

(although where code gets complicated later on in this workbook, we leave out the prompt 

character and use different fonts for commands and R output). The line following the command 

starts with a [1], which is simply the position of the adjacent element in the output—this will 

make more sense later. 

 

For the above command, the result is printed to the screen and lost—there is no assignment 

involved
9
. In order to do anything other than the simplest analyses, you must be able to store and 

recall data. In R, you can assign the results of command to symbolic variables (as in other 

computer languages) using the assignment operator  <-. When a command is used for 

assignment, the result is no longer printed to the GUI console
10

. 

 
> x<-1+1 

> x 

[1] 2 

 

Note that this is very different from: 

 
> x< -1+1 

[1] FALSE 

 

In this case, putting a space between the two characters that make up the assignment operator 

causes R to interpret the command as an expression that asks if x is less than zero. However, 

spaces usually do not matter in R, as long as they do not separate a single operator or a variable 

name. This, for example, is fine: 

                                                 

 

 
8
 You can find more information, and a download here: http://vgoulet.act.ulaval.ca/en/ressources/emacs/. Or, for the 

more typical do-it-yourself approach, here: http://ess.r-project.org/index.php?Section=download. Note that there is a 

steeper learning curve for Emacs than for the other programs mentioned above. 
9
 You might call this command an expression, to distinguish it from an assignment, but be aware that this distinction 

is not consistently used in the literature on R. Note that you can actually recall the last value printed to the screen 

with .Last.value. 
10

  Unless you surround the entire command in parentheses. 

http://www.sciviews.org/_rgui/projects/Editors.html
http://vgoulet.act.ulaval.ca/en/ressources/emacs/
http://ess.r-project.org/index.php?Section=download
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> x <-   1             +1 

 

Note that you can recall a previous command in the R GUI by hitting the up arrow on your 

keyboard. This becomes handy when you are debugging code. 

 

When you give R an assignment, such as the one above, the object referred to as x is stored in 

R's workspace. You can see what is currently stored in the workspace by using the ls function. 

 
> ls() 

[1] "x" 

 

To remove objects from your workspace, use rm. 

 
> rm(x) 

> x 

Error: object "x" not found 

 

The equal sign (=) can also be used as an assignment operator. However, in other cases the equal 

sign means something different (such as with column names when setting up a data frame), and 

this use is discouraged
11

. 

 

If you want to assign the same value to several symbolic variables, you can use the following 

syntax. 

 
> x<-y<-z<-1.0 

 

R is a case-sensitive language. This is true for symbolic variable names, function names, and 

everything else in R. 
 

> x<-1+1 

> x 

[1] 2 

 

> X 

Error: object "X" not found 

 

In R, commands can be separated by moving onto a new line (i.e. hitting enter) or by typing a 

semicolon (;), which can be handy in scripts for condensing code. If a command is not 

completed in one line (by design or error), the typical R prompt > is replaced with a +. 

 
> x<- 

+ 1+1  

 

                                                 

 

 
11

 But, some serious R users stick with = instead of <- (e.g., Spector 2008). 
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If you find that you get stuck in a bad command, just hit the Esc key to get back to the regular 

prompt. For most of the commands in this workbook, we will include the prompt character > on 

the first line, and the continuation character + on following lines. If you want to select and copy a 

multi-line command from this workbook, you should be able to avoid copying the > and + 

characters by holding down the Alt key while you select. 

 

There are several operators that are used in the R language. Some of the most common are listed 

below (more on these later): 

 

Arithmetic: 

+ - * / ^ plus, minus, multiply, divide, power 

 

Relational: 

a==b  a is equal to b (do not confuse with =) 

a!=b a is not equal to b (the ! symbol can be used to negate relational expressions in 

general) 

a<b  a is less than b 

a>b  a is greater than b 

a<=b  a is less than or equal to b 

a>=b  a is greater than or equal to b 

 

Logical/grouping: 

!  not 

&  and 

|  or 

 

Indexing 

$  part of a data frame 

[]  part of a data frame, array, list  

[[]]  part of a list 

 

Grouping commands 
{} 

 

Making sequences 

a:b  returns the sequence a, a + 1,  a + 2, . . . b 

 

Others 

#  commenting 

;  alternative for separating commands 

~  model formula specification 

()  order of operations, function arguments 

 

Commands in R operate on objects, which can be thought of as anything that can be assigned to 

a symbolic variable. Objects include vectors, matrices, factors, lists, data frames, and functions. 

Excluding functions, these objects are also referred to as data structures or data objects. 
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When you close the R GUI, it will ask you if you want to ―save workspace image?‖. This refers 

to the workspace that you have created—i.e. all the objects that you have loaded or created. It is 

good practice to not rely on a saved workspace. Instead, you should save the commands that 

created it as a script file, or save your output as a text file. One handy feature of the R GUI is the 

―Save History‖ option, which can be found in the File menu. This allows you to save all the 

commands you have submitted to the R GUI during your session as a script file. 

1.5. R data types 

The term ―data type‖ in R refers to the type of data that is present in a data structure, and does 

not describe the data structure itself. There are four common types of data in R: numerical, 

character, logical, and complex numbers. These are referred to as modes in R and are shown 

below. 

 

Numerical data 

 
> x<-10.2 

> x 

[1] 10.2 

 

Character data 

 
> name<-"John Smith" 

> name 

[1] "John Smith" 

 

Any time character data are entered directly into the R GUI, you must surround individual 

elements with quotes. Otherwise, R will look for an object. 

 
> name<-John 

Error: object "John" not found 

 

Either single or double quotes can be used in R (double quotes are used in this workbook, to 

avoid confusing single quotes with the accent character (`). When character data are read into R 

from a file, the quotes are not necessary
12

. 

 

Logical data contain only three values: TRUE, FALSE, or NA (NA indicates a missing value—more 

on this later). R will also recognize T and F, but these are not reserved, and can therefore be 

overwritten by the user, and it is therefore good (although tedious) to avoid them. 

 
> a<-TRUE 

> a 

[1] TRUE 

                                                 

 

 
12

 Unless spaces are present in individual elements, although even here quotes can be avoided by specifying a 

separator other than a space. 
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Note that there are no quotes around logical values—this would make them character data. R will 

return logical data for any relational expression submitted to it. 

 
> 4 < 2 

[1] FALSE 

 

or 

 
> b<-4 < 2 

> b 

[1] FALSE 

 

And finally, complex numbers, which will not be covered in this workbook, are the final data 

type in R. 

 
> cnum1<-10 + 3i 

> cnum1 

[1] 10+3i 

 

You can use the mode or class function to see what type of data is stored in any symbolic 

variable
13

. 

 
> class(name) 

[1] "character" 

 

> class(a) 

[1] "logical" 

 

> class(x) 

[1] "numeric" 

 

> mode(x) 

[1] "numeric" 

1.6. R data structures 

Data in R are stored in data structures (also known as data objects)—these are the objects that 

you perform calculations on, plot data from, etc. Data structures in R include vectors, matrices, 

arrays, data frames, lists, and factors. We will demonstrate how to make these different data 

structures in a following section; the examples below simply give you an idea of their structure. 

 

                                                 

 

 
13

 Mode and class are not identical—as Bill Venables writes: ―‗mode‘ is a mutually exclusive classification of 

objects according to their basic structure. . . ‗class‘ is a property assigned to an object that determines how generic 

functions operate with it.‖ (http://tolstoy.newcastle.edu.au/R/e4/help/08/04/8330.html). 

http://tolstoy.newcastle.edu.au/R/e4/help/08/04/8330.html
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Vectors are perhaps the most important type of data structure in R. A vector is simply an ordered 

collection of elements (e.g. individual numbers). 

 
> x<-1:10 

> x 

 [1]  1  2  3  4  5  6  7  8  9 10 

 

Matrices are similar to vectors, but have two dimensions. 

 
> X<-matrix(1:30,nrow=3) 

> X 

     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 

[1,]    1    4    7   10   13   16   19   22   25    28 

[2,]    2    5    8   11   14   17   20   23   26    29 

[3,]    3    6    9   12   15   18   21   24   27    30 

 

Arrays are similar to matrices, but can have more than 2 dimensions. 

 
> Y<-array(1:90,dim=c(3,10,3)) 

> Y 

, , 1 

 

     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 

[1,]    1    4    7   10   13   16   19   22   25    28 

[2,]    2    5    8   11   14   17   20   23   26    29 

[3,]    3    6    9   12   15   18   21   24   27    30 

 

, , 2 

 

     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 

[1,]   31   34   37   40   43   46   49   52   55    58 

[2,]   32   35   38   41   44   47   50   53   56    59 

[3,]   33   36   39   42   45   48   51   54   57    60 

 

, , 3 

 

     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 

[1,]   61   64   67   70   73   76   79   82   85    88 

[2,]   62   65   68   71   74   77   80   83   86    89 

[3,]   63   66   69   72   75   78   81   84   87    90 

 

One feature that is shared for vectors, matrices, and arrays is that they can only store one type of 

data at once, be it numerical, character, or logical. Technically speaking, these data structures 

can only contain elements of the same mode
14

.  

 

                                                 

 

 
14

 Data structures that contain elements of all the same mode are referred to as atomic—this is not important but may 

save you some confusion in the future. 
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Data frames are similar to matrices—they are two-dimensional. However, a data frame can 

contain columns with different modes. Data frames are similar to data sets used in other 

statistical programs: each column represents some variable, and each row usually represents an 

―observation‖ or ―record‖ or ―experimental unit‖. 

 
> dat<-data.frame(sp=c("Dog","Cat","Human"),sex=c("F","M","F"), 

+ weight=c(75.2,186,8.72),living=c(T,F,T)) 

 

> dat 

     sp sex weight living 

1   Dog   F  75.20   TRUE 

2   Cat   M 186.00  FALSE 

3 Human   F   8.72   TRUE 

 

Lists are similar to vectors, in that they are an ordered collection of elements, but with lists, the 

elements can be other data objects (the elements can even be other lists). Lists are important in 

the output from many different functions. In the code below, the variables defined above are 

used to form a list. 

 
> summary.1<-list(1.2,x,Y,dat) 

> summary.1 

[[1]] 

[1] 1.2 

 

[[2]] 

 [1]  1  2  3  4  5  6  7  8  9 10 

 

[[3]] 

, , 1 

 

     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 

[1,]    1    4    7   10   13   16   19   22   25    28 

[2,]    2    5    8   11   14   17   20   23   26    29 

[3,]    3    6    9   12   15   18   21   24   27    30 

 

, , 2 

 

     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 

[1,]   31   34   37   40   43   46   49   52   55    58 

[2,]   32   35   38   41   44   47   50   53   56    59 

[3,]   33   36   39   42   45   48   51   54   57    60 

 

, , 3 

 

     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 

[1,]   61   64   67   70   73   76   79   82   85    88 

[2,]   62   65   68   71   74   77   80   83   86    89 

[3,]   63   66   69   72   75   78   81   84   87    90 
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[[4]] 

     sp sex weight living 

1   Dog   F  75.20   TRUE 

2   Cat   M 186.10  FALSE 

3 Human   F   8.72   TRUE 

 

Note that a particular data structure need not contain data to exist. This may seem a bit strange, 

but can be useful when it is necessary to set up an object for holding some data later on. 

 
> x<-NULL 

1.7. Functions, arguments, and packages 

In R, you can carry out complicated or tedious procedures using functions. Functions require 

arguments, which include the object(s) that the function should act upon. For example, the 

function sum will calculate the sum of all its arguments: 

 
> sum(1.0,4.214,2.3,8.145,-3.3) 

[1] 12.359 

 

The arguments in (most) R functions can be named, i.e. by typing the name of the argument, an 

equal sign, and the argument value (arguments specified in this way are also called tagged). For 

example, for the function plot, the help file lists the following arguments. 

 
plot(x, y, ...) 

 

Therefore, we can call up this function with the following code. 

 
> a<-1:10 

> b<-a 

> plot(x=a,y=b) 

 

With named arguments, R recognizes the argument keyword (e.g. x or y) and assigns the given 

object (e.g. a or b above) to the correct argument. When using names arguments, the order of the 

arguments doesn‘t matter. We can also use what are called positional arguments, where R 

determines the meaning of the arguments based on their position. 

 
> plot(a,b) 

 

The expected position of arguments can be found in the help file for the function you are 

working with or by asking R to list the arguments using the args function. 

 
> args(plot) 

function (x, y, ...) 

 

It usually makes sense to use positional arguments for only the first few arguments in a function. 

After that, named arguments are easier to keep track of. Many functions also have default 

argument values that will be used if values are not specified in the function call. These default 
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argument values can be seen by using the args function and can also be found in the help files. 

For example, for the function rnorm, the arguments mean and sd have default values. 

 
> args(rnorm) 

function (n, mean = 0, sd = 1) 

 

Any time you want to call up a function, you must include parentheses after it, even if you are 

not specifying any arguments. If you don‘t include parentheses, R will return the function code 

(which can be useful). 

 

Note that it is not necessary to use explicit numerical values as function arguments—symbolic 

variable names which represent appropriate data structures can be used. It is also possible to use 

functions as arguments within functions. R will evaluate such expressions from the inside 

outward. While this may seem trivial, this quality makes R very flexible. There is no explicit 

limit to the degree of nesting that can be used. You could use: 

 
> plot(rnorm(10,sqrt(mean(c(1:5,7,1,8,sum(8.4,1.2,7))))),1:10) 

 

which includes 5 levels of nesting (the sum of 8.4, 1.2, and 7 is combined with other values to 

form a vector, for which the mean value is calculated, then the square root of this value is taken 

and used as the standard deviation in a call to rnorm, and the output from this call is plotted). Of 

course, it is often easier to assign intermediate steps to symbolic variables. R evaluates nested 

expressions based on the values that functions return or the data represented by symbolic 

variables. For example, if a function expects character data for a particular argument, then you 

can use a call to the function paste in place of explicit character data.  

 

Many functions (including sum, plot and rnorm) come with the R ―base packages‖, i.e. 

they are loaded and ready to go as soon as you open R. These packages contain the most 

common functions
15

. While the base packages include many useful functions, for specialized 

procedures, you should check out the content that is available in the add-on packages. The 

CRAN website currently lists more than 2400 contributed packages that contain functions and 

data that users have contributed. You can find a list of the available packages at the CRAN 

website (http://cran.r-project.org/). 

  

To utilize the functions in contributed R packages, you need to first install and then load the 

package. Packages can be installed via the Packages menu in the R GUI (select the ―Packages‖ 

menu, then ―Install packages‖, then select the closest mirror site, and finally, select the package 

you want to install). Or just use the command
16

: 

                                                 

 

 
15

 You can find a list of these packages here: http://cran.r-project.org/doc/FAQ/R-FAQ.html. 
16

 This simple process can become frustrating if you don‘t have permission to write to the directory where R saves 

packages by default (e.g., if your user account does not include complete access). The best way around this is 

through specifying the locations where packages should be downloaded, say C:\Users\Joe\R_Lib. Then: 
> install.packages("NADA",lib='C:/Users/Joe/R_Lib') 

> library(NADA,lib.loc='C:/Users/Joe/R_Lib') 

 

http://cran.r-project.org/
http://cran.r-project.org/doc/FAQ/R-FAQ.html
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> install.packages("package name") 

 

where "package name" should be replaced with the actual name of the package you want to 

install, for example: 

 
> install.packages("NADA") 

 

Installation is a one-time process, but packages must be loaded each time you want to use them. 

This is very simple, e.g., to load the package NADA, use the following command. 

 
> library(NADA) 

Loading required package: survival 

Loading required package: splines 

 

Attaching package: 'NADA' 

 

 

        The following object(s) are masked from package:stats : 

 

         predict 

 

Any package that you want to use that is not included as one of the ―base‖ packages needs to be 

loaded every time you start R. (Alternatively, you can add code to the file Rprofile.site that will 

be executed every time you start R.)  

 

You can find information on specific packages through CRAN, by browsing to http://cran.r-

project.org/ and selecting the packages link on the lower left.  Each package has a separate web 

page, which should include links to source code, and a pdf manual. When working with a new 

package, it is a good idea to read the manual. 

 

Some packages contain different functions with the same name, e.g. predict in the stats and 

NADA packages. The function in use will be the function from the package that was loaded last.  

 

To ―unload‖ functions, use the detach function: 

 
> detach("package:NADA") 

 

For tasks that you repeat, but which have no associated function in R, or if you don't like the 

functions that are available, you can write your own functions. This topic is covered in a later 

section.  

1.8. Missing, indefinite, and infinite values 

Real data sets often contain missing values. R uses the marker NA (for ―not available‖) to 

indicate a missing value. Any operation carried out on an NA will return NA.  

 
> x<-NA 

http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/web/packages/
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> x-2 

[1] NA 

 

Note that the NA used in R does not have quotes around it—this would make it character data
17

. 

To determine if a value is missing, use the is.na function (this function can also be used to set 

elements in a data object to NA.) 

 
> is.na(x) 

[1] TRUE 

> !is.na(x) 

[1] FALSE 

 

Indefinite values are indicated with the marker NaN, for ―not a number‖. Infinite values are 

indicated with the markers Inf or –Inf. You can find these values with the functions 

is.infinite, is.finite, and is.nan.  

1.9. Getting help 

It is usually easy to find the answer to questions about specific functions or about R in general. 

There are several good introductory books on R, some of which are listed at the end of this 

workbook. You can also find free detailed manuals on the CRAN website (http://cran.r-

project.org/, then select the ―manuals‖ link at the lower left). Also, it helps to keep a copy of 

Short‘s R Reference Card (Short 2005), which demonstrates the use of many common functions 

and operators in 4 pages (http://cran.r-project.org/doc/contrib/Short-refcard.pdf). 

 

Each function in R has a help file associated with it that explains the syntax and usually includes 

an example. Help files are concisely written. You can bring up a help file by typing ? and then 

the function name. 

 
> ?aov 

 

This will bring up the help file for the aov function in your default internet browser. Once the 

help file is opened, you can of course search within it using your brower‘s search function 

(usually accessable with ctrl+f on Windows and apple+f on Macs). But, what if you aren‘t sure 

what function you need for a particular task? How can you know what help file to open? In 

addition to the sources given below, you should try help.search("keyword") or 

??keyword, both of which search the R help files for whatever keyword you put in. For 

example 

 
> ??Kruskal 

 

returns 

 
Help files with alias or concept or title matching ‘Kruskal’ using 

                                                 

 

 
17

 For character data, missing values are given as <NA> to distinguish them from "NA". 

http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/doc/contrib/Short-refcard.pdf
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fuzzy matching: 

 

 

MASS::isoMDS            Kruskal's Non-metric Multidimensional Scaling 

stats::kruskal.test     Kruskal-Wallis Rank Sum Test 

 

 

Type '?PKG::FOO' to inspect entry 'PKG::FOO TITLE'.  

 

To see a particular help file, follow the instructions given, e.g., 

 
> ?stats::kruskal.test 

 

In this case, you can leave out the stats:: part of the command, since the stats package is 

automatically loaded when R is started. 

 
> ?kruskal.test 

 

There is an R help mailing list (http://www.r-project.org/mail.html), which can be very helpful. 

Before posting a question, be sure to search the mailing list archives, and check the posting guide 

(http://www.r-project.org/posting-guide.html). Individuals on the mailing list can provide helpful 

answers to even obscure questions, but they are generally not shy about telling users to go back 

and read the posting guide. 

 

One of the best sources of help on R functions is the mailing list archives (http://cran.r-

project.org/, then select ―Search‖ at the upper left, then ―Searchable mail archives‖). Here you 

can find suggestions for functions for particular problems, help on using specific functions, and 

all kinds of other information. A quick way to search the mailing list archives by entering 

RSiteSearch("keyword") into the console. For the most comprehensive search, a good bet is 

Google—http://www.google.com. To limit the results to R-related pages, adding ―cran‖ seems to 

work well. 

 

To search for objects (including functions) that include a particular string, you can use the 

apropos function: 

 
> apropos("mean") 

 [1] "colMeans"        "kmeans"          "mean"            

 [4] "mean.data.frame" "mean.Date"       "mean.default"    

 [7] "mean.difftime"   "mean.POSIXct"    "mean.POSIXlt"    

[10] "rowMeans"        "weighted.mean"   

 

For much more powerful searching capabilities that you can access through the GUI, check out 

the sos package (Graves et al. 2009). 

  

http://www.r-project.org/mail.html
http://www.r-project.org/posting-guide.html
http://cran.r-project.org/
http://cran.r-project.org/
http://www.google.com/
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Exercises 

1. You can use R for magic tricks: Pick any number. Double it, and then add 12 to the result. 

Divide by 2, and then subtract your original number. Did you end up with 6.0? 

 

2. If you want to work with a set of 10 numbers in R, something like this: 

 

11.0  8.3  9.8  9.6 11.0 12.0  8.5  9.9 10.0 11.0 

 

what type of data structure should you use to store these in R? 

 

What if you want to work with a data set that contains weight, age, and an categorical assessment 

of health for 50 whitetail deer—what type of data structure should you use to store these in R? 

 

3. Install and load a package—take a look at the list of available packages, and pick one. To 

make sure you‘ve loaded it correctly, try to run an example from the package reference manual. 

Identify the arguments required for calling up the function. Detach the package when you are 

done. 

 

4. Assign your full name (or someone else‘s full name) to a variable called my.name. Print the 

value of my.name to the GUI. Try to subtract 10 from my.name. Finally, determine the type of 

data stored in my.name and 10 using the class function. If you are unsure of what class does, 

check out the help file. 

 

5. Pretend you are interested in seeing what functions R has for generalized additive models (or 

some other topic). Can you figure out how to search for relevant functions? Are you able to 

identify a function or two that may do what you want? 
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2. Vectors, matrices, and arrays  
Crawley 2008: Chapter 2, Dalgaard 2008: Chapter 1.2, R-Intro: Sections 2 & 5, Short 2005 

2.1. Creating and working with vectors 

There are several ways to create a vector in R. Where elements are spaced by exactly 1, just 

separate the values of the first and last elements with a colon. 

 
> 1:5 

[1] 1 2 3 4 5 

 

or even 
 

> 1:10000 

    [1]     1     2     3     4     5     6     7     8 

    [9]     9    10    11    12    13    14    15    16 

... 

[9985]  9985  9986  9987  9988  9989  9990  9991  9992 

 [9993]  9993  9994  9995  9996  9997  9998  9999 10000 

 

The function seq (for sequence) is more flexible. Its typical arguments are from, to, and by 

(or, in place of by, you can specify length.out).  

 
> seq(-10,10,2) 

 [1] -10  -8  -6  -4  -2   0   2   4   6   8  10 

 

Note that the by argument does not need to be an integer. When all the elements in a vector are 

identical, use the rep function (for repeat). 
 

> rep(4,5) 

[1] 4 4 4 4 4 

 

For other cases, use c (for concatenate or combine). 
 

> c(2,1,5,100,2) 

[1]   2   1   5 100   2 

 

Note that you can name the elements within a vector. 

 
> c(a=2,b=1,c=5,d=100,e=2) 

  a   b   c   d   e  

  2   1   5 100   2 

 

Any of these expressions could be assigned to a symbolic variable, using an assignment operator. 

 
> v1<-c(2,1,5,100,2) 

> v1 

[1]   2   1   5 100   2 
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Variable names can be any combination of letters, numbers, and the symbols . and _, but, they 

cannot start with a number or with _.  

 
> a_vector_with.a.long.name.100<-seq(1,3,0.1) 

> a_vector_with.a.long.name.100 

 [1] 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 

[16] 2.5 2.6 2.7 2.8 2.9 3.0 

 

The c function is very useful for setting up arguments for other functions, as will be shown later. 

As with all R functions, both variable names and function names can be substituted into 

functions calls in place of numeric values. 

 
> x<-rep(1,3) 

> y<-4:10 

> z<-c(x,y) 

> z 

 [1]  1  1  1  4  5  6  7  8  9 10 

 

Although R prints the contents of individual vectors with a horizontal orientation, R does not 

have ―columns vectors‖ and ―row vectors‖, and vectors do not have a fixed orientation. This 

makes use of vectors in R very flexible. 

 

Vectors do not need to contain numbers, but can contain data with any of the modes mentioned 

earlier (numeric, logical, character, and complex) as long as all the data in a vector are of the 

same mode
18

.  

 

Logical vectors are very useful in R for subsetting data, i.e., for isolating some part of an object 

that meets certain criteria. For relational commands, the shorter vector is repeated as many times 

as necessary to carry out the requested comparison for each element in the longer vector (this 

repeat rule is discussed more below). 

 
> x<-1:10 

> x>5 

 [1] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE 

 

Also, note that when logical vectors are used in arithmetic, they are changed (coerced in R terms) 

into a vector of binary elements: 1 or 0. Continuing with the above example: 

 
> a<-x>5 

> a 

 [1] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE 

 

> a*1.4 

                                                 

 

 
18

 This does not mean you cannot comibine data of different modes into a single vector using c—you actually can, 

but R will coerce all the elements to the same mode. 
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 [1] 0.0 0.0 0.0 0.0 0.0 1.4 1.4 1.4 1.4 1.4 

 

One function that is commonly used on character data is paste. It concatenates character data 

(and can also work with numerical and logical elements—these become character data). 

 
> paste("A","B","C",TRUE,42) 

[1] "A B C TRUE 42" 

 

Note that the paste function is very different from c. The paste function combines its 

arguments into a single character value, while the c function combines its arguments into a 

vector, where each argument becomes a single element. The paste function becomes handy 

when you want to combine the character data that are stored in several symbolic variables. 

 
> month<-"March" 

> day<-12 

> year<-2009 

> paste("Today is the ",day,"th day of ",month,", ",year,sep="") 

[1] "Today is the 12th day of March, 2009" 

 

This is especially useful with loops, when a variable with a changing value is combined with 

other data. Loops will be discussed in a later section. 
 

> group<-1:10 

> id<-LETTERS[1:10] 

> for(i in 1:10) { 

+ print(paste("group =",group[i],"id =",id[i])) 

+ } 

[1] "group = 1 id = A" 

[1] "group = 2 id = B" 

[1] "group = 3 id = C" 

[1] "group = 4 id = D" 

[1] "group = 5 id = E" 

[1] "group = 6 id = F" 

[1] "group = 7 id = G" 

[1] "group = 8 id = H" 

[1] "group = 9 id = I" 

[1] "group = 10 id = J" 

 

Note that the separator can be specified as well using the sep argument (default is a single space 

" "). LETTERS is actually a constant (one of only a few) that is built into R—it is a vector of 

uppercase letters A through Z (different from letters). 
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2.2. Vector arithmetic, some common functions, and vectorized 
operations 

In R, vectors can be used directly in arithmetic expressions. Operations are applied on an 

element-by-element basis. This can be referred to as ―vectorized‖ arithmetic, and, along with 

vectorized functions (described below), it is a quality that makes R a very efficient programming 

language
19

. 

 
> x<-6:10 

> x 

[1]  6  7  8  9 10 

> x+2 

[1]  8  9 10 11 12 

 

For an operation carried out on two vectors the mathematical operation is applied on an element-

by-element basis. 
 

> y<-c(4,3,7,1,1) 

> y 

[1] 4 3 7 1 1 

 

> z<-x+y 

> z 

[1] 10 10 15 10 11 

 

When two vectors that have different numbers of elements are used in an expression together, R 

will repeat the smaller vector. For example, with a vector of length one, i.e. a single number: 

 
> x<-1:10 

> m<-0.8 

> b<-2 

> y<-m*x + b 

> y 

 [1]  2.8  3.6  4.4  5.2  6.0  6.8  7.6  8.4  9.2 10.0 

 

If the number of rows in the smaller vector is not a multiple of the larger vector (often indicative 

of an error) R will return a warning. 

 
> x<-1:10 

> m<-0.8 

> b<-c(2,1,1) 

> y<-m*x + b 

Warning message: 

longer object length 

        is not a multiple of shorter object length in: m * x + b 

 

                                                 

 

 
19

 Efficient for code-writers, that is. 
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Some arithmetic operators that are available in R are: 

+  addition 

-  subtraction 

*  multiplication 

/  division 

^  exponentiation 

%/%  integer division 

%%  modulo (remainder) 

log(a) natural log of a 

log10(a) base 10 log of a 

exp(a) e
a 

sin(a) sine of a 

cos(a) cosine of a 

tan(a) tangent of a 

sqrt(a) square root of a 

 

Some simple functions that are useful for vector math include: 

min  minimum value of a set of numbers 

max  maximum of a set of numbers 

pmin  parallel minima (compares multiple vectors "row-by-row") 

pmax  parallel maxima 

sum  sum of all elements 

length length of a vector (or the number of columns in a data frame) 

NROW  number of rows in a vector or data frame 

mean  arithmetic mean 

sd  standard deviation 

rnorm  generates a vector of normally-distributed random numbers 
signif, ceiling, floor 

  rounding 

 

Many, many other functions are available. 

 

R also has a few built in constants, including pi. 

 
> pi 

[1] 3.141593 

 

Parentheses can be used to control the order of operations, as in any other programming 

language. So,  

 
> 7 - 2*4 

[1] -1 

 

is different from: 
 

> (7 - 2)*4 
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[1] 20 

 

and 
 

> 10^1:5 

[1] 10  9  8  7  6  5 

 

is different from: 
 

> 10^(1:5) 

[1] 1e+01 1e+02 1e+03 1e+04 1e+05 

 

Many functions in R are capable of accepting vectors (or even data frames and arrays, lists) as 

input for single arguments, and returning an object with the same structure. These vectorized 

functions make vector manipulations very efficient. Examples of such functions include log, 

sin, and sqrt. For example, 

 
> x<-1:10 

> sqrt(x) 

 [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 

 [7] 2.645751 2.828427 3.000000 3.162278 

 

or 

 
> sqrt(1:10) 

 [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 

 [7] 2.645751 2.828427 3.000000 3.162278 

 

The previous expressions are also equivalent to: 

 
> sqrt(c(1,2,3,4,5,6,7,8,9,10)) 

 [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 

 [7] 2.645751 2.828427 3.000000 3.162278 

 

But they are not the same as the following, where all the numbers are interpreted as individual 

values for multiple arguments. 

 
> sqrt(1,2,3,4,5,6,7,8,9,10) 

Error in sqrt(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) :  

  10 arguments passed to 'sqrt' which requires 1 

 

There are also some functions designed for making vectorized (or list-ized?) operations on lists, 

matrices, and arrays: these include apply and lapply. We will cover these in a later section. 

2.3. Matrices and arrays 

Arrays are multi-dimensional collections of elements and matrices are simply two-dimensional 

arrays. R has several operators and functions for carrying out operations on arrays, and matrices 
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in particular (e.g. matrix multiplication). Many data analysis and plotting tasks can be carried out 

without using arrays or matrices, but these data structures become are useful for some tasks. 

 

To generate a matrix, the matrix function can be used. For example: 

 
> X<-matrix(1:15,nrow=5,ncol=3) 

> X 

     [,1] [,2] [,3] 

[1,]    1    6   11 

[2,]    2    7   12 

[3,]    3    8   13 

[4,]    4    9   14 

[5,]    5   10   15 

 

Note that the filling order is by column by default (i.e. each column is filled before moving onto 

the next one). The ―unpacking‖ order is the same. 

 
> as.vector(X) 

 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 

 

If, for any reason, you want to change the filling order, you can use the byrow argument: 

 
> X<-matrix(1:15,nrow=5,ncol=3,byrow=T) 

> X 

     [,1] [,2] [,3] 

[1,]    1    2    3 

[2,]    4    5    6 

[3,]    7    8    9 

[4,]   10   11   12 

[5,]   13   14   15 

 

A similar function is available for higher-order arrays, called array. Here is an example with a 

three-dimensional array: 

 
> Y<-array(1:30,dim=c(5,3,2)) 

> Y 

, , 1 

 

     [,1] [,2] [,3] 

[1,]    1    6   11 

[2,]    2    7   12 

[3,]    3    8   13 

[4,]    4    9   14 

[5,]    5   10   15 

 

, , 2 

 

     [,1] [,2] [,3] 

[1,]   16   21   26 

[2,]   17   22   27 
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[3,]   18   23   28 

[4,]   19   24   29 

[5,]   20   25   30 

 

Arithmetic with matrices and arrays that have the same dimensions is straightforward, and is 

done on an element-by-element basis. This is true for all the arithmetic operators listed in earlier 

sections. 

 
> Z<-matrix(1,nrow=5,ncol=3) 

> Z 

     [,1] [,2] [,3] 

[1,]    1    1    1 

[2,]    1    1    1 

[3,]    1    1    1 

[4,]    1    1    1 

[5,]    1    1    1 

> X + Z 

     [,1] [,2] [,3] 

[1,]    2    7   12 

[2,]    3    8   13 

[3,]    4    9   14 

[4,]    5   10   15 

[5,]    6   11   16 

 

This doesn‘t work when dimensions don‘t match: 

 
> Z<-matrix(1,nrow=3,ncol=3) 

> X + Z 

Error in X + Z : non-conformable arrays 

 

For mixed vector/array arithmetic, vectors are recycled if needed. 

 
> Z 

     [,1] [,2] [,3] 

[1,]    1    1    1 

[2,]    1    1    1 

[3,]    1    1    1 

 

> x<-1:9 

> Z+x 

     [,1] [,2] [,3] 

[1,]    2    5    8 

[2,]    3    6    9 

[3,]    4    7   10 

 

> y<-1:3 

> Z+y 

     [,1] [,2] [,3] 

[1,]    2    2    2 

[2,]    3    3    3 
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[3,]    4    4    4 

 

R also has operators for matrix algebra. The operator %*% carries out matrix multiplication, and 

the function solve can invert matrices. 

 
> X<-matrix(c(1,2.5,6,3.2,4,5,6,4,9),nrow=3) 

> X 

     [,1] [,2] [,3] 

[1,]  1.0  3.2    6 

[2,]  2.5  4.0    4 

[3,]  6.0  5.0    9 

 

> solve(X) 

            [,1]        [,2]        [,3] 

[1,] -0.33195021 -0.02489627  0.23236515 

[2,] -0.03112033  0.56016598 -0.22821577 

[3,]  0.23858921 -0.29460581  0.08298755 

 

A useful function for working with matrices is the outer function. In its simplest usage, it will 

apply a specified function to all combinations of the elements in two vectors given as arguments. 

This can be handy for, e.g., contour plots. Note that the function specified as the FUN argument 

must be a vectorized function. For example, let‘s make a multiplication table
20

:  

 
> x<-y<-1:11 

> outer(x,y,"*") 

 

      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] 

 [1,]    1    2    3    4    5    6    7    8    9    10    11 

 [2,]    2    4    6    8   10   12   14   16   18    20    22 

 [3,]    3    6    9   12   15   18   21   24   27    30    33 

 [4,]    4    8   12   16   20   24   28   32   36    40    44 

 [5,]    5   10   15   20   25   30   35   40   45    50    55 

 [6,]    6   12   18   24   30   36   42   48   54    60    66 

 [7,]    7   14   21   28   35   42   49   56   63    70    77 

 [8,]    8   16   24   32   40   48   56   64   72    80    88 

 [9,]    9   18   27   36   45   54   63   72   81    90    99 

[10,]   10   20   30   40   50   60   70   80   90   100   110 

[11,]   11   22   33   44   55   66   77   88   99   110   121 

 

  

                                                 

 

 
20

 This may not be the best example, since the fun argument is actually an operator and not a function. To use an 

operator here, note that you have to enclose it in quotes. You can try using a function, such as pmax, instead. 
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Exercises 

1. Generate a vector of numbers that contains the sequence 1, 2, 3,. . .10 (try to use the least 

amount of code possible to do this). Assign this vector to the variable x, and then carry out the 

following vector arithmetic. Make sure your answers match the values given below. 

 

x10log  (=0, 0.301, 0.477. . .) 

 

xln   (=0, 0.69, 1.099. . .) 

 

x

x

2
  (=1, Inf, -1.7. . .) 

 

 

2. Use an appropriate function to generate a vector of 100 numbers that go from 0 to 2 with a 

constant interval. Assuming this first vector is called x, create a new vector that contains sine(2x 

- 0.5). Determine the minimum and the maximum of sine(2x - 0.5). Does this match what you 

expect?  

 

3. Create 5 vectors, each containing 10 random numbers. Give each vector a different name. 

Creacte a new vector where the 1
st
 element contains the sum of the 1

st
 elements in your original 5 

vectors, the 2
nd

 element contains the sum of the 2
nd

 elements, etc. Determine the mean of this 

new vector. (Hint: this should be a very easy set of operations.) 

 

4. Create the following matrix using the least amout of code (ir should be only around 30 

characters): 

 
     [,1] [,2] [,3] [,4] [,5] 

[1,]    1    2    3    4    5 

[2,]    6    7    8    9   10 

[3,]   11   12   13   14   15 

[4,]   16   17   18   19   20 

[5,]   21   22   23   24   25 

 

5. If you are bored, try this. Given the following set of linear equations: 

 

27.2x + 32y – 10.8z = 401.2 

x – 1.48y = 0 

409.1x +13.5z = 2.83 

 

Solve for x, y, and z using matrix algebra. 
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3. Data frames, data import, and data export  

Crawley 2007: Chapter 4, Dalgaard 2008: Sections 1.2.10 & 2.4, R-Data: Section 1.2, R-Intro: Sections 

6 & 7 

3.1. Reading data from files 

As described above, a data frame is a type of data structure in R with rows and colums, where 

different columns can contain data with different modes. A data frame is probably the most 

common data structure that you will use for storing what you might call ―data sets‖. The easiest 

way to create a data frame is to read in data from a file—this is done using the function 

read.table, which works with ASCII text files. Data can be read in from other files as well, 

using different functions, but read.table is the most commonly used approach. R is very 

flexible in how it reads in data from text files. Typically, organization will be as follows 

 
agency site  date  discharge flag.discharge 

USGS  4232730 2006-01-01   75  P 

USGS  4232730 2006-01-02     493  P 

USGS  4232730 2006-01-03    1380  P 

USGS  4232730 2006-01-04    1910  P 

USGS  4232730 2006-01-05    1940  P 

. . . 

 

Note that the column labels in the header have to be compatable with R‘s variable naming 

convention, or else R will make some changes as they are read in (or won‘t read the data in 

correctly). With this option, R will assign row numbers based on the order of the observations. 

So, for example, the data shown above without row labels are in the text file River_flow.txt, and 

they can be read in and assigned to the data frame flow.dat using the following command. 

 
> flow.dat<-read.table("River_flow.txt",header=TRUE) 

> flow.dat 

   agency    site       date discharge flag.discharge 

1    USGS 4232730 2006-01-01        75              P 

2    USGS 4232730 2006-01-02       493              P 

3    USGS 4232730 2006-01-03      1380              P 

4    USGS 4232730 2006-01-04      1910              P 

... 

 

Note that you must specify header=TRUE, or else R will interpret the row of labels as data. If 

the file you are trying to load is not in the directory that R is working in (the working directory, 

which can be checked with getwd() and changed with setwd(file= "filename")or 

through the File menu [after selecting ―File‖, select ―Change dir…‖]) you can include a file path, 

but note that the path should have forward, not backward, slashes (or double backward slashes, if 

you prefer). 

 

If you do not specify a field separtor (the sep argument) R assumes that any spaces or tabs 

separate the data in your text file. In this case, the number of white space characters separating 

your columns does not matter. However, any character data that contain spaces must be 
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surrounded by quotes (otherwise, R interprets the data on either side of the white space as 

different elements). 

 

Alternately, other separators can be used. If you specify a separator (say sep="\t" for tabs or 

sep="," for commas) two consecuative separators will be interpreted as a missing value. 

Conversely, with the default options, you need to explicitly identify missing values in your data 

file with NA (or any other character, as long as you tell R what it is with the na.strings 

argument).  

 

For some field separators, there are alternate functions that can be used with the default 

arguments, e.g. read.csv, which is identical to read.table, except default arguments differ. 

Also, R doesn‘t care what the name of your file is or what its extension is, as long as it is an 

ASCII text file. A few other handy bits of information for using read.table follow. You can 

include comments at the end of rows in your data file—just preceed them with a #. Also, R will 

recognize NaN, Inf, and -Inf in input files. 

 

Probably the easiest approach to handling missing values is to indicate their presence with NA in 

the text file. R will automatically recognize these as missing values. Since the file River_flow.txt 

uses NA for missing values, they should have been read in properly
21

. 

 
> which(is.na(flow.dat$discharge)) 

[1] 273 

> flow.dat[271:275,] 

    agency    site       date discharge flag.discharge 

271   USGS 4232730 2006-09-28      1430              P 

272   USGS 4232730 2006-09-29      1430              P 

273   USGS 4232730 2006-09-30        NA           <NA> 

274   USGS 4232730 2006-10-01      1290              A 

275   USGS 4232730 2006-10-02       649              A 

 

In most cases, it makes the most sense to put your data into a text file for reading into R. This 

can be done in various ways. Data downloaded from the internet are often in text files to begin 

with. Data can be entered directly into a text file using a text editor. For data that are in a 

spreadsheet program such as Excel you have at least two options. Data can be copied and pasted 

into a text editor and saved as a text file—this creates a tab-delimited file. Alternatively, data can 

be saved directly from spreadsheet programs, e.g. as ―Formatted Text (Space delimited)‖ (*.prn) 

in Excel (although this can be problematic for spreadsheets with a large number of columns), or 

as comma-separated values (*.csv). 

 

If it is not possible to convert your data file into a text file, e.g. if the original software is not 

available for opening the file, it is likely that you can find a function for reading the file directly. 

R has the capability to handle many different formats
22

.  

                                                 

 

 
21

 The tricks used in these two commands are described in section 5.2. 
22

 See the foreign package. 
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This may all seem confusing, but it is really not that bad. Your best bet is to play around with the 

different options, find one that you like, and stick with it. Let‘s work on another example. First, 

take a look at the contents of the file US_pop.txt. It looks something like this: 

 
year pop 

1790  3929214 

1800  5308483 

1810  7239881 

... 

 

A header row is present, but row numbers are not present. So, it should be easy to read in: 

 
> pop.dat<-read.table("US_pop.txt",header=TRUE) 

> pop.dat 

   year       pop 

1  1790   3929214 

2  1800   5308483 

3  1810   7239881 

... 

21 1990 248709873 

22 2000 281421906 

 

Note that we did not need to specify a separator, since one or more white space characters 

(spaces, in this case) are interpreted as a separator
23

. This type of read.table statement, that 

includes only the file name and header=TRUE is the approach that we recommend. Unless your 

file has unquoted character strings that contain white space characters (e.g., spaces) or missing 

values are actually missing (i.e., not represented by NA or some other string), there is no need to 

specify the separator with the sep argument. 

 

Data frames can actually be edited interactively in R using the edit function. This is really only 

useful for small data sets. 

 
> pop.dat<-edit(pop.dat) 

 

3.2. Creating data frames manually 

Data frames can be made manually using the data.frame function: 

 
> date<-c("1-FEB-2008","17-APR-2008","20-JUN-2008","19-SEPT-2008") 

> mass<-c(1.8,3.4,6.3,7.8) 

> dat<-data.frame(sample.date=date,mass.mean=mass) 

> dat 

                                                 

 

 
23

 In fact, if we had specified sep=" " R would have returned an error, since the number of spaces between entries 

is not consistent in this file. 
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   sample.date mass.mean 

1   1-FEB-2008       1.8 

2  17-APR-2008       3.4 

3  20-JUN-2008       6.3 

4 19-SEPT-2008       7.8 

 

While this approach is not an efficient way to enter data that could be read in directly, it can be 

very handy for some applications, e.g. creating customized summary tables. Note that column 

names are specified using an equal sign. It is also possible to specify (or change, or check) 

column names for an existing data frame using the function names. 

 
> names(dat)<-c("Date","Mass") 

> dat 

          Date Mass 

1   1-FEB-2008  1.8 

2  17-APR-2008  3.4 

3  20-JUN-2008  6.3 

4 19-SEPT-2008  7.8 

 

Row names (1:4 above) can be specified in the data.frame function with the row.names 

argument. 

 
> dat<-data.frame(sample.date=date,mass.mean=mass, 

+ row.names=c("D","E","A","B")) 

> dat 

   sample.date mass.mean 

D   1-FEB-2008       1.8 

E  17-APR-2008       3.4 

A  20-JUN-2008       6.3 

B 19-SEPT-2008       7.8 

 

Specifying row names can be useful if you want to index data, which will be covered later. Row 

names can also be specified for an existing data frame with the rownames function (not to be 

confused with the row.names argument). 

3.3. Working with data frames 

So what do you do with data in R once it is in a data frame?  Commonly, the data in a data frame 

will be used in some type of analysis or plotting procedure. It it usually necessary to be able to 

select and identify specific columns (i.e., vectors) within data frames. There are two ways to 

specify a given column of data from within a data frame. The first is to use the $ notation. To 

demonstrate, let‘s read in some data on biological hydrogen production from glucose: 

 
> h2.dat<-read.table("Biohydrogen.txt",header=TRUE) 

 

To see what the column names are, we can use the function names: 

 
> names(h2.dat) 

[1] "reactor" "date"    "time"    "vol"     "conc.h2"   
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The $ notation just uses a $ between the data frame name and column name to specify a 

particular column. Say we want to look at the vol column, which contains the volume of biogas 

(a mixture of H2 and CO2 in this case) produced by a particular reactor
24

. 

 
> h2.dat$vol 

  [1]  0.00  0.00 19.50 14.25  9.10 24.20 17.50  4.00  4.00  0.00 

 [11]  0.00 21.40 16.20  9.90 25.50 17.40  4.00  0.00  0.00  0.00 

 [21] 22.50 17.00 10.50 26.60 17.10  2.00  0.00  0.00  0.00 21.20 

 [31] 15.30 10.40 23.60 16.80  7.00  4.00  0.00  0.00 20.40 12.70 

 [41]  9.30 21.20 20.70  2.60    NA  0.00  0.00  0.00  4.20  0.00 

 [51]  0.00  0.00  1.85  1.70  0.00  0.00  0.00  3.60  0.00  0.00 

 [61]  0.00  0.00  2.50  0.00  0.00  0.00  3.70  0.00  0.00  0.00 

 [71]  2.00  0.80  0.00  0.00 17.80 14.40 14.00 24.60  5.10  2.60 

 [81]  5.50  0.00  0.00 22.75 20.00 16.50 14.90  7.00  4.00  3.00 

 [91]  0.00  0.00 21.90 19.20 16.60 17.50  6.30  4.40  1.50  0.00 

[101]  0.00 25.20 19.80 17.30 17.30  6.60  2.70  2.80  0.00  0.00 

[111] 24.60 21.20 18.80 15.10  9.00  2.40  0.00  0.00  0.00 19.60 

[121] 18.30 16.30 23.00  5.00  2.10  6.20  0.00  0.00 11.35  0.00 

[131]  0.00  0.00  0.00  2.00  0.00 

 

Although it is handy to think of data frame columns as having a vertical orientation, this 

orientation is not present when they are printed individually—instead, elements are printed from 

left to right, and then top to bottom. The expression h2.dat$vol could be used just as you 

would any other vector. For example: 

 
> mean(h2.dat$vol) 

[1] NA 

 

R can‘t calculate the mean because of a single NA value. Let‘s remove it first using the na.omit 

function (more on this below): 

 
> mean(na.omit(h2.dat$vol)) 

[1] 7.719403 

 

The second option for working with individual colums within a data frame is to use the 

commands attach and detach. Both of these functions take a data frame as an argument: 

attaching a data frame puts all the columns within that data frame in R‘s search path, and they 

can be called by using their names alone without the $ notation. 

 
> attach(h2.dat) 

> vol 

  [1]  0.00  0.00 19.50 14.25  9.10 24.20 17.50  4.00  4.00  0.00 

 ... 

                                                 

 

 
24

 With the $ notation, you don‘t even need to specify the complete name of the column you want—just enough to 

distinguish it from other columns is sufficient, so h2.dat$v would also work here. 
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[131]  0.00  0.00  0.00  2.00  0.00 

 

Note that when you are done using the individual columns, it is good practice to detach your 

data frame. Once the data frame is detached, R will no longer know what you mean when you 

specify the name of a column alone: 

 
> detach(h2.dat) 

> vol 

Error: object "vol" not found 

 

If you modify a variable that is part of an attached data frame, the data within the data frame 

remain unchanged; you are actually working with a copy of the data frame. 

 

The $ notation can also be used to add columns to a data frame. For example, if we want to add a 

column to this data frame that has combined date and time, we can use the following code. 

 
> h2.dat$date.time<-paste(h2.dat$date,h2.dat$time,sep=", ") 

 

Let‘s say we also want a new column with biogas volume in L instead of mL: 

 
> h2.dat$vol.L<-h2.dat$vol/1000 

 

Here is what our new data frame looks like: 

 
> h2.dat 

    reactor      date  time   vol conc.h2        date.time   vol.L 

1      G172 9/18/2006 11:12  0.00      NA 9/18/2006, 11:12 0.00000 

2      G172 9/18/2006 14:00  0.00    0.00 9/18/2006, 14:00 0.00000 

3      G172 9/19/2006  9:26 19.50    7.73  9/19/2006, 9:26 0.01950 

... 

135    G171 9/21/2006 12:40  0.00   30.26 9/21/2006, 12:40 0.00000 

 

Both the $ notation and the attach and detach functions can be used to specify data vectors 

within any other function. However, there are other options when using functions. For some 

functions, you can specify the data frame that should be used with the data argument, e.g. 

data=h2.dat, and then refer to the column(s) within the data frame directly by name. This 

argument can be used in many different functions. For other functions, you can use the with 

function.  Although it looks a bit clunky, the with function can save code and help prevent user 

errors. 

 

Many data frames that contain real data will have some missing observations. R has several tools 

for working with these observations. For starters, the na.omit function can be used for 

removing NAs from a vector. Let‘s work with the conc.h2 column, which contains the 

concentration of H2 (% volume) in the produced biogas. 

 
> h2.dat$conc.h2 

  [1]    NA  0.00  7.73 10.72 15.69 21.64 23.53 26.52 25.06    NA 
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 [11]  0.00  8.39 11.89 17.84 24.24 27.20 26.23 27.79    NA  0.00 

 [21]  7.85 11.54 18.72 22.38 24.77 28.46 27.06    NA  0.00  7.38 

 [31] 10.66 11.89 20.97 25.36 17.01 25.22    NA  0.00  6.57  9.29 

 [41] 13.08 16.82 22.88 22.10    NA    NA    NA    NA    NA    NA 

 [51]    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA 

 [61]    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA 

 [71]    NA    NA    NA  0.00  6.67 10.51 14.48 21.20 23.61 18.96 

 [81] 26.25    NA  0.00  8.31 13.55 21.26 23.11 25.78 26.40 27.13 

 [91]    NA  0.00  7.50 11.82 17.21 21.08 22.86 22.00 26.49    NA 

[101]    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA 

[111]    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA 

[121]    NA    NA    NA    NA    NA    NA    NA 31.20 35.22    NA 

[131]    NA    NA    NA 30.93 30.26 

 

> na.omit(h2.dat$conc.h2) 

 [1]  0.00  7.73 10.72 15.69 21.64 23.53 26.52 25.06  0.00  8.39 

[11] 11.89 17.84 24.24 27.20 26.23 27.79  0.00  7.85 11.54 18.72 

[21] 22.38 24.77 28.46 27.06  0.00  7.38 10.66 11.89 20.97 25.36 

[31] 17.01 25.22  0.00  6.57  9.29 13.08 16.82 22.88 22.10  0.00 

[41]  6.67 10.51 14.48 21.20 23.61 18.96 26.25  0.00  8.31 13.55 

[51] 21.26 23.11 25.78 26.40 27.13  0.00  7.50 11.82 17.21 21.08 

[61] 22.86 22.00 26.49 31.20 35.22 30.93 30.26 

attr(,"na.action") 

 [1]   1  10  19  28  37  45  46  47  48  49  50  51  52  53  54  55 

[17]  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71 

[33]  72  73  82  91 100 101 102 103 104 105 106 107 108 109 110 111 

[49] 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 

[65] 130 131 132 133 

attr(,"class") 

[1] "omit" 

 

Although the result does contain more than just the non-NA values, only the non-NA values will 

be used in subsequent operations
25

. Note that the result of na.omit contains more information 

than just the non-NA values. This function can also be applied to complete data frames. In this 

case, any row with an NA is removed. 

 
> h2.clean.dat<-na.omit(h2.dat) 

 

It is often necessary to identify NAs present in a data structure. The is.na function can be used 

for this—it can also be negated using the ―!‖ character. 

 
> is.na(h2.dat$conc.h2) 

  [1]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE 

 [11] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE 

 [21] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE 
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 The other components are attributes, which can be handy if you need them, but can generally be ignored. In this 

case, na.action records the original row number of values that were removed. 
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 [31] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE 

 [41] FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE 

 [51]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE 

 [61]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE 

 [71]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

 [81] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

 [91]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE 

[101]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE 

[111]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE 

[121]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE 

[131]  TRUE  TRUE  TRUE FALSE FALSE  

3.4. Writing data to files 

With R, it is easy to write data to files. The function write.table is usually the best function 

for this purpose. Given only a data frame name and a file name, this function will write the data 

contained in the data frame to a text file, using spaces for separators, and putting double quotes 

around all character data. There are several characteristics of the file that is created that can be 

controlled using this function, as seen in the complete list of arguments given in the associated 

help file: 

 
write.table(x, file = "", append = FALSE, quote = TRUE, sep = " ", eol 

= "\n", na = "NA", dec = ".", row.names = TRUE, col.names = TRUE, 

qmethod = c("escape", "double")) 

 

For example, if we wanted to write out the entire contents of the h2.dat dataframe we could use 

the following code: 

 
> write.table(h2.dat,"h2.out") 

 

Setting the append argument to TRUE lets you add data to a file that already exists. Note that 

there are several other arguments for changing the appearance of the output. 

 

The write.table function cannot be used with all data structures in R (e.g. lists), but it is 

possible to send all R output to a file using the sink function. The follow command would send 

all the susequent output from R to the file R_stuff.out. 

 
> sink("R_stuff.out") 

 

To go back to the default ―sink‖—i.e., the GUI itself, use: 

 
> sink() 
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Exercises 

1. The file Thakali_Ni_EC50s.txt contains nickel EC50s for barley root elongation in soils, along 

with relevant soil chemistry. Open the file to see how it is formatted (if you don‘t have a text 

editor that shows tabs and spaces, you can use Microsoft Word, and click the ―show paragraph 

marks‖ button, ¶), and then read the data into R using the function read.table. Print the 

resulting data frame to the screen to make sure the data were read in correctly. 

 

Did you include sep in your command? If not, do so now, if so, try the command without the 

sep argument. Is it needed? Delete the quotes that are present in the data file around the soil 

names (use the search and replace feature of your text editor) and save the file with a new name. 

Now do you need the sep argument to read the data in? Why? 

 

2. Determine the minimum and maximum soil pH (ph.soil) in your new data frame that contains 

the Thakali data. Next, add a new column to the data frame that contains the log10 of the EC50 

(ec50.ni). 

 

3. Create a new data frame that contains the mean Ni EC50, soil pH, and soil organic carbon 

(oc) from the Thakali data. Write out the summary to a new file using the default options. Write 

the data out again, but this time, see if you can eliminate the row labels. Finally, try changing the 

separator to a tab. 

 

4. Open the Excel file Carion_beetles.xls, which contains data on the presence of several species 

of carion beetles in 25 locations in NY state. Can you think of more than one way to get these 

data into R?  Save these data to a text file using your chosen method, and try reading them into R 

using read.table. Try adding a space between the genus abbreviation and the species name 

for one or two species and repeat the process. Does this cause any problems?  
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4. Graphics, part I   
Dalgaard 2008: Section 2.2, R-Intro: Section 12, Murrell 2005 

4.1. Introduction to the plot function 

It is easy to produce publication-quality graphics in R. However, in this first section on graphics, 

we will focus on the simplest plots that can be produced with the plot function. This function 

produces a plot as a side effect, but the type of plot produced depends on the type of data 

submitted. The basic plot arguments, as given in the help file for plot.default are: 

 
plot(x, y = NULL, type = "p",  xlim = NULL, ylim = NULL, 

     log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL, 

     ann = par("ann"), axes = TRUE, frame.plot = axes, 

     panel.first = NULL, panel.last = NULL, asp = NA, ...) 

 

To plot a single vector, all we need to do is supply that vector as the only argument to the 

function: 

 
> z<-rnorm(10) 

> plot(z) 

 
In this case, R simply plots the data in the order they occur in the vector. To plot one variable 

versus another, just specify the two vectors for the first two arguments: 

  
> x<- -15:15 

> y<-x^2 

> plot(x,y) 
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And that is all it takes to generate plots in R, as long as you like the default settings. Of course, 

the default settings generally won‘t be sufficient for publication- or presentation-quality 

graphics. Fortunately, plots in R are very flexible. The table below shows some of the more 

common arguments to the plot function, and some of the common settings. For many more 

arguments, see the help file for par. 

 

 

Argument Common options Additional information 

bg 

"red" 

"blue" 

many more 

Color of fill for some plotting 

symbols (see below) 

col 

"red" 

"blue" 

1 

Through 
657 

Color of plotting symbols and 

lines. Type colors() to get 

list. You can also mix your 

own colors. See ―Color 

Specification‖ in the help file 

for par. 

las 

0 

1 

2 

3 

Rotation of numeric axis 

labels. 

log 

"x" 

"y" 

"xy" 

For making log axes. If you 

have multiple decades, you 

may have to use axis function 

(or our function log.axis) for 

nice-looking axes 
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lty 

0 

1 or "solid" 

2 or "dashed" 

3 or "dotted" 

through 
6 

Line types. Can also specify 

custom types, e.g, 23 would 

have a 2-unit dash followed by 

a 3-unit space. Note that lines 

simply connect points—there 

is no automatic ―smoothing‖. 

main 
Any character string, e.g.,  
"Plot 1" 

Adds a main title at the top. 

pch 

0 

through 
25 

Plotting symbols. See below 

for symbols. Can also use any 

single character, e.g., "v" or 

"@". 

type 

"p" for points 

"l" for line 

"b" for both 

"o" for over 

"n" for none 

"n" can be handy for setting 

up a plot that you later add 

data to. 

xlab, ylab 
Any character string, e.g., 
"Income (US$)" 

For specifying axis labels. 

xlim, ylim 

Any 2-element vector, e.g., 
c(0,100) 

c(-10,10) 
c(55,0) 

List higher value first to 

reverse axis 

 

 

Use of some of the above arguments is shown in the following example. 

 
> plot(x,y,type="o",xlim=c(-20,20),ylim=c(-10,300),pch=21,col="red", 

+ bg="yellow",xlab="The X variable",ylab="X squared") 
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The plot function is effectively vectorized. It accepts vectors for the first two arguments (which 

specify the x and y position of your observations), but can also accept vectors for some of the 

other arguments, including pch or col. Among other things, this provides an easy way to 

produce a reference plot demonstrating R‘s plotting symbols and lines. If you use R regularly, 

you may want to print a copy out (or make your own). 

 
> plot(1:25,rep(1,25),pch=1:25,ylim=c(0,10),xlab="",ylab="",axes=F) 

> text(1:25,1.8,as.character(1:25),cex=0.7) 

> text(12.5,2.5,"Default",cex=0.9) 

> points(1:25,rep(4,25),pch=1:25,col="blue") 

> text(1:25,4.8,as.character(1:25),cex=0.7,col="blue") 

> text(12.5,5.5,'col="blue"',cex=0.9,col="blue") 

> points(1:25,rep(7,25),pch=1:25,col="blue",bg="red") 

> text(1:25,7.8,as.character(1:25),cex=0.7,col="blue") 

> text(10,8.5,'col="blue",',cex=0.9,col="blue") 

> text(15,8.5,'bg="red"',cex=0.9,col="red") 

> box() 
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Exercises  

1. Produce a data frame with two columns: x, which ranges from -2 to 2 and has a small 

interval between values (for plotting), and cosine(x). Plot cosine(x) vs. x as a line. Repeat, but try 

some different line types or colors. 

 

2. Read in the data in the file Oxychem.txt, which contains the concentration of the chemical 

Dechlorane Plus in tree bark from western NY State and surrounding areas. Plot the Dechlorane 

Plus concentration (dechlor) vs. the distance (dist—in km) from the suspected source 

(OxyChem). Try using linear and logarithmic axes, and be sure to add appropriate axis labels and 

a heading. Try a few plotting symbols and colors. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Default

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

col="blue"

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

col="blue", bg="red"
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5. Manipulating data, part I 
Crawley 2007: Chapters 2 & 4, Dalgaard 2008: Sections 1.2 & 10.1.3, R-Intro: Section 5.4, R-Lang: 

Section 3.4, Venables & Ripley 2002: Chapter 2. Spector 2008 

5.1. Modes, classes, attributes, length, and coercion 

As described above, the mode of an object describes the type of data that it contains. In R, mode 

is an object attribute. All objects have at least two attributes: mode and length, but many objects 

have more. 

 
> x<-1:10 

 

> mode(x) 

[1] "numeric" 

 

> length(x) 

[1] 10 

 

It is often necessary to change the mode of a data structure, e.g. to have your data displayed 

differently, or to apply a function that only works with a particular type of data structure. In R 

this is called coercion. There are many functions in R that have the structure as.something 

that change the mode of a submitted object to ―something‖. For example, say you want to treat 

numeric data as character data. 

 
> x<-1:10 

> as.character(x) 

 [1] "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10" 

 

Or, you may want to turn a matrix into a data frame. 
 

> X<-matrix(1:30,nrow=3) 

> as.data.frame(X) 

  V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 

1  1  4  7 10 13 16 19 22 25  28 

2  2  5  8 11 14 17 20 23 26  29 

3  3  6  9 12 15 18 21 24 27  30 

 

If you are unsure of whether or not a coercion function exists, give it a try—two other common 

examples are as.numeric and as.vector. 

 

Attributes are important internally for determining how objects should be handled by various 

functions. In particular, the class attribute determines how a particular object will be handled 

by a given function. For example, output from a linear regression has the class "lm", and will be 

handled differently by the print function than will a data frame, which has the class 

"data.frame". The utility of this object-oriented approach will become more apparent later on. 
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It is often necessary to know the length of an object. Of course, length can mean different things. 

Three useful functions for this are nrow, NROW, and length. 

 

The function nrow will return the number of rows in a two-dimensional data structure. 

 
> X<-matrix(1:30,nrow=3) 

> X 

     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 

[1,]    1    4    7   10   13   16   19   22   25    28 

[2,]    2    5    8   11   14   17   20   23   26    29 

[3,]    3    6    9   12   15   18   21   24   27    30 

> nrow(X) 

[1] 3 

 

The vertical analog is ncol. 
 

> ncol(X) 

[1] 10 

 

You can get both of these at once with the dim function. 

 
> dim(X) 

[1]   3  10 

 

For a vector, use the function NROW or length. 

 
> x<-1:10 

> NROW(x) 

[1] 10 

 

The value returned from the function length depends on the type of data structure you submit, 

but for most data structures, it is the total number of elements. 

 
> length(X) 

[1] 30 

> length(x) 

[1] 10 

5.2. Indexing, sub-setting, splitting, sorting, and locating data 

Subsetting and indexing are ways to select specific parts of a data structure (such as specific 

rows within a data frame) within R. Indexing (also known as subscripting) is done using square 

brackets in R: 

 
> v1<-c(5,1,3,8) 

> v1 

[1] 5.0 1.0 3.0 8.0 

 

Say we want the 3
rd

 observation: 
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> v1[3] 

[1] 3.2 

 

R is very flexible in terms of what can be selected or excluded.  

 

This returns the 1
st
 through 3

rd
 observation: 

 
> v1[1:3] 

[1] 5.0 1.0 3.2 

 

While this returns all but the 4
th

 observation: 

 
> v1[-4] 

[1] 5.0 1.0 3.2 

 

This bracket notation can also be used with relational constraints. For example, if we want only 

those observations that are < 5.0: 

 
> v1[v1<5] 

[1] 1.0 3.2 

 

This may seem a bit confusing, but if we evaluate each piece separately, it becomes more clear: 
 

> v1<5 

[1] FALSE  TRUE  TRUE FALSE 

 

> v1[c(FALSE,TRUE,TRUE,FALSE)] 

[1] 1.0 3.2 

 

While we are on the topic of subscripts, we should note that, unlike some other programming 

languages, the size of a vector in R is not limited by its initial assignment. This is true for other 

data structures as well. To increase the size of a vector, just assign a value to a position that 

doesn‘t currently exist: 

 
> length(v1) 

[1] 4 

 

> v1[8]<-10 

> length(v1) 

[1] 8 

> v1 

[1]  5.0  1.0  3.2  8.0   NA   NA   NA 10.0 

 

Indexing can be applied to other data structures in a similar manner as shown above. For data 

frames and matrices, however, we are now working with two dimensions. In specifying indices, 

row numbers are given first. To demonstrate subscripting as applied to data frames, let‘s read in 

a file: 
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> flow.dat<-read.table("River_flow.txt",header=TRUE) 

 

This data frame has 730 rows and five columns: 
 

> dim(flow.dat) 

[1] 730   5 

 

> flow.dat 

    agency    site       date discharge flag.discharge 

1     USGS 4232730 2006-01-01        75              P 

2     USGS 4232730 2006-01-02       493              P 

3     USGS 4232730 2006-01-03      1380              P 

... 

729   USGS 1509000 2006-12-30       672              A 

730   USGS 1509000 2006-12-31       628              A 

 

Let‘s say we want only the first five rows and first two columns: 
 

> flow.dat[1:5,1:2] 

  agency    site 

1   USGS 4232730 

2   USGS 4232730 

3   USGS 4232730 

4   USGS 4232730 

5   USGS 4232730 

 

If an index is left out, R returns all values in that dimension (you need to include the comma). 

  
> flow.dat[1:5,] 

  agency    site       date discharge flag.discharge 

1   USGS 4232730 2006-01-01        75              P 

2   USGS 4232730 2006-01-02       493              P 

3   USGS 4232730 2006-01-03      1380              P 

4   USGS 4232730 2006-01-04      1910              P 

5   USGS 4232730 2006-01-05      1940              P 

 

You can also specify row or column names directly within the brackets—this can be very handy 

when order may change in future versions of your code. 

 
> flow.dat[1:5,"site"] 

[1] 4232730 4232730 4232730 4232730 4232730 

 

You can also specify multiple column names using the c function
26

. 

 

                                                 

 

 
26

 Since you are using character data to identify columns in the last two examples (both "site" and 

c("agency","site") are chacter vectors), it is also possible to use the function paste. This can be handy, for 

example, when you are working in a loop, and want to select a different row or column with each iteration.  
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> flow.dat[1:5,c("agency","site")] 

  agency    site 

1   USGS 4232730 

2   USGS 4232730 

3   USGS 4232730 

4   USGS 4232730 

5   USGS 4232730 

 

Relational constraints can also be used in indexes. 

 
> flow.dat[flow.dat$discharge<60,] 

    agency    site       date discharge flag.discharge 

50    USGS 4232730 2006-02-19        55              P 

77    USGS 4232730 2006-03-18        31              P 

78    USGS 4232730 2006-03-19        52              P 

80    USGS 4232730 2006-03-21        59              P 

92    USGS 4232730 2006-04-02        50              P 

100   USGS 4232730 2006-04-10        58              P 

106   USGS 4232730 2006-04-16        51              P 

116   USGS 4232730 2006-04-26        56              P 

NA    <NA>      NA       <NA>        NA           <NA> 

 

While indexing can clearly be used to create a subset of data that meet certain criteria, the 

subset function is often easier and shorter to use for data frames
27

. Subsetting is used to select a 

subset of a vector, data frame, or matrix that meets a certain criterion (or criteria). To return what 

was given in the last example
28

. 

 
> subset(flow.dat,discharge<60) 

    agency    site       date discharge flag.discharge 

50    USGS 4232730 2006-02-19        55              P 

77    USGS 4232730 2006-03-18        31              P 

78    USGS 4232730 2006-03-19        52              P 

80    USGS 4232730 2006-03-21        59              P 

92    USGS 4232730 2006-04-02        50              P 

100   USGS 4232730 2006-04-10        58              P 

106   USGS 4232730 2006-04-16        51              P 

116   USGS 4232730 2006-04-26        56              P 

 

Note that the $ notation does not need to be used in the subset function. As with indexing, 

multiple constraints can also be used: 

 
> subset(flow.dat,discharge>4000 & site!=4232730) 

    agency    site       date discharge flag.discharge 

                                                 

 

 
27

 A note about the subset function that may or may not ever be relevant: by default, a subsetted object retains all 

the levels of a factor (see following sections for information on factors). If you want to remove unused levels, use 

drop=TRUE. 
28

 Well, the result is almost identical to the previous result—note the different handling of NA values. 
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438   USGS 1509000 2006-03-14      4540              A 

544   USGS 1509000 2006-06-28      6050              A 

545   USGS 1509000 2006-06-29      4760              A 

 

In some cases you may want to select observations that include any one value out of a set of 

possibilities. Say we only want those observations where flag.discharge is A, Ae, or P. We 

could use this: 

 
> subset(flow.dat,flag.discharge=="A" | flag.discharge=="Ae" | 

flag.discharge=="P") 

    agency    site       date discharge flag.discharge 

1     USGS 4232730 2006-01-01        75              P 

2     USGS 4232730 2006-01-02       493              P 

3     USGS 4232730 2006-01-03      1380              P 

4     USGS 4232730 2006-01-04      1910              P 

... 

 

But, this is an easier way: 

 
> subset(flow.dat,flag.discharge %in% c("A","Ae","P")) 

    agency    site       date discharge flag.discharge 

1     USGS 4232730 2006-01-01        75              P 

2     USGS 4232730 2006-01-02       493              P 

3     USGS 4232730 2006-01-03      1380              P 

4     USGS 4232730 2006-01-04      1910              P 

... 

 

Indexing matrices and arrays follows what we have just covered. For example: 

 
> X<-matrix(1:30,nrow=3) 

> X 

     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 

[1,]    1    4    7   10   13   16   19   22   25    28 

[2,]    2    5    8   11   14   17   20   23   26    29 

[3,]    3    6    9   12   15   18   21   24   27    30 

 

> X[3,8] 

[1] 24 

 

> X[,3] 

[1] 7 8 9 

 

> Y<-array(1:90,dim=c(3,10,3)) 

> Y[3,1,1] 

[1] 3 
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Indexing is a little trickier for lists—you need to use double square brackets, [[i]], to specify 

an element within a list
29

. Of course, if the element within the list has multiple elements, you 

could use indexing to select specific elements within it.  

 
> list.1<-list(1:10,X,Y) 

> list.1[[1]] 

 [1]  1  2  3  4  5  6  7  8  9 10 

 

Although you may not run into a need for it, it is possible to use double, triple, etc. indexing with 

all types of data structures. R evaluates the expression from left to right. 

 
> list.1[[2]][3,2] 

[1] 6 

 

Indexing, either alone or in combination with the subset function, can be used for some pretty 

sophisticated subsetting. For example, taking the hydrogen production data: 

 
> h2.dat<-read.table("Biohydrogen.txt",header=TRUE) 

> h2.dat 

    reactor      date  time   vol conc.h2 

1      G171 9/18/2006 11:12  0.00      NA 

2      G171 9/18/2006 14:00  0.00   31.20 

3      G171 9/19/2006  9:26 11.35   35.22 

... 

134    G185 9/20/2006 13:41  2.10      NA 

135    G185 9/21/2006 12:40  6.20      NA  

 

Let‘s say we want to select only data from those reactors that do not have missing H2 

concentrations, with an exception for the first observation (11:12 on 9/18/2006, for which no 

measurements were made). This exception makes the code more complicated, but see if you can 

figure out how this works: 

 
> subset(h2.dat,!reactor %in% h2.dat$reactor[h2.dat$date!="9/18/2006" 

+ & h2.dat$time!="11:12"][is.na(h2.dat$conc.h2[h2.dat$date!=  

+ "9/18/2006" & h2.dat$time!="11:12"])]) 

    reactor      date  time   vol conc.h2 

10     G172 9/18/2006 11:12  0.00      NA 

11     G172 9/18/2006 14:00  0.00    0.00 

12     G172 9/19/2006  9:26 19.50    7.73 

... 

107    G182 9/20/2006 13:41  4.40   22.00 

108    G182 9/21/2006 12:40  1.50   26.49 

 

                                                 

 

 
29

 You can use single brackets too, but doing so will return an object that is still a list. 
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An easy way to divide data into groups is to use the split function. This function will divide a 

data structure (typically a vector or a data frame) into one subset for each level of the variable 

you would like to split by. The subsets are stored together in a list. 

 
h2.splt<-split(h2.dat,h2.dat$reactor) 

 

This function can be handy for viewing data, especially when working with data frames with 

many groups.  

 
> h2.splt 

$G171 

  reactor      date  time   vol conc.h2 

1    G171 9/18/2006 11:12  0.00      NA 

2    G171 9/18/2006 14:00  0.00   31.20 

3    G171 9/19/2006  9:26 11.35   35.22 

4    G171 9/19/2006 12:51  0.00      NA 

5    G171 9/19/2006 16:00  0.00      NA 

6    G171 9/19/2006 22:52  0.00      NA 

7    G171 9/20/2006  8:52  0.00      NA 

8    G171 9/20/2006 13:41  2.00   30.93 

9    G171 9/21/2006 12:40  0.00   30.26 

... 

$G185 

    reactor      date  time  vol conc.h2 

127    G185 9/18/2006 11:12  0.0      NA 

128    G185 9/18/2006 14:00  0.0      NA 

129    G185 9/19/2006  9:26 19.6      NA 

130    G185 9/19/2006 12:51 18.3      NA 

131    G185 9/19/2006 16:00 16.3      NA 

132    G185 9/19/2006 22:52 23.0      NA 

133    G185 9/20/2006  8:52  5.0      NA 

134    G185 9/20/2006 13:41  2.1      NA 

135    G185 9/21/2006 12:40  6.2      NA 

 

If you apply split to individual vectors, the resulting list can be used directly in some plotting 

or summarizing functions to give you results for each separate group. (There are usually other 

ways to arrive at this type of result.) The split function can also be handy for manipulating and 

analyzing data by some grouping variable, as we will see later. 

 

It is often necessary to sort data. For a single vector, this is done with the function sort. 

 
> x<-rnorm(5) 

> x 

[1]  0.08396616  0.60914099  0.93206451 -1.29747244  0.87950418 

> y<-sort(x) 

> y 

[1] -1.29747244  0.08396616  0.60914099  0.87950418  0.93206451 
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But what if you want to sort an entire data frame by one column?  In this case it is necessary to 

use the function order, in combination with indexing. 

 
> h2.dat[order(h2.dat$vol),] 

> h2.dat[order(h2.dat$vol),] 

    reactor      date  time   vol conc.h2 

1      G171 9/18/2006 11:12  0.00      NA 

2      G171 9/18/2006 14:00  0.00   31.20 

... 

108    G182 9/21/2006 12:40  1.50   26.49 

63     G177 9/21/2006 12:40  1.70      NA 

62     G177 9/20/2006 13:41  1.85      NA 

... 

111    G183 9/19/2006  9:26 25.20      NA 

24     G173 9/19/2006 22:52 25.50   24.24 

33     G174 9/19/2006 22:52 26.60   22.38 

54     G176 9/21/2006 12:40    NA      NA 

 

The function order returns a vector that contains the row positions of the ranked data: 

 
> order(h2.dat$vol) 

  [1]   1   2   4   5   6   7   9  10  11  19  20  27  28 

... 

 

Note in the reordered data frame, the automatic row labels that are added by R stay with the 

observation that they were originally associated with when the data frame was first created. 

 

The previous discussion in this section shows how to isolate data that meet certain criteria from a 

data structure. But sometimes it is important to know where data resides in its original data 

structure. Two functions that are handy for locating data within an R data structure are match 

and which. The match function will tell you where specific values reside in a data structure, 

while the which function will return the locations of values that meet certain criteria. 

 
> match(1.85,h2.dat$vol) 

[1] 62 

 

Note that this function matches the first observation only. This function is vectorized. 

 
> match(c(1.85,2.0,25.5),h2.dat$vol) 

[1] 62  8 24 

 

Let‘s check this result: 

 
> h2.dat[c(62,8,24),] 

   reactor      date  time   vol conc.h2 

62    G177 9/20/2006 13:41  1.85      NA 

8     G171 9/20/2006 13:41  2.00   30.93 

24    G173 9/19/2006 22:52 25.50   24.24 
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The match function is useful for finding the location of the unique values, such as the 

maximum. 

 
> match(max(h2.dat$vol),h2.dat$vol) 

[1] 54 

 

Let‘s take a look at the value. 

 
> h2.dat$vol[54] 

[1] NA 

 

Oops. Try again. 

 
> match(max(na.omit(h2.dat$vol)),h2.dat$vol) 

[1] 33 

> h2.dat$vol[33] 

[1] 26.6 

 

The which function, on the other hand, will return all locations that meet the criteria. 

 
> which(h2.dat$vol<1) 

 [1]   1   2   4   5   6   7   9  10  11  19  20  27  28 

[14]  29  36  37  38  46  47  55  56  57  59  60  61  64 

[27]  65  66  68  69  70  71  73  74  75  77  78  79  81 

[40]  82  83  91  92 100 101 109 110 118 119 126 127 128 

 

Of course, you can specify multiple constraints. 

 
> which(h2.dat$vol<10 & h2.dat$vol>0) 

  8  14  17  18  23  26  35  44  45  50  53  58  62 

[14]  63  67  72  76  80  81  88  89  90  97  98  99 106 

[27] 107 108 115 116 117 124 125 133 134 135 

 

The which function can be useful for locating missing values. 

 
> which(is.na(h2.dat$vol)) 

[1] 54 

5.3. Factors 

For many analyses, it is important to distinguish between quantitative (i.e., continuous) and 

categorical (i.e., discrete) variables. Categorical data are called factors in R. Internally, factors 

are stored as numeric data (as a check with mode will tell you), but they are handled as 

categorical data in statisitical analyses. Factors are a class of data in R. R automatically 
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recognizes non-numerical data as factors when data are read in
30

, but if numerical data are to be 

used as a factor (or if character data are generated within R and not read in), conversion to a 

factor must be specified explicitly. In R, the function factor does this.  

 
> a<-c(rep(0,4),rep(1,4)) 

> a 

[1] 0 0 0 0 1 1 1 1 

> a<-factor(a) 

> a 

[1] 0 0 0 0 1 1 1 1 

Levels: 0 1 

 

The levels that R assigns to your factor are by default the unique values given in your original 

vector. This is often fine, but you may want to assign more meaningful levels. Levels can be 

specified for a factor using the levels function. 

 
>levels(a) <- c("F","M") 

> a 

[1] F F F F M M M M 

Levels: F M 

 

The order in which a factor is sorted can be important in some cases. For example, say you have 

a vector that contains height categories. 

 
> heights<-c("short","short","tall","medium","medium","tall") 

 

If you designate this as a factor, the default levels will be sorted alphabetically. 

 
> height.1<-factor(heights) 

> height.1 

[1] short  short  tall   medium medium tall   

Levels: medium short tall 

 

> as.numeric(height.1) 

[1] 2 2 3 1 1 3 

 

If you specify levels as an argument of the function factor, you can control the order of the 

levels. 

 
> height.2<-factor(heights,levels=c("short","medium","tall")) 

> as.numeric(height.2) 

[1] 1 1 3 2 2 3 

 

This can be useful for obtaining a logical order in statistical output or summaries. 

                                                 

 

 
30

 Factors take up less storage space than do character data. Automatic conversion of read-in data to factors can be 

suppressed by specifying stringsAsFactors=FALSE when using read.table. 



56 

 

 

Sometimes it is necessary to combine multiple factors to make a new factor that includes all 

combinations of the original factors. This can be done using a colon (:), as described below in 

the discussion on model formulae. 

Exercises 

1. Read in the data in US_GDP.txt which contains US gross domestic product (in millions of $) 

from 1790 to 2009. Using subscripting, return the following: 1) The first 10 rows of the of the 

colums year and gdp.real, 2) Nominal GDP (gdp.nom) for the 1800s only. 

 

Now use the subset function to create a new data frame that has only data for the 1800s. 

 

2. Still working with this data set, find the location of the maximum real GDP. Lastly, sort the 

entire data frame by real GDP. 

 

3. Read in the data in the file Cacti_v_tort.txt. Try creating a subset of this data frame that 

contains only observations where tortoises were present (where the variable tortoise equals Yes) 

using the subset function. 
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6. Manipulating data, part II 

6.1. Combining data 

Data frames (or vectors or matrices) often need to be combined for analysis or plotting. Three R 

functions that are very useful for combining data are rbind, cbind, and merge. The function 

rbind simply "stacks" objects on top of each other to make a new object ("row bind"). The 

function cbind ("column bind") carries out an analogous operation with columns of data. The 

merge function is used to merge data frames by some common variable or variables. 

 
> stuff.dat<-data.frame(ID=c("A","B","C"),response=1:3) 

> stuff.dat 

  ID response 

1  A        1 

2  B        2 

3  C        3 

 

> a.row<-c("C",4) 

> more.stuff.dat<-rbind(stuff.dat,a.row) 

> more.stuff.dat 

  ID response 

1  A        1 

2  B        2 

3  C        3 

4  C        4 

 

> a.column<-c(3,1,5) 

> wide.stuff.dat<-cbind(stuff.dat,y=a.column) 

> wide.stuff.dat 

  ID response y 

1  A        1 3 

2  B        2 1 

3  C        3 5 

 

To demonstrate the merge function, let's read in some data. 

 
> pop.dat<-read.table("US_pop.txt",header=TRUE) 

> pop.dat 

   year       pop 

1  1790   3929214 

2  1800   5308483 

3  1810   7239881 

... 

21 1990 248709873 

22 2000 281421906 

 

> gdp.dat<-read.table("US_GDP.txt",header=T) 

> gdp.dat 

    year  gdp.nom gdp.real 

1   1790      187     4027 
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2   1791      204     4268 

3   1792      223     4583 

... 

219 2008 14441400 13312200 

220 2009 14256300 12987400 

 

To merge these two data frames by year, we can use the following command: 

 
> us.dat<-merge(pop.dat,gdp.dat,by="year") 

> us.dat 

   year       pop gdp.nom gdp.real 

1  1790   3929214     187     4027 

2  1800   5308483     476     7398 

3  1810   7239881     699    10626 

... 

21 1990 248709873 5800500  8033900 

22 2000 281421906 9951500 11226000 

 

Notice that us.dat does not have rows for all the years that are present in the gdp.dat data 

frame, because most of them didn‘t have a matching year in pop.dat. If you want to keep all 

rows regardless, use all=TRUE.  

 

Merge operations can get more complicated than the simple example demonstrated above. For 

example, what if the variables you would like to merge by don‘t have the same name in both data 

frames? In this case, just use the arguments by.x and by.y instead of by. If the data frames 

have variables with the same names, but not the variables you want to merge by, R will add 

extensions to the variable names (.x and .y by default) in the new data frame. Note that you can 

merge by multiple variables by specifying, e.g., by=c("var1", "var2"). Check out the help 

file for merge for even more options. 

6.2. Aggregating and summarizing data 

R has some powerful functions for aggregation of data. Some operations could be carried out 

with multiple functions. In this section, we will start with some simple operations using the 

table function, and then discuss more advanced aggregation before exploring the functions that 

can be used to carry the aggregation out. The table function is handy for summarizing counts 

of factor data. To demonstrate, let's read in some data from the ISwR package. 

 
> install.packages("ISwR") 

> library(ISwR) 

> juul.dat<-juul 

> names(juul.dat) 

[1] "age"      "menarche" "sex"      "igf1"     "tanner"   "testvol" 

 

Let's make sure sex and menarche are factors. 
 

> juul.dat$sex<-factor(juul.dat$sex,labels=c("M","F")) 

> juul.dat$menarche<-factor(juul.dat$menarche,labels=c("No","Yes")) 
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> table(juul.dat$sex) 

 

  M   F  

621 713 

 

> table(juul.dat$sex,juul.dat$menarche) 

    

     No Yes 

  M   0   0 

  F 369 335 

 

For more advanced data aggregation, R offers the following functions: apply, lapply, 

aggregate, by, and tapply (among others). Spector (2008: 106) presents some handy 

information on selecting an appropriate function. We will focus on only the most common 

operations. 

 

A typical operation is this: you have a data frame with some grouping variable, and you need to 

carry out some operation on individual groups within the data. Take, for example, our data on H2 

production by bacteria in a set of laboratory reactors (serum bottles): 

 
> h2.dat<-read.table("Biohydrogen.txt",header=TRUE) 

> h2.dat 

    reactor      date  time   vol conc.h2 

1      G171 9/18/2006 11:12  0.00      NA 

2      G171 9/18/2006 14:00  0.00   31.20 

3      G171 9/19/2006  9:26 11.35   35.22 

4      G171 9/19/2006 12:51  0.00      NA 

5      G171 9/19/2006 16:00  0.00      NA 

6      G171 9/19/2006 22:52  0.00      NA 

7      G171 9/20/2006  8:52  0.00      NA 

8      G171 9/20/2006 13:41  2.00   30.93 

9      G171 9/21/2006 12:40  0.00   30.26 

... 

135    G185 9/21/2006 12:40  6.20      NA 

 

Let‘s say we want to know the total volume of biogas produced by each reactor. The function 

tapply is a good place to start (others would also work). The arguments we need to specify are 

X (the vector we want to summarize), INDEX (the grouping variable), and FUN (the function we 

want to apply to each group). 

 
> tapply(h2.dat$vol,h2.dat$reactor,FUN = sum) 

 G171  G172  G173  G174  G175  G176  G177  G178  G179  G180  G181  

13.35 92.55 94.40 95.70 98.30    NA  7.75  6.10  6.50 84.00 88.15  

 G182  G183  G184  G185  

87.40 91.70 91.10 90.50 
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The function aggregate is another good choice here. Its syntax is similar, but note that the by 

argument (analogous to INDEX in tapply) needs to be a list. This function returns a data frame, 

so use it if that is what you need. 

 
> aggregate(h2.dat$vol,list(reactor=h2.dat$reactor),FUN=sum) 

   reactor     x 

1     G171 13.35 

2     G172 92.55 

3     G173 94.40 

4     G174 95.70 

5     G175 98.30 

6     G176    NA 

7     G177  7.75 

8     G178  6.10 

9     G179  6.50 

10    G180 84.00 

11    G181 88.15 

12    G182 87.40 

13    G183 91.70 

14    G184 91.10 

15    G185 90.50 

 

What if we need to do something more complicated, like fit a spline, carry out interpolation, or 

fit a model to each group within a larger data set?  

 
> tox.dat<-read.table("Ogeechee_tox_summary.txt",header=TRUE) 

> tox.dat 

    test n.doc n.ph rep dom.source   ph   doc   lc50 

1      2     2    6   1          1 6.25  2.09   9.27 

2      3     2    6   1          2 6.22  2.10   6.06 

... 

126  144    15    8   2          7 8.08 14.60 475.01 

 

Let‘s say we want to fit a regression model to each group of data that has a particular DOM 

source
31

: 

 
> by(tox.dat,tox.dat$dom.source,FUN=function(x)  

+ lm(lc50 ~ doc + ph,data=x)) 

tox.dat$dom.source: 1 

 

Call: 

lm(formula = lc50 ~ doc + ph, data = x) 

 

Coefficients: 

(Intercept)          doc           ph   

                                                 

 

 
31

 This example requires you to write your own function, and it introduces the lm function for fitting linear models. 

Both are discussed in later sections. 
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   -1239.47        14.93       178.15   

 

-----------------------------------------------------  

tox.dat$dom.source: 2 

 

Call: 

lm(formula = lc50 ~ doc + ph, data = x) 

 

Coefficients: 

(Intercept)          doc           ph   

    -705.70        14.38        98.20   

 

----------------------------------------------------- 

... 

 

If you need to process multiple variables at once, you can use aggregate, which can handle 

entire data frames. In this example, we just use part of a data frame to calculate mean pH, DOC 

concentration, and LC50 for each DOM source. 

 
> aggregate(tox.dat[,6:8],list(dom.source=tox.dat$dom.source),mean) 

  dom.source       ph      doc     lc50 

1          1 7.198333 7.766667 158.8883 

2          2 7.156111 8.016667 112.3661 

3          3 7.150556 7.785000 105.0778 

4          4 7.153889 8.216111 118.4539 

5          5 7.140556 8.265556 115.0394 

6          6 7.140000 7.897778 138.6472 

7          7 7.145000 7.857778 136.1128 

 

Let‘s give this data frame a name for use later on. 

 
> tox.summ.dat<-aggregate(tox.dat[,6:8],  

+ list(dom.source=tox.dat$dom.source),mean) 

 

We will readily admit that using aggregate, by, and tapply can be a bit confusing. If you 

can‘t see an advantage of one function over another, there may not be an advantage to using one 

or the other. The differences between these functions mostly relates to output format (although 

there are some other important differences). Try one function, and move onto another if needed. 

 

If your data are organized as a list, and you would like to apply some function to each element in 

the list (e.g., individual vectors or data frames or. . .), use lapply or sapply. These functions 

provide a flexible option for some of the more difficult problems: convert your data into a list 

using split, which will divide your data based on some grouping variable, and then use 

lapply or sapply to carry out the necessary operation. And, if the operation you want to carry 

out just seems too complicated for use with one of these or similar functions (e.g., maybe the 

operation you need to carry out requires multiple steps), you always have the (old school) option 

of using loops, which are described in a later section. 
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Let‘s move on to some simpler material. Sometimes it is necessary to carry out some operation 

on complete rows or columns within arrays or data frames. The function apply can be used for 

this. 

 
> apply(tox.summ.dat,2,range) 

     dom.source       ph      doc     lc50 

[1,]          1 7.140000 7.766667 105.0778 

[2,]          7 7.198333 8.265556 158.8883 

 

The above functions are useful for applying a function to specific groups within a data set and 

producing one result (or set of results) for each group. In some cases, you may want to add a new 

column to a data frame that contains the result for the group that each row belongs to. Thinking 

again about the Ogeechee toxicity data, suppose that you want to normalize the DOC 

concentration by the mean concentration for each DOM source. There are a couple code-

intensive ways that you could do this: create a summary with e.g., use tapply, and merge the 

result back with the original data frame, or you could apply split to the data frame, use 

lapply to apply the required function to each list within the result, and then use unsplit to put 

the pieces back together.  However, R also has a single function for this specific purpose: ave. 

 
> tox.dat$doc.mean<-ave(tox.dat$doc,tox.dat$dom.source,FUN=mean) 

> tox.dat 

    test n.doc n.ph rep dom.source   ph   doc   lc50 doc.mean 

1      2     2    6   1          1 6.25  2.09   9.27 7.766667 

2      3     2    6   1          2 6.22  2.10   6.06 8.016667 

3      4     2    6   1          3 6.19  2.09   7.88 7.785000 

4      5     2    6   1          4 6.23  2.16   8.28 8.216111 

5      6     2    6   1          5 6.22  2.27   9.03 8.265556 

6      7     2    6   1          6 6.22  2.17   5.42 7.897778 

7      8     2    6   1          7 6.25  2.18   9.00 7.857778 

8     26     7    6   1          1 6.29  6.57  28.20 7.766667 

9     27     7    6   1          2 6.20  6.58  30.64 8.016667 

... 

 

It is easier to see what we did if we sort the data frame by DOM source. 

 
> tox.dat<-tox.dat[order(tox.dat$dom.source),] 

> tox.dat 

    test n.doc n.ph rep dom.source   ph   doc   lc50 doc.mean 

1      2     2    6   1          1 6.25  2.09   9.27 7.766667 

8     26     7    6   1          1 6.29  6.57  28.20 7.766667 

15    50    15    6   1          1 6.20 14.65  56.87 7.766667 

... 

2      3     2    6   1          2 6.22  2.10   6.06 8.016667 

9     27     7    6   1          2 6.20  6.58  30.64 8.016667 

16    51    15    6   1          2 6.00 14.63  38.95 8.016667 

... 

3      4     2    6   1          3 6.19  2.09   7.88 7.785000 

10    28     7    6   1          3 6.22  6.53  33.72 7.785000 

17    52    15    6   1          3 5.97 14.33  59.94 7.785000 
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... 

 

Now we can normalize the DOC concentration by this new column of means: 

 
> tox.dat$doc.norm<-tox.dat$doc/tox.dat$doc.mean 

 

Of course, it isn‘t necessary to follow these exact steps. For example, we could do this all in one 

step by writing out own function, which is covered in a later section:  

 
> tox.dat$doc.norm.2<-ave(tox.dat$doc,tox.dat$dom.source, 

+ FUN=function(x) x/mean(x)) 

6.3. Dates and times 

Dates are handled relatively easily in R. R has a data class called Dates, which are represented 

as the number of days since the beginning of 1970 (generally as integer data). Date data are read 

in as character data. To convert them to Date data, you can use the function as.Date. 

 
>flow.dat<-read.table("River_flow.txt",header=TRUE) 

 

> flow.dat$date[1:20] 

 [1] 2006-01-01 2006-01-02 2006-01-03 2006-01-04 2006-01-05 2006-01-06 

 [7] 2006-01-07 2006-01-08 2006-01-09 2006-01-10 2006-01-11 2006-01-12 

[13] 2006-01-13 2006-01-14 2006-01-15 2006-01-16 2006-01-17 2006-01-18 

[19] 2006-01-19 2006-01-20 

365 Levels: 2006-01-01 2006-01-02 2006-01-03 2006-01-04 ... 2006-12-31 

 

> as.Date(flow.dat$date[1:20]) 

 [1] "2006-01-01" "2006-01-02" "2006-01-03" "2006-01-04" "2006-01-05" 

 [6] "2006-01-06" "2006-01-07" "2006-01-08" "2006-01-09" "2006-01-10" 

[11] "2006-01-11" "2006-01-12" "2006-01-13" "2006-01-14" "2006-01-15" 

[16] "2006-01-16" "2006-01-17" "2006-01-18" "2006-01-19" "2006-01-20" 

 

> some.dates<-as.Date(flow.dat$date[1:20]) 

 

While these values look like character data, they are not. It is possible to carry out mathematical 

operations on them now. 

 
> class(some.dates) 

[1] "Date" 

 

> some.dates - 100 

 [1] "2005-09-23" "2005-09-24" "2005-09-25" "2005-09-26" "2005-09-27" 

 [6] "2005-09-28" "2005-09-29" "2005-09-30" "2005-10-01" "2005-10-02" 

[11] "2005-10-03" "2005-10-04" "2005-10-05" "2005-10-06" "2005-10-07" 

[16] "2005-10-08" "2005-10-09" "2005-10-10" "2005-10-11" "2005-10-12" 

 

> mean(some.dates) 

[1] "2006-01-10" 
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The default format for dates in R in YYYY-MM-DD (e.g., 2009-12-10 for December 10, 2009), 

which is represented in R as "%Y-%m-%d". If your dates are in a different format, you need to 

tell R what that format is when you convert them to a date object. 

 
> some.dates<-c("May 01 2008","June 12 2009") 

> as.Date(some.dates) 

Error in fromchar(x) :  

  character string is not in a standard unambiguous format 

 

> as.Date(some.dates,"%b %d %Y")   

[1] "2008-05-01" "2009-06-12" 

 

R is very flexible in the date formats that it will read in. This makes importing from other 

programs (e.g. Excel) very easy
32

. 

 
> other.dates<-c("7/1/1974","7/2/1974","7/3/1974","7/4/1974", 

+ "7/5/1974") 

> as.Date(other.dates,format="%m/%d/%Y") 

[1] "1974-07-01" "1974-07-02" "1974-07-03" "1974-07-04" "1974-07-05" 

 

You can find information on the options for specifying the format of dates in the help file for the 

function strptime (this function can be used for converting character data from one date format 

to another). 

 

Another handy function is weekdays, which will return the day of the week for any date or 

combined date-time. 

 
> weekdays(as.Date("1776-07-04")) 

[1] "Thursday" 

 

R can also handle combined dates and times (although this topic is a bit confusing, and users 

concerned with second accuracy should consult the relevant help files). There are two basic 

combined date and time classes in R: POSIXct and POSIXlt. The first form contains the 

number of seconds since the beginning of 1970 as a numeric vector, while the second is actually 

a list that contains a vectors of YYYY-MM-DD, HH:MM:SS, and the time zone. You can use 

the ―$‖ notation to return specific columns. 
 

> some.times<-c("1990-01-07 11:10:00 EST","1990-01-07 11:15:00 

EST","1990-01-08 22:04:17 EST") 

> some.times 

[1] "1990-01-07 11:10:00 EST" "1990-01-07 11:15:00 EST" 

[3] "1990-01-08 22:04:17 EST" 

 

> as.POSIXct(some.times) 

                                                 

 

 
32

 If you read in dates from a file and assign the data to a data frame, they will be recognized as a factor by R. To 

convert to dates, you first need to coerce them to character data using as.character. 
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[1] "1990-01-07 11:10:00 EST" "1990-01-07 11:15:00 EST" 

[3] "1990-01-08 22:04:17 EST" 

 

If we want to subtract one hour: 
 

> as.POSIXct(some.times) - 3600 

[1] "1990-01-07 10:10:00 EST" "1990-01-07 10:15:00 EST" 

[3] "1990-01-08 21:04:17 EST" 

 

The default display of the other form (POSIXlt) looks similar, but it actually contains separate 

vectors for seconds, minutes, days, etc. 
 

> as.POSIXlt(some.times) 

[1] "1990-01-07 11:10:00" "1990-01-07 11:15:00" "1990-01-08 22:04:17" 

> as.POSIXlt(some.times)$min 

[1] 10 15  4 

> as.POSIXlt(some.times)$sec 

[1]  0  0 17 

 

Here are all the vectors: 

 
> names(as.POSIXlt(some.times)) 

[1] "sec"   "min"   "hour"  "mday"  "mon"   "year"  "wday"  "yday"  

[9] "isdst" 

 

You can find more information by checking out the help file for POSIXlt. It is possible to carry 

out operations with POSIXct and POSIXlt objects. 

 
> other.times<-c("1990-01-07 22:10:04 EST","1990-01-08 11:22:01 

EST","1990-01-14 22:04:00 EST") 

> as.POSIXlt(some.times) - as.POSIXct(other.times) 

Time differences in hours 

[1]  -11.00111  -24.11694 -143.99528 

attr(,"tzone") 

[1] "" 

 

For control over the output units use difftime. 

 
> difftime(as.POSIXlt(some.times),as.POSIXct(other.times), 

+ units="secs") 

Time differences in secs 

[1]  -39604  -86821 -518383 

attr(,"tzone") 

[1] "" 

   

If you are working with date and time data that are divided up among several columns in a data 

frame, it is easy to convert this to a POSIXlt or POSIXct object. 

 
> separate.times<-data.frame(month=c("April","April","March"),  
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+ day=c(8,9,9),yr=c(2007,2007,2008),hr=c(7,7,9),min=c(10,12,01)) 

> separate.times 

  month day   yr hr min 

1 April   8 2007  7  10 

2 April   9 2007  7  12 

3 March   9 2008  9   1 

 

> comb.times<-paste(separate.times$month,separate.times$day, 

+ separate.times$yr,paste(separate.times$hr,separate.times$min,  

+ sep=":")) 

> comb.times 

[1] "April 8 2007 7:10" "April 9 2007 7:12" "March 9 2008 9:1" 

 

You can now tell R that these are dates. 

 
> as.POSIXlt(comb.times,format="%B %d %Y %H:%M") 

[1] "2007-04-08 07:10:00" "2007-04-09 07:12:00" "2008-03-09 09:01:00" 

 

A few other useful functions are Sys.time, which will return the current time, and 

system.time, which tells you how long an expression takes to run. 

 
> Sys.time() 

[1] "2009-02-04 19:26:47 EST" 

 

> system.time( 

+ for (i in 1:10000) { 

+ rnorm(1000) 

+ } 

+ ) 

   user  system elapsed  

   8.38    0.00    8.37 

 

6.4. Reshaping data 

Data with mulipe measurements or variables for each experimental unit (e.g. time series data) 

present some difficulties that aren‘t present in simplier data sets. These types of data can be 

organized into one of two forms, called ―wide‖ and ―long‖ (or ―stacked‖ and ―unstacked‖). This 

is probably best demonstrated by example. The file Ave_wind_US.dat contains mean wind 

monthly wind speeds for cities in the U.S. 

 
> wind.dat<-read.table('Ave_wind_US.txt',header=T,sep='\t') 

 

> wind.dat 
               location no.yr  jan  feb  mar  apr may jun jul aug sep oct nov dec ann 

1 13876BIRMINGHAM AP,AL    65  8.1  8.7  9.0  8.2 6.8 6.0 5.7 5.4 6.3 6.2 7.2 7.7 7.1 

2   03856HUNTSVILLE, AL    41  9.0  9.4  9.7  9.2 7.9 6.8 5.9 5.8 6.7 7.2 8.0 8.9 7.9 

3       13894MOBILE, AL    60 10.1 10.3 10.5 10.1 8.7 7.5 6.9 6.7 7.7 8.0 8.9 9.6 8.8 

4   13895MONTGOMERY, AL    64  7.7  8.2  8.3  7.3 6.1 5.8 5.7 5.2 5.9 5.7 6.5 7.1 6.6 

5    26451ANCHORAGE, AK    55  6.4  6.8  7.1  7.3 8.5 8.4 7.3 6.9 6.7 6.7 6.4 6.3 7.1 

. . . 
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These data are in the ―wide‖ format, with mean wind speed given in a different column for each 

month. The reshape function can be used to convert a data from wide to long or long to wide. 

 
> wind.l.dat<-reshape(wind.dat,direction="long",varying=3:15, 

+ v.names='wind',timevar='month',times=c(names(wind.dat)[3:15])) 

> wind.l.dat 

                   location no.yr month wind id 

1.jan 13876BIRMINGHAM AP,AL    65   jan  8.1  1 

2.jan   03856HUNTSVILLE, AL    41   jan  9.0  2 

3.jan       13894MOBILE, AL    60   jan 10.1  3 

4.jan   13895MONTGOMERY, AL    64   jan  7.7  4 

5.jan    26451ANCHORAGE, AK    55   jan  6.4  5 

. . . 

Exercises  

1. Read in the data on hydrogen production in the file Biohydrogen.txt. The file Reactors.txt 

contain information on the reactor setup (solution and headspace composition) of the individual 

reactors. Read in the data in both of these files, and add information on the reactor setup to the 

data frame on hydrogen production. Your want a new data frame that looks something like this: 

 
    reactor solution headspace      date  time   vol conc.h2 

1      G171   N-free        N2 9/18/2006 11:12  0.00      NA 

2      G171   N-free        N2 9/18/2006 14:00  0.00   31.20 

3      G171   N-free        N2 9/19/2006  9:26 11.35   35.22 

... 

 

2. Still working with the hydrogen data, combine the dates and times and convert them to 

date/time format. The, calculate the elapsed time for each reactor, i.e. the current date/time minus 

the initial date time. (Because each reactor has the same starting date/time, you can use the same 

value for each. If this were not the case, you would have to use something like ave. If you are 

bored, you can try to use ave anyway, but note that ave will not work with POSIX data.) 

 

3. Read in the data in Eagles.txt, which contains data on the concentration of the chemical alpha-

Chlordane (in ng/g) in bald eagle nestling blood. Calculate the mean, sd, and n of alpha-

Chlodane concentration by site. Try to organize the results as a data frame, and then write out the 

data frame to a new file. 

 

4. Calculate your age (as of now) in hours. If you don‘t know what time you were born, assume 

it was at noon. 
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7. Exploratory data analysis   

Dalgaard 2008: Chapter 4, Faraway 2005: Chapter 1 

7.1. Summary statistics 

Let‘s demonstrate calculation of summary statistics with one of the soils data sets: 

 
> cu.tox.dat<-read.table("Thakali_Cu_EC50s.txt",header=TRUE) 

 

Just to see what is in it, first: 

 
> names(cu.tox.dat) 

[1] "soil"    "ec50.cu" "ph.soil" "oc"      "ph.sol"  "c.cu"    "c.na"    

[8] "c.mg"    "c.k"     "c.ca"     

 

Here are some useful functions: 

 
> mean(cu.tox.dat$ec50.cu) 

[1] 192.4727 

 

> median(cu.tox.dat$ec50.cu) 

[1] 150.5 

 

> sd(cu.tox.dat$ec50.cu) 

[1] 159.3130 

 

> var(cu.tox.dat$ec50.cu) 

[1] 25380.62 

 

R has a built-in function for summarizing vectors or data frames called summary. This function 

is a generic function—what it returns is dependent on the type of data submitted to it
33

. Let‘s 

apply summary to the first four columns in the cu.tox.dat data frame: 

 
> summary(cu.tox.dat[,1:4]) 

          soil      ec50.cu         ph.soil            oc         

 Aluminusa  :1   Min.  : 38.9   Min.  :3.360   Min.  : 0.410   

 Houthalen  :1   1st Qu.: 83.1   1st Qu.:4.475   1st Qu.: 0.925   

 Kovlinge I :1   Median :150.5   Median :4.800   Median : 1.900   

 Kovlinge II:1   Mean   :192.5   Mean   :4.917   Mean   : 4.975   

 Montpellier:1   3rd Qu.:210.8   3rd Qu.:5.310   3rd Qu.: 4.800   

 Nottingham :1   Max.  :570.5   Max.  :6.800   Max.  :23.300   

 (Other)    :5   

 

                                                 

 

 
33

 Another use of the summary function is in summarizing the results of statistical models, which is discussed in a 

later section. 
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Notice the difference between numerical and categorical variables. The summary function 

should probably be your first stop after organizing your data, but before analyzing it—it provides 

an easy way to check for wildly erroneous values.  

7.2. Histograms and box plots 

Boxplots and histograms are simple but useful ways of summarizing data. You can generate a 

histogram in R using the function hist. 

 
> cu.tox.dat<-read.table("Thakali_Cu_EC50s.txt",header=TRUE) 

> hist(cu.tox.dat$ec50.cu) 

 
This plot can be made to look a little nicer, as can all the plots covered in this workshop (several 

arguments, such as xlab, ylab, and main, can be used in most plotting functions). You can also 

specify the number or location of breaks in the hist function. 

 

Boxplots are also a good way to summarize data. In the following example, a boxplot is used to 

compare concentrations of several cations in the soils. 

 

First, let‘s figure out the order of variables here: 

 
> names(cu.tox.dat) 

[1] "soil"    "ec50.cu" "ph.soil" "oc"      "ph.sol"  

[6] "c.cu"    "c.na"    "c.mg"    "c.k"     "c.ca" 

 

And then make the plot. 

Histogram of cu.tox.dat$ec50.cu
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> boxplot(cu.tox.dat[,7:10])  

 
By default, the heavy line shows the median, the box shows the 25th and 75th percentiles, the 
“whiskers” show the extreme values, and points show any outliers beyond these34.  
 
Another approach is to plot a single variable by some factor. 
 
> tooth.dat<-ToothGrowth 

> tooth.dat$trt<-factor(tooth.dat$dose):tooth.dat$supp 

> boxplot(len~trt,data=tooth.dat) 

> summary(tooth.dat) 

      len        supp         dose           trt     

 Min.   : 4.20   OJ:30   Min.   :0.500   0.5:OJ:10   

 1st Qu.:13.07   VC:30   1st Qu.:0.500   0.5:VC:10   

 Median :19.25           Median :1.000   1:OJ  :10   

 Mean   :18.81           Mean   :1.167   1:VC  :10   

 3rd Qu.:25.27           3rd Qu.:2.000   2:OJ  :10   

 Max.   :33.90           Max.   :2.000   2:VC  :10 

> boxplot(len~trt,data=tooth.dat) 

 

                                                 
 
 
34 The help file for boxplot.stats provides additional information. 

c.na c.mg c.k c.ca

0
2

0
0

4
0

0
6

0
0

8
0

0



71 
 

 
Note the use of the tilde symbol “~” in the above command. The code len~trt is analogous to 

a model formula in this case, and simply indicates that len is described by trt and should be 
split up based on the value of this variable. We will see more of this character with the 
specification of statistical models. 

7.3. Normal quantile and cumulative probability plots 

One way to assess the normality of the distribution of a given variable is with a quantile-quantile 
plot. This plot shows data values vs. quantiles based on a normal distribution (i.e. a z 
distribution). 
 
> qqnorm(cu.tox.dat$ec50.cu) 

> qqline(cu.tox.dat$ec50.cu) 
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There definitely seems to be some deviation from normality here. A common distribution for 

toxicity data is log-normal—let‘s see if this distribution works any better. 

 
> cu.tox.dat$l.ec50.cu<-log10(cu.tox.dat$ec50.cu) 

> qqnorm(cu.tox.dat$l.ec50.cu) 

> qqline(cu.tox.dat$l.ec50.cu) 
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While R does not have a cumulative probability function in its base packages, it available in at 

least one package on CRAN, and it is easy to write your own function. We can make a simple 

cumulative probability plot with two lines of code. 

  
> plot(qnorm(ppoints(x)),x,log='y',xaxt="n",xlab="Cumulative  

+ probability (%)",ylab="Log Cu EC50") 

> axis(1,qnorm(c(0.1,0.25,0.5,0.75,0.9)),labels=c(10,25,50,75,90),  

+ las=1,tcl=0.3,mgp=c(0,0.2,0)) 
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R will return the quantiles of a given data set with the quantile function. Note that there are 

nine different algorithms available for doing this—you can find descriptions in the help file for 

quantile. 

 
> quantile(cu.tox.dat$l.ec50) 

      0%      25%      50%      75%     100%  

1.589950 1.908806 2.177536 2.322487 2.756256  

 

> quantile(cu.tox.dat$l.ec50, 0.05) 

      5%  

1.688351  

7.4. Dealing with detection limits 

Environmental data may contain observations where a given analyte was not detected, often 

referred to as nondetect. These data should not be ignored since this would bias your results. 

Simple solutions such as setting the nondetects to 1/2 of the detection limit is not a satisfactory 

solution either, since 1/2 of the detection limit may be higher or lower than the true values, and 

certainly does not include the variability of the true values.  

 

One robust approach to dealing with nondetects is called regression on order statistics, or ROS 

(Lee & Helsel 2005). The basic approach is to quantify the data distribution of the detected 

values, and then extrapolate the missing nondetects based on the same distribution. This allows 

one to calculate unbiased means and standard deviations. In R, this procedure can be done with 

the function ros, which is in the package NADA. 
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The arguments for ros are shown below, as given in its help file. 

 
ros(obs, censored, forwardT="log", reverseT="exp") 

 

The function requires two vectors: the data (with nondetects replaced with the detection limit) 

(obs argument) and a logical vector indicating which values are nondetects (censored 

argument). To demonstrate this procedure, let‘s use some data on the concentration of the 

chemical alpha-Chlordane in bald eagle nestling blood. 

 
> eagles.dat<-read.table("Eagles.txt",header=T) 

> summary(eagles.dat) 

          site         achlor      

 Mea0.00er  :  9   Min.  :0.375   

 CR 306     :  8   1st Qu.:0.375   

 Killdeer   :  8   Median :1.440   

 Rockwell   :  8   Mean   :1.540   

 Ft Seneca  :  7   3rd Qu.:2.130   

 Magee Marsh:  7   Max.  :5.450   

 (Other)    :100 

 

The detection limit in this study was 0.75 ng/g, but the limit of quantification was 2.0 ng/g. In 

this data set, nondetects are set to ½ of the detection limit. Let‘s see what these data look like to 

start out. 

 
> qqnorm(eagles.dat$achlor) 
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These data look surprisingly close to normally-distributed. Let's log transform, and add lines at 

the detection and quantification limits (we will cover the abline function in a later section). 

 
> qqnorm(log10(eagles.dat$achlor)) 

> qqnorm(log10(eagles.dat$achlor)) 

> abline(h=log10(0.75),col="red") 

> abline(h=log10(2),col="blue") 
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The ros function will make estimates for the values of the observations below the detection 

limit, and returns the median, mean, and standard deviation of the new, estimated, distribution. 

To use it, you need to have a logical vector that indicates which values are nondetects. The 

concentrations for these values should be set to the detection limit. Let's start out using the actual 

detection limit (as opposed to the quantification limit). 

 
> achlor.dat<-data.frame(conc=eagles.dat$achlor,nondetect=F) 

> achlor.dat$nondetect[achlor.dat$conc<2]<-T 

> achlor.dat$conc[achlor.dat$conc<2]<-2 

> achlor.dat 

    conc nondetect 

1   2.00      TRUE 

2   2.00      TRUE 

3   2.00      TRUE 

4   2.00      TRUE 

5   2.00      TRUE 

6   2.33     FALSE 

7   2.36     FALSE 

... 

147 4.14     FALSE 

 

> ros(achlor.dat$conc,achlor.dat$nondetect) 

         n      n.cen     median       mean         sd  

147.000000 106.000000   1.503688   1.698922   0.870380 
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Note that this function by default log transforms data before and after estimating values of the 

nondetects. This is appropriate for a log-normal distribution, and is relatively robust for 

distributions that are not log-normal. 

 

We can see the modeled values by using the data.frame function. 

 
> achlor.ros<-ros(achlor.dat$conc,achlor.dat$nondetect) 

> achlor.est<-data.frame(achlor.ros) 

> achlor.est 

   obs censored          pp   modeled 

1    2     TRUE 0.006739144 0.4342780 

2    2     TRUE 0.013478289 0.4946784 

3    2     TRUE 0.020217433 0.5369376 

4    2     TRUE 0.026956577 0.5708681 

5    2     TRUE 0.033695721 0.5998770 

6    2     TRUE 0.040434866 0.6255915 

7    2     TRUE 0.047174010 0.6489285 

8    2     TRUE 0.053913154 0.6704605 

9    2     TRUE 0.060652298 0.6905714 

10   2     TRUE 0.067391443 0.7095325 

... 

 

Of course, the specific estimates are really meaningless; ros is only capable of estimating the 

distribution—the individual modeled values are an intermediate step. But, any parameters 

estimated from the modeled data are generally unbiased. 

 
> 10^mean(log10(achlor.est$modeled)) 

[1] 1.506938 

 

By applying the plot function to ros output, you can see the estimated distribution and get a 

visual representation of the ros process. 

 
> plot(achlor.ros) 
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Exercises 

1. Install and load the ISwR package. Check out the help file for the InsectSprays data frame. 

Take a look at the data. Use the summary function to summarize the InsectSprays data 

frame. Use tapply to apply the summary function to each type of spray separately. Generate a 
boxplot that shows the insect counts as a function of spray type. 
 
2. The file StreamCu.txt contains (generated) data on Cu concentrations in stream water. Values 
that were below the detection limit already have the detection limit filled in. Use the ros function 
to estimate the sample median, mean, and standard deviation. Keep in mind the expected 
distribution of the data. Plot your results.  
 

3. Take a look at the IgM data set that is loaded with the ISwR package. Make a normal quantile 
plot for the single variable in it. Are the data closer to a normal or log-normal distribution? 
 
4. Make a cumulative probability plot with the same data used in 3. 
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8. One- and two-sample tests (and the R approach to 
statistical output)  
Crawley 2007: Chapter 8, R-Intro: Section 8.3, Dalgaard 2008: Chapter 5 

8.1. t tests 

R can be used for one-sample, two-sample, and paired t tests. To demonstrate one sample t tests, 

we will use some data from Wilcock et al. (1981) on the measurement of dissolved oxygen (DO) 

in reference waters using a chemical method called the Winkler method. The objective here is to 

see if there is a bias in the laboratories' determinations. 

 
> DO.dat<-read.table("DO_methods_1.txt",header=TRUE) 

 

> summary(DO.dat) 

      lab            method        ref          result      

 Min.  : 1.00   winkler:36   Min.  :1.2   Min.  :1.000   

 1st Qu.:11.75                1st Qu.:1.2   1st Qu.:1.200   

 Median :23.00                Median :1.2   Median :1.310   

 Mean   :22.58                Mean   :1.2   Mean   :1.473   

 3rd Qu.:33.25                3rd Qu.:1.2   3rd Qu.:1.692   

 Max.  :45.00                Max.  :1.2   Max.  :2.800   

 

> t.test(DO.dat$result, mu = 1.2) 

 

        One Sample t-test 

 

data:  DO.dat$result  

t = 3.8052, df = 35, p-value = 0.0005463 

alternative hypothesis: true mean is not equal to 1.2  

95 percent confidence interval: 

 1.327248 1.618307  

sample estimates: 

mean of x  

 1.472778 

 

This looks like a pretty clear bias. 

 

To demonstrate two-sample tests, let's use a data set included with the ISwR package on energy 

expenditure in women as a function of their body mass. 

 
> library(ISwR) 

> data(energy) 

> ?energy 

 

> energy.dat<-energy 

> names(energy.dat) 

[1] "expend"  "stature" 

 

> boxplot(expend ~ stature, data=energy.dat) 
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> t.test(expend ~ stature, data=energy.dat) 

 

        Welch Two Sample t-test 

 

data:  expend by stature  

t = -3.8555, df = 15.919, p-value = 0.001411 

alternative hypothesis: true difference in means is not equal to 0  

95 percent confidence interval: 

 -3.459167 -1.004081  

sample estimates: 

 mean in group lean mean in group obese  

           8.066154           10.297778 

 
Note that R uses the Welch procedure to calculate the standard error of the difference. We can 
use the classical approach as well. 
 
> t.test(expend ~ stature, data=energy.dat, var.equal=T) 

 

        Two Sample t-test 

 

data:  expend by stature  

t = -3.9456, df = 20, p-value = 0.000799 

alternative hypothesis: true difference in means is not equal to 0  

95 percent confidence interval: 

lean obese

6
7

8
9

1
0

1
1

1
2

1
3



82 

 

 -3.411451 -1.051796  

sample estimates: 

 mean in group lean mean in group obese  

           8.066154           10.297778 

 

For a paired t test, the same function can be used. For this example, let's use some additional DO 

measurement data. In this data set, we have electrode and Winkler results for several 

laboratories. 

 
> DO.2.dat<-read.table("DO_methods_2.txt",header=T) 

> summary(DO.2.dat) 

      lab             ref           wink           elect       

 Min.  : 4.00   Min.  :1.2   Min.  :1.000   Min.  :1.300   

 1st Qu.:21.50   1st Qu.:1.2   1st Qu.:1.125   1st Qu.:1.425   

 Median :28.00   Median :1.2   Median :1.300   Median :1.700   

 Mean   :25.73   Mean   :1.2   Mean   :1.400   Mean   :1.695   

 3rd Qu.:33.50   3rd Qu.:1.2   3rd Qu.:1.375   3rd Qu.:1.850   

 Max.  :42.00   Max.  :1.2   Max.  :2.300   Max.  :2.300   

 

> t.test(DO.2.dat$wink, DO.2.dat$elect, paired=T) 

 

        Paired t-test 

 

data:  DO.2.dat$wink and DO.2.dat$elect  

t = -3.4924, df = 10, p-value = 0.0058 

alternative hypothesis: true difference in means is not equal to 0  

95 percent confidence interval: 

 -0.4839533 -0.1069558  

sample estimates: 

mean of the differences  

             -0.2954545 

8.2. The R approach to statistical output 

The output from statistical tests in R are contained in objects with specific classes that depend on 

the type of test carried out. For example, 

 
> t.test.1<-t.test(DO.dat$result,mu=1.2) 

> class(t.test.1) 

[1] "htest" 

 

Objects of class htest are lists that contain information on the input and output of a t test. The 

output that can be extracted from htest objects can be found in the help file associated with 

t.test: 

 

statistic   the value of the t-statistic.  

parameter   the degrees of freedom for the t-statistic.  

p.value   the p-value for the test.  

conf.int   a confidence interval for the mean appropriate to the specified alternative  

   hypothesis.  
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estimate   the estimated mean or difference in means depending on whether it was a  

   one-sample test or a two-sample test.  

null.value   the specified hypothesized value of the mean or mean difference   

   depending on  whether it was a one-sample test or a two-sample test.  

alternative   a character string describing the alternative hypothesis.  

method   a character string indicating what type of t-test was performed.  

data.name   a character string giving the name(s) of the data. 

 

To demonstrate, say we want P-value and the confidence interval: 

 
> t.test.1$conf.int 

[1] 1.327248 1.618307 

attr(,"conf.level") 

[1] 0.95 

 

> t.test1$p.value 

[1] 0.0005463255 

 

To find out what elements are present in a statistical object, you can use the attributes 

function, for example: 

 
> attributes(t.test1) 

$names 

[1] "statistic"   "parameter"   "p.value"     "conf.int"    "estimate"    

[6] "null.value"  "alternative" "method"      "data.name"   

 

$class 

[1] "htest" 

 

Results can be extracted from other statistical tests in a similar way, although the summary 

function must be used in some cases. Examples are shown in following sections. 

Exercises 

1. Take a look at the help file for the data frame called sleep, which is included in the 

datasets package. Perform a t test on these data to determine if the two drugs had different 

effects on sleep. 

 

2. Extract the t statistic, P-value, and the confidence interval from the above t test, and put them 

in a new data frame. Note that the confidence interval has two values—see if you can put each 

one in its own column. Write this data frame out to a text file. 
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9. Classical linear models   
Crawley 2007: Chapater 10; Dalgaard 2008: Chapters 6, 7,& 12; R-Intro 2008: Chapter 11, Faraway 

2005 

9.1. The lm function, model formulas, and statistical output 

In R, several classical statistical models can be implemented using one function: lm (for linear 

model). The lm function can be used for simple and multiple linear regression, analysis of 

variance (ANOVA), and analysis of covariance (ANCOVA). The help file for lm lists the 

following. 

 
lm(formula, data, subset, weights, na.action, 

   method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE, 

   singular.ok = TRUE, contrasts = NULL, offset, ...) 

 

The first argument in the lm function call (formula) is where you specify the structure of the 

statistical model. This approach is used in other R functions as well, such as glm, gam, and 

others. Venables et al. (2006: 50-51) has a useful list of example formulae—some examples are 

repeated below. In these examples, the variables x, y, and z are continuous, and A, B, and C are 

factors. 

 

y ~ x     Simple linear regression of y on x 

y ~ x + z    Multiple regression of y on x and z 

y ~ poly(x,2)   Second order polynomial regression, using orthogonal  

     polynomials 

y ~ x + I(x^2)   Second order polynomial regression, explicit powers 

 

y ~ A     Single factor ANOVA 

y ~ A + B    Two-factor ANOVA 

y ~ A + B + A:B   Two-factor ANOVA with interaction 

y ~ A*B    Two-factor ANOVA with interaction 
y ~ A + B + C + A:B + A:C + B:C  

Three-factor ANOVA with secondary interaction term 

y ~ (A + B + C)^2  Three-factor ANOVA with secondary interaction term 

y ~ (A + B + C)^2 – B:C As above but without B:C interaction 

y ~ A + x    ANCOVA 

 

There is some similarity between the statistical output in R and in other statistical software 

programs. However, by default, R usually gives only basic output. More detailed output can be 

retrieved with the summary function. For specific statistics, you can use ―extractor‖ functions, 

such as coef or deviance. Output from the lm function is of the class lm, and both default 

output and specialized output from extractor functions can be assigned to objects (this is of 

course true for other model objects as well). This quality is very handy when writing code that 

uses the results of statistical models in further calculations or in compiling summaries. 
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9.2. Linear regression 

To demonstrate simple linear regression in R, let's read in a data set on the hardness of some 

Australian hardwoods. 

 
> hard.dat<-read.table("Janka.txt",header=T) 

> summary(hard.dat) 

    density         hardness      

 Min.  :24.70   Min.  : 413.0   

 1st Qu.:37.77   1st Qu.: 962.8   

 Median :41.80   Median :1195.0   

 Mean   :45.73   Mean   :1469.5   

 3rd Qu.:56.70   3rd Qu.:1980.0   

 Max.  :69.10   Max.  :3260.0   

 

Our (alternative) hypothesis here is that density is a good predictor of hardness. Let's start out by 

seeing what the data look like
35

. 

 
> plot(hard.dat$density, hard.dat$hardness) 

 

 
 

 

                                                 

 

 
35

 We could also have used: plot(hardness~density,data=hard.dat). 
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This looks like a pretty clear relationship. To fit a linear model, we can use the lm function. 

 
> mod.1<-lm(hardness ~ density, data=hard.dat) 

> mod.1 

 

Call: 

lm(formula = hardness ~ density, data=hard.dat) 

 

Coefficients: 

(Intercept)      density   

   -1160.50        57.51   

 

R returns only the call and coefficients by default. You can get a lot more information using the 

summary function. 

 
> summary(mod.1) 

 

Call: 

lm(formula = hardness ~ density, data = hard.dat) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-338.40  -96.98  -15.71   92.71  625.06  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) -1160.500    108.580  -10.69 2.07e-12 *** 

density        57.507      2.279   25.24  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 183.1 on 34 degrees of freedom 

Multiple R-squared: 0.9493,     Adjusted R-squared: 0.9478  

F-statistic:   637 on 1 and 34 DF,  p-value: < 2.2e-16 

 

Not surprisingly, there is a highly significant relationship here. As mentioned above, the output 

from the lm function is an object of class lm. These objects are lists that contain at least the 

following elements (you can find this list in the help file for lm): 

 

coefficients  a named vector of coefficients  

residuals   the residuals, that is response minus fitted values.  

fitted.values  the fitted mean values.  

rank    the numeric rank of the fitted linear model.  

weights   (only for weighted fits) the specified weights.  

df.residual  the residual degrees of freedom.  

call    the matched call.  

terms   the terms object used.  

contrasts   (only where relevant) the contrasts used.  
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xlevels   (only where relevant) a record of the levels of the factors used in fitting.  

offset   the offset used (missing if none were used).  

y    if requested, the response used.  

x    if requested, the model matrix used.  

model   if requested (the default), the model frame used.  

na.action   (where relevant) information returned by model.frame on the  

   handling of NAs.  

 
> class(mod.1) 

[1] "lm" 

 

Let's take a look at some of the options R has for dealing with linear model output. To get at 

elements listed above, you can simply index the lm object, i.e. call up part of the list
36

. 

 
> mod.1$coeff 

(Intercept)     density  

-1160.49970    57.50667 

 

However, R has several extractor functions designed precisely for pulling data out of statistical 

model output. Venables et al. (2008: 53-54) gives a list of extractor functions and a brief 

description of the most commonly used ones: add1, alias, anova, coef, deviance, 

drop1, effects, family, formula, kappa, labels, plot, predict, print, proj, 

residuals, step, summary, and vcov. 

 
> coef(mod.1) 

(Intercept)     density  

-1160.49970    57.50667  

 

> resid(mod.1) 

           1            2            3            4            5  

 224.0848370  161.3341695    3.5674826   44.3101404   76.3101404  

... 

 

As mentioned above, the summary function is a generic function—what it does and what it 

returns is dependent on the class of its first argument. Here is a list of what's available from the 

summary function for this model
37

: 

 
> names(summary(mod.1)) 

 [1] "call"          "terms"         "residuals"     "coefficients"  

 [5] "aliased"       "sigma"         "df"            "r.squared"     

 [9] "adj.r.squared" "fstatistic"    "cov.unscaled" 

                                                 

 

 
36

 Remember, you don‘t need to specify the entire name of the element you are looking for when you use the $ 

notation. 
37

 Another way to see what various objects contain and how these parts are organized is with the function str, 

which returns the structure of objects. 
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> summary(mod.1)[[4]] 

               Estimate Std. Error   t value     Pr(>|t|) 

(Intercept) -1160.49970 108.579605 -10.68801 2.065919e-12 

density        57.50667   2.278534  25.23845 1.332735e-23 

 

This flexibility is useful, but it makes for some redundancy in R. For many model statistics, there 

are three ways to get your data: an extractor function (such as coef), indexing the lm object, and 

indexing the summary function. The best approach is to use an extractor function whenever you 

can
38

. In some cases, the summary function will return results that you cannot get by indexing or 

using extractor functions.  

 

Another function worth mentioning is anova. This function will calculate an analysis of 

variance table, which can be used to evaluate the significance of the terms in single models or to 

compare two nested models. Although we cannot see a any difference here because we are 

dealing with one predictor, unlike the t tests shown when summary is applied to an lm object, 

the ANOVA table returned with anova show the results of successive deletion tests, starting at 

the bottom and moving upward, i.e. tests are based on Type I sum of squares (SS)
39

. 

 
> anova(mod.1) 

Analysis of Variance Table 

 

Response: hardness 

          Df   Sum Sq  Mean Sq F value    Pr(>F)     

density    1 21345674 21345674  636.98 < 2.2e-16 *** 

Residuals 34  1139366    33511                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Once we have fit a model in R, we can generate predicted values using the predict function. 

 
> predict(mod.1) 

        1         2         3         4         5         6         7  

 259.9152  265.6658  409.4325  472.6899  472.6899  507.1939  581.9525  

 ... 

 

This function works for a whole range of statistical models in R—not just lm objects. Of course, 

we can treat these predictions as we would any vector, e.g., we can add them to the above plot or 

put them back in the original data frame. The predict function can also give confidence and 

prediction intervals. 

 
> predict(mod.1,int="conf") 

                                                 

 

 
38

 These should remain the same in future versions of R, while it is possible that names will change, so indexing may 

not always work the same. 
39

 This is different from the default approach used in other statistical software. More discussion on this topic follows 

in the section on ANOVA below. 
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         fit       lwr       upr 

1   259.9152  144.4580  375.3724 

2   265.6658  150.5990  380.7327 

3   409.4325  303.9330  514.9320 

4   472.6899  371.2673  574.1125 

... 

 

One problem with plotting these predictions directly is that the data will not be sorted, and 

(except in the case of a straight line) we will end up with a line that jumps around. A second 

problem (again, really only when you are not plotting a straight line) is that some areas may not 

have high enough point density to make a smooth line. So, let's set up a new data frame just for 

predictions. 

 
> hard.pred.dat<-data.frame(density=density<-seq(10,70,10)) 

> conf.int<-predict(mod.1,newdata = hard.pred.dat,int="c") 

> conf.int 

         fit       lwr       upr 

1 -585.43296 -762.1332 -408.7327 

2  -10.36621 -144.6918  123.9594 

3  564.70054  469.0338  660.3673 

4 1139.76729 1072.3190 1207.2155 

... 

 

OK, so what is the best way to add these predictions?  The function matlines will plot the 

columns in a matrix as a function of a single vector. This works well for plotting confidence 

intervals and predictions with a single line of code. (Note that the below code does not use the 

data frame hard.pred.dat, but it is used to generate the predictions.) 
 

> plot(hard.dat$density,hard.dat$hard) 

> matlines(density,conf.int,lty=c(1,2,2), col=c("red","blue","blue")) 
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If we wanted to store the predictions in a data frame, we could have done that in one step. 

 

As was mentioned earlier, the plot function does different things for different classes of objects. 

If we supply to it an lm object, we get some useful diagnostic plots. 
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To demonstrate multiple linear regression in R, let's use a data set on ozone formation. 

 
> ozone.dat<-read.table("Ozone.txt",header=T) 

> summary(ozone.dat) 

      rad             temp           wind            ozone       

 Min.  :  7.0   Min.  :57.0   Min.  : 2.300   Min.  :  1.0   

 1st Qu.:113.5   1st Qu.:71.0   1st Qu.: 7.400   1st Qu.: 18.0   

 Median :207.0   Median :79.0   Median : 9.700   Median : 31.0   

 Mean   :184.8   Mean   :77.8   Mean   : 9.939   Mean   : 42.1   

 3rd Qu.:255.5   3rd Qu.:84.5   3rd Qu.:11.500   3rd Qu.: 62.0   

 Max.  :334.0   Max.  :97.0   Max.  :20.700   Max.  :168.0   

 

A quick way to look for relationships between variables in a data frame is with the cor function. 

 
> cor(ozone.dat) 

             rad       temp       wind      ozone 

rad    1.0000000  0.2940876 -0.1273656  0.3483417 

temp   0.2940876  1.0000000 -0.4971459  0.6985414 

wind  -0.1273656 -0.4971459  1.0000000 -0.6129508 

ozone  0.3483417  0.6985414 -0.6129508  1.0000000 

 

To visualize these relationships, we can use pairs. 

 
> pairs(ozone.dat) 
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There certainly seem to be some interesting relationships. Let's fit a model. 

 
> mod.1<-lm(ozone~rad + temp + wind, data = ozone.dat) 

> summary(mod.1) 

 

Call: 

lm(formula = ozone ~ rad + temp + wind, data = ozone.dat) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-40.485 -14.210  -3.556  10.124  95.600  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) -64.23208   23.04204  -2.788  0.00628 **  

rad           0.05980    0.02318   2.580  0.01124 *   

temp          1.65121    0.25341   6.516 2.43e-09 *** 

wind         -3.33760    0.65384  -5.105 1.45e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 21.17 on 107 degrees of freedom 

Multiple R-squared: 0.6062,     Adjusted R-squared: 0.5952  

F-statistic: 54.91 on 3 and 107 DF,  p-value: < 2.2e-16  

 

Let's drop radiation (although it would probably be significant by most standards). 

 
> mod.2<-lm(ozone~temp + wind, data = ozone.dat) 

> summary(mod.2) 

 

Call: 

lm(formula = ozone ~ temp + wind, data = ozone.dat) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-42.160 -13.209  -3.089  10.588  98.470  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -67.2008    23.6083  -2.846  0.00529 **  

temp          1.8265     0.2504   7.293 5.32e-11 *** 

wind         -3.2993     0.6706  -4.920 3.12e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 21.72 on 108 degrees of freedom 

Multiple R-squared: 0.5817,     Adjusted R-squared: 0.574  

F-statistic:  75.1 on 2 and 108 DF,  p-value: < 2.2e-16  

 

We could also use the update function for model 2—this is especially handy for dealing with 

large model formulas. 
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> mod.2<-update(mod.1, ~. -rad) 

> summary(mod.2) 

 

Call: 

lm(formula = ozone ~ temp + wind, data = ozone.dat) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-42.160 -13.209  -3.089  10.588  98.470  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -67.2008    23.6083  -2.846  0.00529 **  

temp          1.8265     0.2504   7.293 5.32e-11 *** 

wind         -3.2993     0.6706  -4.920 3.12e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 21.72 on 108 degrees of freedom 

Multiple R-squared: 0.5817,     Adjusted R-squared: 0.574  

F-statistic:  75.1 on 2 and 108 DF,  p-value: < 2.2e-16  

 

Let's take a look at the results. 

 
> plot(mod.2) 
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It looks like the residuals are not normally distributed, and there seems to be a relationship to the 
fiitted values. Since we are attempting to model concentration data, we might consider log-
transforming the values40. 
 
> mod.3<-lm(log10(ozone)~rad + temp + wind, data = ozone.dat) 

> summary(mod.3) 

 

Call: 

lm(formula = log10(ozone) ~ rad + temp + wind, data = ozone.dat) 

 

Residuals: 

       Min         1Q     Median         3Q        Max  

-0.8955655 -0.1301492 -0.0009698  0.1336213  0.5366669  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -0.1134264  0.2403430  -0.472 0.637934     

rad          0.0010921  0.0002418   4.518 1.62e-05 *** 

temp         0.0213512  0.0026433   8.078 1.07e-12 *** 

wind        -0.0267493  0.0068200  -3.922 0.000155 *** 

--- 

                                                 
 
 
40 R also has a transform function, for transforming variables and maintaining the same variable name. 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.2208 on 107 degrees of freedom 

Multiple R-squared: 0.6645,     Adjusted R-squared: 0.6551  

F-statistic: 70.65 on 3 and 107 DF,  p-value: < 2.2e-16 

 

The first obvious difference is that the t value has increased for radiation. 

 
> plot(mod.3) 
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Our residuals look better now as well. 

 

Polynomial regression can be carried out in R using the lm function. Let‘s demonstrate using 

wheat yield in the United States. 

 
> wheat.dat<-read.table("Wheat.txt",header=T) 

> summary(wheat.dat) 

       yr       country     yield       

 Min.  :1961   mx:47   Min.  :16070   

 1st Qu.:1972   us:47   1st Qu.:22849   

 Median :1984           Median :26748   

 Mean   :1984           Mean   :30411   

 3rd Qu.:1996           3rd Qu.:39432   

 Max.  :2007           Max.  :52274   

 

> wheat.dat$yr.idx<-wheat.dat$yr - 1961 

> wheat.us.dat<-subset(wheat.dat,country=="us") 

 

> plot(wheat.us.dat$yr,wheat.us.dat$yield,type="o") 
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> mod.1<-lm(yield~yr.idx + I(yr.idx^2), data=wheat.us.dat) 

> summary(mod.1) 

 

Call: 

lm(formula = yield ~ yr.idx + I(yr.idx^2), data = wheat.us.dat) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-3474.86 -1215.17    63.42  1128.11  2918.19  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 16339.195    671.988  24.315  < 2e-16 *** 

yr.idx        408.997     67.568   6.053 2.82e-07 *** 

I(yr.idx^2)    -3.608      1.420  -2.540   0.0147 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 1601 on 44 degrees of freedom 

Multiple R-squared: 0.8237,     Adjusted R-squared: 0.8157  

F-statistic: 102.8 on 2 and 44 DF,  p-value: < 2.2e-16 

 

To use orthogonal polynomial regression, use the poly function. 

 
> mod.2<-lm(yield~poly(yr.idx,2), data=wheat.us.dat) 
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> summary(mod.2) 

 

Call: 

lm(formula = yield ~ poly(yr.idx, 2), data = wheat.us.dat) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-3474.86 -1215.17    63.42  1128.11  2918.19  

 

Coefficients: 

                 Estimate Std. Error t value Pr(>|t|)     

(Intercept)       23173.6      233.6   99.20   <2e-16 *** 

poly(yr.idx, 2)1  22600.0     1601.4   14.11   <2e-16 *** 

poly(yr.idx, 2)2  -4068.1     1601.4   -2.54   0.0147 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 1601 on 44 degrees of freedom 

Multiple R-squared: 0.8237,     Adjusted R-squared: 0.8157  

F-statistic: 102.8 on 2 and 44 DF,  p-value: < 2.2e-16  

 

> plot(wheat.us.dat$yr.idx,wheat.us.dat$yield,type="o") 

> wheat.pred.dat<-data.frame(yr.idx=0:46) 

> wheat.pred.dat$yield.pred<-predict(mod.2,newdata=wheat.pred.dat) 

> lines(wheat.pred.dat$yr.idx,wheat.pred.dat$yield.pred, 

+ col="red") 

 



102 

 

 

9.3. ANOVA and pairwise comparisons 

To demonstrate ANOVA in R, let‘s start with a simple data set distributed with the base 

packages called InsectSprays. This dataset shows the effectiveness of six different 

insecticides.  

 
> insects.dat<-InsectSprays 

> summary(insects.dat) 

     count       spray  

 Min.  : 0.00   A:12   

 1st Qu.: 3.00   B:12   

 Median : 7.00   C:12   

 Mean   : 9.50   D:12   

 3rd Qu.:14.25   E:12   

 Max.  :26.00   F:12   

 

There are two options for specifying an ANOVA: lm and aov. Really, aov is just a ―wrapper‖ 

for calling up the lm function. The main difference between aov and lm is in the format of the 

output, although a traditional ANOVA table can be produced by applying the anova function to 

an lm model.  

 

0 10 20 30 40

1
6

0
0

0
2

0
0

0
0

2
4

0
0

0
2

8
0

0
0

wheat.us.dat$yr.idx

w
h

e
a

t.
u

s
.d

a
t$

y
ie

ld



103 

 

Since the measured variable is a count (number of insects), it is not normally distributed. To 

make these data approximate a normal distribution, we can use a square root transformation (Zar 

1999)
41

. 

 
> insects.dat$sr.count<-sqrt(insects.dat$count + 3/8) 

> mod.1<-aov(sr.count ~ spray, data = insects.dat) 

> mod.1 

Call: 

   aov(formula = sr.count ~ spray, data = insects.dat) 

 

Terms: 

                   spray Residuals 

Sum of Squares  80.52844  22.80262 

Deg. of Freedom        5        66 

 

Residual standard error: 0.5877876  

Estimated effects may be unbalanced 

 

To get more detailed output, we need to use the summary function. 

 
> summary(mod.1) 

            Df Sum Sq Mean Sq F value    Pr(>F)     

spray        5 80.528  16.106  46.616 < 2.2e-16 *** 

Residuals   66 22.803   0.345                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

We can specify this same model using the lm function. 

 
> mod.2<-lm(sr.count ~ spray, data = insects.dat) 

> summary(mod.2) 

 

Call: 

lm(formula = sr.count ~ spray, data = insects.dat) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-1.21011 -0.38480 -0.02005  0.38054  1.26503  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   3.8115     0.1697  22.463  < 2e-16 *** 

sprayB        0.1143     0.2400   0.476    0.635     

sprayC       -2.3549     0.2400  -9.814 1.60e-14 *** 

sprayD       -1.5587     0.2400  -6.496 1.26e-08 *** 

sprayE       -1.8937     0.2400  -7.892 4.14e-11 *** 

                                                 

 

 
41

 Another option is to forget about lm and just use a generalized linear model. This is covered in a later section. 
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sprayF        0.2550     0.2400   1.062    0.292     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.5878 on 66 degrees of freedom 

Multiple R-squared: 0.7793,     Adjusted R-squared: 0.7626  

F-statistic: 46.62 on 5 and 66 DF,  p-value: < 2.2e-16  

 

The above output gives you some insight into how R carries out ANOVA—it uses linear 

regression with dummy variables. You can get more information on the variable coding with the 

model.matrix function, which returns the X-matrix for the regression. From the output, it is 

clear that spray=A is the reference level. 

 
   (Intercept) sprayB sprayC sprayD sprayE sprayF 

1            1      0      0      0      0      0 

2            1      0      0      0      0      0 

... 

71           1      0      0      0      0      1 

72           1      0      0      0      0      1 

attr(,"assign") 

[1] 0 1 1 1 1 1 

attr(,"contrasts") 

attr(,"contrasts")$spray 

[1] "contr.treatment" 

 

To get the same output that aov returns, you can use anova on the lm object: 
 

> anova(mod.2) 

Analysis of Variance Table 

 

Response: sr.count 

          Df Sum Sq Mean Sq F value    Pr(>F)     

spray      5 80.528  16.106  46.616 < 2.2e-16 *** 

Residuals 66 22.803   0.345                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

R has many multiple range tests available, including Tukey‘s HSD test in the base package, and 

many others in the multcomp package. The Tukey test is applied using the TukeyHSD function. 

Note that this function requires aov output (lm will not work). 
 

> TukeyHSD(mod.1) 

  Tukey multiple comparisons of means 

    95% family-wise confidence level 

 

Fit: aov(formula = sr.count ~ spray, data = insects.dat) 

 

$spray 

          diff         lwr        upr     p adj 

B-A  0.1143102 -0.59000479  0.8186251 0.9968245 

C-A -2.3549121 -3.05922701 -1.6505971 0.0000000 
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D-A -1.5587119 -2.26302685 -0.8543969 0.0000002 

E-A -1.8937416 -2.59805660 -1.1894267 0.0000000 

F-A  0.2549576 -0.44935734  0.9592726 0.8943236 

C-B -2.4692222 -3.17353717 -1.7649073 0.0000000 

D-B -1.6730221 -2.37733701 -0.9687071 0.0000000 

E-B -2.0080518 -2.71236676 -1.3037369 0.0000000 

F-B  0.1406474 -0.56366751  0.8449624 0.9916328 

D-C  0.7962002  0.09188521  1.5005151 0.0177353 

E-C  0.4611704 -0.24314454  1.1654854 0.3983576 

F-C  2.6098697  1.90555471  3.3141846 0.0000000 

E-D -0.3350298 -1.03934471  0.3692852 0.7291427 

F-D  1.8136695  1.10935455  2.5179845 0.0000000 

F-E  2.1486993  1.44438430  2.8530142 0.0000000 

 

There are many more options for pairwise comparisons in the multcomp package. 
 

To look at ANOVA data, boxplot and barplot can both be useful. 
 
> boxplot(count ~ spray, data=insects.dat,xlab="Spray",ylab="Insect 

count",las=1) 

 
 

A two-factor or multi-factor ANOVA is carried out in a similar way. Let’s use some data from 
Zar (1999) on the respiration rate of 3 species of crabs in response to temperature to demonstrate. 
 
> crabs.dat<-read.table("Crabs.txt",header=T) 

> summary(crabs.dat) 
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       sp      temp    sex         resp       

 Min.  :1   high:24   F:36   Min.  :1.000   

 1st Qu.:1   low :24   M:36   1st Qu.:1.900   

 Median :2   med :24          Median :2.300   

 Mean   :2                    Mean   :2.325   

 3rd Qu.:3                    3rd Qu.:2.900   

 Max.  :3                    Max.  :3.600   

 

> crabs.dat$sp<-factor(crabs.dat$sp) 

> summary(crabs.dat) 

 sp       temp    sex         resp       

 1:24   high:24   F:36   Min.  :1.000   

 2:24   low :24   M:36   1st Qu.:1.900   

 3:24   med :24          Median :2.300   

                         Mean   :2.325   

                         3rd Qu.:2.900   

                         Max.  :3.600   

 

The aov function is designed for balanced designs. We can check for balance by using the 

replications function. 
 

> replications(resp~(sp+temp+sex)^3,data=crabs.dat) 

         sp        temp         sex     sp:temp  

         24          24          36           8  

     sp:sex    temp:sex sp:temp:sex  

         12          12           4 

 

If the replications function returns a vector (it did), you have a balanced design
42

. 

 

Now for the ANOVA. 
 

> mod.1<-aov(resp~sp+temp+sex,data=crabs.dat) 

> summary(mod.1) 

            Df  Sum Sq Mean Sq  F value    Pr(>F)     

sp           2  1.8175  0.9088  15.4869 3.057e-06 *** 

temp         2 24.6558 12.3279 210.0927 < 2.2e-16 *** 

sex          1  0.0089  0.0089   0.1515    0.6984     

Residuals   66  3.8728  0.0587                        

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Let‘s include interactions. In R interactions are specified using a colon. 
  

> mod.2<-aov(resp~sp+temp+sex+sp:temp+sp:sex+temp:sex,data=crabs.dat) 

> summary(mod.2) 

                                                 

 

 
42

 A test for balance in R is therefore !is.list(replications(resp~(sp+temp+sex)^3, 

data=crabs.dat))—a bit clunky, but it works! See the help file for replications for more information. 
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            Df  Sum Sq Mean Sq  F value    Pr(>F)     

sp           2  1.8175  0.9088  23.6829 3.028e-08 *** 

temp         2 24.6558 12.3279 321.2767 < 2.2e-16 *** 

sex          1  0.0089  0.0089   0.2317   0.63211     

sp:temp      4  1.1017  0.2754   7.1776 9.136e-05 *** 

sp:sex       2  0.3703  0.1851   4.8249   0.01153 *   

temp:sex     2  0.1753  0.0876   2.2839   0.11097     

Residuals   58  2.2256  0.0384                        

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

However, R has a trick for specifying all interactions of a certain order. 
  

> mod.3<-aov(resp~(sp+temp+sex)^2,data=crabs.dat) 

> summary(mod.3) 

            Df  Sum Sq Mean Sq  F value    Pr(>F)     

sp           2  1.8175  0.9088  23.6829 3.028e-08 *** 

temp         2 24.6558 12.3279 321.2767 < 2.2e-16 *** 

sex          1  0.0089  0.0089   0.2317   0.63211     

sp:temp      4  1.1017  0.2754   7.1776 9.136e-05 *** 

sp:sex       2  0.3703  0.1851   4.8249   0.01153 *   

temp:sex     2  0.1753  0.0876   2.2839   0.11097     

Residuals   58  2.2256  0.0384                        

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> mod.4<-aov(resp~(sp+temp+sex)^3,data=crabs.dat) 

> summary(mod.4) 

            Df  Sum Sq Mean Sq  F value    Pr(>F)     

sp           2  1.8175  0.9088  24.4751 2.715e-08 *** 

temp         2 24.6558 12.3279 332.0237 < 2.2e-16 *** 

sex          1  0.0089  0.0089   0.2394    0.6266     

sp:temp      4  1.1017  0.2754   7.4177 7.752e-05 *** 

sp:sex       2  0.3703  0.1851   4.9863    0.0103 *   

temp:sex     2  0.1753  0.0876   2.3603    0.1041     

sp:temp:sex  4  0.2206  0.0551   1.4850    0.2196     

Residuals   54  2.0050  0.0371                        

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

So, our analysis shows that respiration differs with species and temperature, and that the effect of 

temperature is dependent on the species. Additionally, the difference in respiration rates between 

sexes is depdent on species (the main effect is actually not significant). What do the results 

actually look like? We can use the function interaction.plot to quickly generate some 

illuminating plots
43

. 

 

                                                 

 

 
43

 A shorter option is with(crabs.dat,interaction.plot(sp,temp,resp)). 
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> interaction.plot(crabs.dat$sp,crabs.dat$temp,crabs.dat$resp) 

 
> interaction.plot(crabs.dat$sp,crabs.dat$sex,crabs.dat$resp) 
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This second interaction plot shows why we don‘t see a significant main effect for sex (although 

this test is essentially irrelevant, considering that the interaction is significant).  

 

If we want to see the actual mean respiration rates for each combination of levels, we can use the 

model.tables function. The output from this function is a list with a class of ―tables.aov‖—

you can extract or manipulate data in it as with any other list. 

 
> model.tables(mod.3,type='means') 

Tables of means 

Grand mean 

       

2.325  

 

 sp  

sp 

     1      2      3  

2.3458 2.5083 2.1208  

 

 temp  

temp 

  high    low    med  

3.0458 1.6125 2.3167  

 

 sex  

sex 

     F      M  

2.3139 2.3361  

 

 sp:temp  

   temp 

sp  high  low   med   

  1 3.013 1.638 2.388 

  2 3.175 2.000 2.350 

  3 2.950 1.200 2.213 

 

 sp:sex  

   sex 

sp  F      M      

  1 2.3583 2.3333 

  2 2.4000 2.6167 

  3 2.1833 2.0583 

 

 temp:sex  

      sex 

temp   F      M      

  high 2.9750 3.1167 

  low  1.6000 1.6250 

  med  2.3667 2.2667 
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As with regression models, we can also apply the plot function to the model output to get 

diagnostic plots. 

 
> plot(mod.4) 

... 

 

Let’s back up a bit and try to get a better understaning of analysis 

of variance in R. Remember that aov is just a wrapper for lm. So, 

let’s try lm itself. 

 
> mod.5<-lm(resp~(sp+temp+sex)^2,data=crabs.dat) 

> summary(mod.5) 

 

Call: 

lm(formula = resp ~ (sp + temp + sex)^2, data = crabs.dat) 

 

Residuals: 

      Min        1Q    Median        3Q       Max  

-0.313889 -0.144097 -0.004861  0.135764  0.409722  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept)   2.96528    0.08638  34.329  < 2e-16 *** 

sp2           0.04167    0.11310   0.368   0.7139     

sp3          -0.01250    0.11310  -0.111   0.9124     

templow      -1.31667    0.11310 -11.642  < 2e-16 *** 

tempmed      -0.50417    0.11310  -4.458 3.85e-05 *** 

sexM          0.09444    0.10324   0.915   0.3641     

sp2:templow   0.20000    0.13851   1.444   0.1541     

sp3:templow  -0.37500    0.13851  -2.707   0.0089 **  

sp2:tempmed  -0.20000    0.13851  -1.444   0.1541     

sp3:tempmed  -0.11250    0.13851  -0.812   0.4200     

sp2:sexM      0.24167    0.11310   2.137   0.0368 *   

sp3:sexM     -0.10000    0.11310  -0.884   0.3802     

templow:sexM -0.11667    0.11310  -1.032   0.3066     

tempmed:sexM -0.24167    0.11310  -2.137   0.0368 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.1959 on 58 degrees of freedom 

Multiple R-squared: 0.9267,     Adjusted R-squared: 0.9102  

F-statistic: 56.39 on 13 and 58 DF,  p-value: < 2.2e-16 

 

To generate a ANOVA table, we can use the anova function. 

 
> anova(mod.5) 

Analysis of Variance Table 

 

Response: resp 

          Df  Sum Sq Mean Sq  F value    Pr(>F)     

sp         2  1.8175  0.9088  23.6829 3.028e-08 *** 
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temp       2 24.6558 12.3279 321.2767 < 2.2e-16 *** 

sex        1  0.0089  0.0089   0.2317   0.63211     

sp:temp    4  1.1017  0.2754   7.1776 9.136e-05 *** 

sp:sex     2  0.3703  0.1851   4.8249   0.01153 *   

temp:sex   2  0.1753  0.0876   2.2839   0.11097     

Residuals 58  2.2256  0.0384                        

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

This should be identical to what summary(aov(...)) returned above. 

 

Don't forget that the ANOVA table that you get with lm objects (e.g. from aov) in R returns tests 

based on Type I SS. We can demonstrate that this is the case. First, let‘s try dropping the last 

interaction term: 

 
> mod.6<-update(mod.5, ~. - temp:sex) 

 

Now, we can compare the two models with anova. 

 
> anova(mod.5,mod.6) 

Analysis of Variance Table 

 

Model 1: resp ~ (sp + temp + sex)^2 

Model 2: resp ~ sp + temp + sex + sp:temp + sp:sex 

  Res.Df      RSS Df Sum of Sq      F Pr(>F) 

1     58  2.22556                            

2     60  2.40083 -2  -0.17528 2.2839 0.1110 

 

This result is identical to what we got above (well, with a different number of digits). 

 

If you have an unbalanced design, Type I SS are not what you want. What can you do? You can 

use update and anova to compare any two nested models, which allows you to look at the 

effect of any one variable, given any number of other variables in the model. For Type III SS, 

you can use the drop1 function, which returns results for the effect of single variables given all 

other variables in the model. However, this function will not return results for ―main‖ effects if 

interactions are included in your model—this is a good thing.
44

 

 
> drop1(mod.5,test="F") 

Single term deletions 

 

Model: 

resp ~ (sp + temp + sex)^2 

         Df Sum of Sq      RSS      AIC F value     Pr(F)     

                                                 

 

 
44

  And, many R users might say, a shortcoming in SAS. There is a lot of discussion in the R archives on ANOVA 

SS. If you are confused, check out: http://cran.r-project.org/doc/FAQ/R-FAQ.html,  https://stat.ethz.ch/pipermail/r-

help/2008-February/153740.html, http://markmail.org/message/pjicdzsxdjzvs6en.. 
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<none>                   2.226 -222.319                       

sp:temp   4     1.102    3.327 -201.366  7.1776 9.136e-05 *** 

sp:sex    2     0.370    2.596 -215.239  4.8249   0.01153 *   

temp:sex  2     0.175    2.401 -220.861  2.2839   0.11097     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Lastly, there are other functions available for carrying out ANOVA with Type II SS, e.g Anova 

in the car package. 

9.4. ANCOVA 

Analysis of covariance (ANCOVA) is useful when you have both categorical and continuous 

predictor variables. In R, ANCOVA can be carried out using the lm function. 

 

To demonstrate ANCOVA, we will use a data set on copper toxicity to Daphnia magna from 

Ryan (2005). The experimental design is a 7 × 3 × 3 factorial design, with 7 dissolved organic 

matter (DOM) sources, 3 DOC concentrations, and 3 pH levels. Copper toxicity (expressed as 

LC50) was measured for each combination of levels. 

   
> lc50.dat<-read.table("Ogeechee_tox_summary.txt",header=TRUE) 

 

> summary(lc50.dat) 

      test            n.doc         n.ph        rep      

 Min.  :  2.00   Min.  : 2   Min.  :6   Min.  :1.0   

 1st Qu.: 37.25   1st Qu.: 2   1st Qu.:6   1st Qu.:1.0   

 Median : 73.00   Median : 7   Median :7   Median :1.5   

 Mean   : 73.00   Mean   : 8   Mean   :7   Mean   :1.5   

 3rd Qu.:108.75   3rd Qu.:15   3rd Qu.:8   3rd Qu.:2.0   

 Max.  :144.00   Max.  :15   Max.  :8   Max.  :2.0   

   dom.source       ph             doc         

 Min.  :1    Min.  :5.860   Min.  : 2.000   

 1st Qu.:2    1st Qu.:6.220   1st Qu.: 2.250   

 Median :4    Median :7.240   Median : 6.725   

 Mean   :4    Mean   :7.155   Mean   : 7.972   

 3rd Qu.:6    3rd Qu.:7.957   3rd Qu.:14.330   

 Max.  :7    Max.  :8.400   Max.  :16.130   

      lc50        

 Min.  :  5.42   

 1st Qu.: 23.09   

 Median : 64.20   

 Mean   :126.37   

 3rd Qu.:175.36   

 Max.  :574.82 

 

We need to make dom.source a factor. 

 
> lc50.dat$dom.source<-factor(lc50.dat$dom.source) 
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And, since solute concentrations and LC50s are generally log-normally distributed, and since we 

might expect that log LC50 is proportional to log DOC concentration, we will log transform 

LC50 and DOC. 

 
> lc50.dat$l.doc<-log10(lc50.dat$doc) 

> lc50.dat$l.lc50<-log10(lc50.dat$lc50) 

 

Let‘s start with  

 
> mod.1<-lm(l.lc50 ~ (dom.source + l.doc + ph)^2, data = lc50.dat) 

> summary(mod.1) 

 

Call: 

lm(formula = l.lc50 ~ (dom.source + l.doc + ph)^2, data = lc50.dat) 

 

Residuals: 

      Min        1Q    Median        3Q       Max  

-0.259978 -0.041663  0.009425  0.053572  0.150076  

 

Coefficients: 

                  Estimate Std. Error t value Pr(>|t|) 

(Intercept)       -3.81833    0.27024 -14.129  < 2e-16 

dom.source2        0.51286    0.28910   1.774 0.078990 

dom.source3        1.01760    0.29146   3.491 0.000706 

dom.source4        0.68690    0.29100   2.360 0.020117 

dom.source5        0.64660    0.28754   2.249 0.026638 

dom.source6        0.09499    0.28672   0.331 0.741085 

dom.source7        0.31169    0.28617   1.089 0.278596 

l.doc              1.88073    0.22770   8.260 4.97e-13 

ph                 0.69521    0.03737  18.603  < 2e-16 

dom.source2:l.doc  0.15330    0.08720   1.758 0.081675 

dom.source3:l.doc  0.10787    0.08751   1.233 0.220445 

dom.source4:l.doc  0.09537    0.08749   1.090 0.278206 

dom.source5:l.doc  0.10160    0.08756   1.160 0.248566 

dom.source6:l.doc  0.15615    0.08853   1.764 0.080687 

dom.source7:l.doc  0.12921    0.08846   1.461 0.147159 

dom.source2:ph    -0.10491    0.03950  -2.656 0.009149 

dom.source3:ph    -0.16600    0.03983  -4.168 6.37e-05 

dom.source4:ph    -0.11637    0.03968  -2.933 0.004133 

dom.source5:ph    -0.11465    0.03916  -2.927 0.004200 

dom.source6:ph    -0.03673    0.03906  -0.940 0.349202 

dom.source7:ph    -0.06406    0.03896  -1.644 0.103172 

l.doc:ph          -0.13452    0.03060  -4.396 2.66e-05 

                      

(Intercept)       *** 

dom.source2       .  

dom.source3       *** 

dom.source4       *   

dom.source5       *   

dom.source6           

dom.source7           
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l.doc             *** 

ph                *** 

dom.source2:l.doc .  

dom.source3:l.doc     

dom.source4:l.doc     

dom.source5:l.doc     

dom.source6:l.doc .  

dom.source7:l.doc     

dom.source2:ph    **  

dom.source3:ph    *** 

dom.source4:ph    **  

dom.source5:ph    **  

dom.source6:ph        

dom.source7:ph        

l.doc:ph          *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.0898 on 104 degrees of freedom 

Multiple R-squared: 0.9776,     Adjusted R-squared: 0.9731  

F-statistic: 216.5 on 21 and 104 DF,  p-value: < 2.2e-16  

 

> anova(mod.1) 

Analysis of Variance Table 

 

Response: l.lc50 

                  Df  Sum Sq Mean Sq   F value    Pr(>F)     

dom.source         6  0.1962  0.0327    4.0550 0.0010804 **  

l.doc              1 16.6982 16.6982 2070.9118 < 2.2e-16 *** 

ph                 1 19.3704 19.3704 2402.3121 < 2.2e-16 *** 

dom.source:l.doc   6  0.0306  0.0051    0.6330 0.7035138     

dom.source:ph      6  0.2069  0.0345    4.2759 0.0006842 *** 

l.doc:ph           1  0.1558  0.1558   19.3281 2.664e-05 *** 

Residuals        104  0.8386  0.0081                         

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Dropping insignificant predictors (i.e. backward elimination): 
 

> mod.2<-lm(l.lc50 ~ (dom.source + l.doc + ph)^2 - dom.source:l.doc, 

data = lc50.dat) 

 

> anova(mod.2) 

Analysis of Variance Table 

 

Response: l.lc50 

               Df  Sum Sq Mean Sq   F value    Pr(>F)     

dom.source      6  0.1962  0.0327    4.1184 0.0009083 *** 

l.doc           1 16.6982 16.6982 2103.2746 < 2.2e-16 *** 

ph              1 19.3704 19.3704 2439.8537 < 2.2e-16 *** 

dom.source:ph   6  0.2006  0.0334    4.2110 0.0007485 *** 
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l.doc:ph        1  0.1580  0.1580   19.9033 1.976e-05 *** 

Residuals     110  0.8733  0.0079                         

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Our final analysis says that DOM source is a significant categorical predictor, and that DOC 

concentration and pH both have a significant linear effect on LC50, although the slope of the 

response to pH differs among DOM sources and the slope of the response to DOC concentration 

differs in response pH values (or vice versa). Let‘s look at regression parameters: 

 
> summary(mod.2) 

 

Call: 

lm(formula = l.lc50 ~ (dom.source + l.doc + ph)^2 - dom.source:l.doc,  

    data = lc50.dat) 

 

Residuals: 

      Min        1Q    Median        3Q       Max  

-0.265161 -0.050208  0.008665  0.056682  0.152552  

 

Coefficients: 

               Estimate Std. Error t value Pr(>|t|)     

(Intercept)    -3.87739    0.26625 -14.563  < 2e-16 *** 

dom.source2     0.59756    0.28238   2.116 0.036589 *   

dom.source3     1.07257    0.28462   3.768 0.000266 *** 

dom.source4     0.73278    0.28372   2.583 0.011113 *   

dom.source5     0.69673    0.27989   2.489 0.014298 *   

dom.source6     0.18511    0.27915   0.663 0.508637     

dom.source7     0.38226    0.27854   1.372 0.172742     

l.doc          1.99341    0.21759   9.161 3.26e-15 *** 

ph              0.69205    0.03704  18.682  < 2e-16 *** 

dom.source2:ph -0.10018    0.03912  -2.561 0.011786 *   

dom.source3:ph -0.16208    0.03945  -4.109 7.68e-05 *** 

dom.source4:ph -0.11257    0.03931  -2.864 0.005014 **  

dom.source5:ph -0.11075    0.03880  -2.854 0.005155 **  

dom.source6:ph -0.03245    0.03870  -0.838 0.403597     

dom.source7:ph -0.06000    0.03860  -1.554 0.122970     

l.doc:ph      -0.13543    0.03036  -4.461 1.98e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.0891 on 110 degrees of freedom 

Multiple R-Squared: 0.9767,     Adjusted R-squared: 0.9735  

F-statistic: 307.5 on 15 and 110 DF,  p-value: < 2.2e-16 

 

For the coefficients only: 

 
> coef(mod.2) 

   (Intercept)    dom.source2    dom.source3    dom.source4  

   -3.87739361     0.59755833     1.07256669     0.73278355  

   dom.source5    dom.source6    dom.source7          l.doc  
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    0.69672694     0.18510862     0.38225760     1.99340957  

            ph dom.source2:ph dom.source3:ph dom.source4:ph  

    0.69204731    -0.10018229    -0.16208067    -0.11256778  

dom.source5:ph dom.source6:ph dom.source7:ph       l.doc:ph  

   -0.11074601    -0.03244520    -0.05999614    -0.13543281 

 

Using R‘s plot function along with some others, it is possible to very clearly display factorial 

data and model fit. Simply applying the plot function to ANOVA or ANCOVA output will give 

you some useful diagnostic plots as we have seen with other lm objects. 

 
> par(mfrow=c(2,2)) 

> plot(mod.2) 

 

... 

 

Here is some more advanced code for plotting these results. One of the resulting seven plots are 

shown below the code. 

 
lc50.dat$l.lc50.pred<-predict(mod.2) 

lc50.dat$lc50.pred<-10^lc50.dat$l.lc50.pred 

lc50.dat$n.ph<-factor(lc50.dat$n.ph) 

n.colors<-c("red","blue","green") 

par(ask=TRUE) 

for(i in levels(lc50.dat$dom.source)) { 

   sub.1<-subset(lc50.dat,dom.source==i) 

   plot(1,1,type="n",log='xy',xlim=c(1,50),ylim=c(1,2000),xlab="DOC (mg/L)", 

   ylab=expression("Dissolved Cu LC50"~~(mu*g/L)),main=paste("DOC",i),las=1) 

   box() 

   k<-0 

   for (j in levels(sub.1$n.ph)) { 

      k<-k+1 

      sub.2<-subset(sub.1,n.ph==j) 

      sub.2<-sub.2[order(sub.2$doc),] 

      points(sub.2$doc,sub.2$lc50,pch=k,col=n.colors[k]) 

      points(sub.2$doc,sub.2$lc50.pred,type="l",col="darkgray") 

   } 

   if(i==1) legend("topleft", c("pH 6","pH 7","pH 8","Model"),pch=1:4,     

      col=c(n.colors[1:3],"darkgray"),lty=c(0,0,0,1),pt.cex=c(1,1,1,0), bty="n") 

   text(20,1500,substitute(r^2==x,list(x=signif(cor(sub.2$lc50.pred,sub.2$lc50)^2, 

        3)))) 

} 

par(ask=FALSE) 
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Exercises 

1. If you haven‘t done so already, install and load the package faraway. You should now have 

the data frame mammalsleep in your workspace. Use multiple regression to determine if any 

ecological or biological predictors appear to be related to the time mammals spend sleeping 

(sleep). Keep a few things in mind: nondream and dream are alternate response variables, so 

you can ignore them in your analysis; danger is an overall danger index and so would be 

expected to be correlated with predation and exposure. You should probably start out by 

calculating a summary and applying the pairs or cor functions to look for correlations. 

Produce diagnostic plots after fitting your model. Finally, plot predicted versus observed time 

spent sleeping. 

  

2. Install and load the MASS package. You should now have a data frame called cabbages in 

your workspace. These data seem to be from a designed experiment to look at the effect of 

planting date on head mass and ascorbic acid concentration for two different cultivars. Carry out 

an ANOVA to determine if the cultivar (Cult) and planting date (Date) had an effect on the 

height weight of the cabbages. Calculate the means for each group, and plot the data to assess 

any interaction between the two predictors.  

 

3. Check out the data in the data frame fruitfly, which is part of the faraway package. Carry 

out an ANCOVA to determine whether sexual activity has an effect on male fruitfly longevity. 

As explained in the help file for the data set, thorax length is known to affect longevity, and thus 

should be included as a covariate. You might compare a model with the covariate to one without 
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to see what effect inclusion of thorax length has on your results. Plot the data and model 

predictions (a typical plot for a data set with this structure would have longevity versus thorax 

length, with different plotting symbols for each of the groups). Check out the diagnostic plots. 

 

4. Read in the data in the file Cactus_width.txt. It contains data on cactus height and width in 

areas with and without tortoises. Understroy cover is also included as a possible covariate. Carry 

out an ANCOVA to determine if the height:width ratio of these cacti are related to the presence 

of tortoises. 
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10. Nonparametric alternatives to t tests and ANOVA  

Dalgaard 2008: Chapters 5 & 7 

10.1. Wilcoxon signed-rank test 

A nonparametric equivalent to the one-sample t test is the Wilcoxon test. Let's apply it to the 

same data that we used for the t test examples. 

 

One-sample test: 

 
> wilcox.test(DO.dat$result,mu=1.2) 

 

        Wilcoxon signed rank test with continuity correction 

 

data:  DO.dat$result  

V = 1000, p-value = 5.155e-07 

alternative hypothesis: true location is not equal to 1.2  

 

Warning messages: 

1: In wilcox.test.default(DO.dat$result, mu = 1.2) : 

  cannot compute exact p-value with ties 

2: In wilcox.test.default(DO.dat$result, mu = 1.2) : 

  cannot compute exact p-value with zeroes 

 

Two-sample test: 

 
> wilcox.test(expend ~ stature, data=energy.dat) 

 

        Wilcoxon rank sum test with continuity correction 

 

data:  expend by stature  

W = 12, p-value = 0.002122 

alternative hypothesis: true location shift is not equal to 0  

 

Warning message: 

In wilcox.test.default(x = c(7.53, 7.48, 8.08, 8.09, 10.15, 8.4,  : 

  cannot compute exact p-value with ties 

 

Paired test: 

 
> wilcox.test (DO.2.dat$wink, DO.2.dat$elect, paired=T) 

 

        Wilcoxon signed rank test with continuity correction 

 

data:  DO.2.dat$wink and DO.2.dat$elect  

V = 0, p-value = 0.00903 

alternative hypothesis: true location shift is not equal to 0  

 

Warning messages: 

1: In wilcox.test.default(DO.2.dat$wink, DO.2.dat$elect, paired = T) : 
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  cannot compute exact p-value with ties 

2: In wilcox.test.default(DO.2.dat$wink, DO.2.dat$elect, paired = T) : 

  cannot compute exact p-value with zeroes 

10.2. Kruskal-Wallis test 

The Kruskal-Wallis test is a nonparametric alternative to one-way ANOVA. Here it is applied to 

the same data that we use for ANOVA above. 

 
> insects.dat<-InsectSprays 

> mod.1<-kruskal.test(count ~ spray, data=insects.dat) 

> mod.1 

 

        Kruskal-Wallis rank sum test 

 

data:  s.count by spray  

Kruskal-Wallis chi-squared = 54.6913, df = 5, p-value = 1.511e-10 

 

We can also make nonparametric pairwise comparisons with these data. In R, you can use the 

pairwise Wilcoxon signed-rank test.  

 
> with(insects.dat,pairwise.wilcox.test(count,spray)) 

 

        Pairwise comparisons using Wilcoxon rank sum test  

 

data:  count and spray  

 

  A       B       C       D       E       

B 1.00000 -       -       -       -       

C 0.00051 0.00051 -       -       -       

D 0.00062 0.00062 0.01591 -       -       

E 0.00051 0.00051 0.26287 0.69778 -       

F 1.00000 1.00000 0.00051 0.00062 0.00051 

 

P value adjustment method: holm  

There were 15 warnings (use warnings() to see them) 

 

Excercise 

1. Take a look at the help file for the data frame called sleep, which is included in the 

datasets package. Perform a Wilcoxon paired-sample test on these data to determine if the two 

drugs had different effects on sleep.  
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11. Loops, grouping, and conditional execution 
Dalgaard 2008: Sections 2.3 & 10.2, R-Intro: Chapter 9, R-Lang: Section 3.2 

 

With R, it is possible to write script files that can be run later, and also to write functions that can 

used for streamlining data analysis or graphics development. Programming in R benefits greatly 

from grouping, loops, and constructs for conditional execution. In some cases, interactive R 

sessions and simple scripts can also make use of these features.  

11.1. Loops and grouping 

Loops are a common feature in most programming languages—they allow you to repeat a 

command or a set of commands any number of times. In R it is possible to avoid using loops for 

many procedures where they would be required in other languages, by taking advantage of 

vectorized operations and indexing. Vectorized operations are (generally) more efficient than 

loops from both the standpoint of both writing and executing code. However, in some cases, 

loops may be more clear, or may be the only option. R has three types of loops: for, while, and 

repeat. 

 

A for loop will repeat a set of commands a specified number of times and change the value of a 

counter variable with every pass.  

 
> for (i in 1:10) print(i) 

[1] 1 

[1] 2 

[1] 3 

[1] 4 

[1] 5 

[1] 6 

[1] 7 

[1] 8 

[1] 9 

[1] 10 

 

The counter variable can be any type of vector. 

 
> some.vector<-c(1,3.45,pi,8.1,0,-100)  

> for (j in some.vector) print(j) 

[1] 1 

[1] 3.45 

[1] 3.141593 

[1] 8.1 

[1] 0 

[1] -100 

 

> orgs<-c("Tree","Grass","Snail") 

> for (i in orgs) print(i)  

[1] "Tree" 

[1] "Grass" 

[1] "Snail" 
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As you can see from the above examples, the command that follows the for() is executed with 

each pass of the loop. If you want to execute more than one command, simply group them using 

braces: {}. Any commands present together in braces are executed together—the entire block of 

code within the braces is referred to as a compound expression. (Loops are not the only place 

where grouping is useful.) 
  

> for (i in 1:5) { 

+ x<-i^2 

+ z<-i^3 

+ print(c(i,x,z)) 

+ } 

[1] 1 1 1 

[1] 2 4 8 

[1]  3  9 27 

[1]  4 16 64 

[1]   5  25 125 

 

Of course, loops are generally used for more complicated (and useful) operations. One common 

use of loops is to repeat a set of commands for subsets of data. A simple case is to select a 

different individual row or column within a data frame with each pass: 

 
> dat<-data.frame(a=letters[1:5],x=rnorm(5)) 

> dat 

  a           x 

1 a  0.08667766 

2 b -1.15645634 

3 c  1.31002675 

4 d  0.94639152 

5 e  0.40411418 

 
> for(i in 1:5) { 

+ print(dat[i,]) 

+ } 

  a          x 

1 a 0.08667766 

  a         x 

2 b -1.156456 

  a        x 

3 c 1.310027 

  a         x 

4 d 0.9463915 

  a         x 

5 e 0.4041142 

 

The code in this loop does nothing more than print the selected row to the screen. However, any 

operation could be carried out on the selected data. Of course, anything that can be done with 

this approach could be done more efficiently with apply. One place where loops are generally 

better than other approaches is when you need to carry out a multi-step or otherwise complicated 
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operation on subsets of data. Producing multi-panel plots is a good example. This type of loop 

can often make use of the levels function, which will return the levels of a factor, or unique, 

which will return the set of unique elements within a vector. 

 

Let‘s demonstrate this with the data set called heart.rate from the ISwR package. In this 

case, since we want multiple commands to be executed with each pass of the loop, we need to 

group the commands with braces.  

 
> install.packages("ISwR") 

> library(ISwR) 

 

> hr.dat<-heart.rate 

> names(hr.dat) 

[1] "hr"   "subj" "time" 

 

> hr.dat$subj<-factor(hr.dat$subj) 

 

par(mfrow=c(3,3),mar=c(1.5,2,1.5,1.5),oma=c(4,3,2,1)) 

 

for (i in levels(hr.dat$subj)) { 

   sub.dat<-subset(hr.dat, subj==i) 

   plot(hr~time,data=sub.dat,xlab="",ylab="",ylim=c(0,150)) 

   text(2.5,135,paste("Subject",i)) 

   box() 

} 

mtext("Heart rate (beats per minute)",2,1,outer=T) 

mtext("Time since treatment (hr)",1,2,outer=T) 
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Another way to do this is with the split function. 

 
hr.lst<-split(hr.dat,hr.dat$subj) 

for (i in levels(hr.dat$subj)) { 

   sub.dat<-hr.lst[[i]] 

   plot(hr~time,data=sub.dat,xlab="",ylab="",ylim=c(0,150)) 

   text(2.5,135,paste("Subject",i)) 

   box() 

} 

mtext("Heart rate (beats per minute)",2,1,outer=T) 

mtext("Time since treatment (hr)",1,2,outer=T) 

 

Selecting a different element, row, or column or even a subset within a data frame with each pass 

of a for loop is pretty straightforward.But what if you (for some reason) need to select a 

different variable with each pass? Let‘s take a look at wind speed data for several weather 

stations in the US: 
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> wind.dat<-read.table('Ave_wind_US.txt',header=T,sep='\t') 

> names(wind.dat) 

 [1] "location" "no.yr"    "jan"      "feb"      "mar"      

 [6] "apr"      "may"      "jun"      "jul"      "aug"      

[11] "sep"      "oct"      "nov"      "dec"      "ann"    

> wind.dat[1,] 

               location no.yr jan feb mar apr may jun jul aug 

1 13876BIRMINGHAM AP,AL    65 8.1 8.7   9 8.2 6.8   6 5.7 5.4 

  sep oct nov dec ann 

1 6.3 6.2 7.2 7.7 7.1 

 

What if we wanted to select a different month with each pass of a loop, starting with January? 

One option is to use indexing with numbers: 

 
> for(i in 3:15) { 

+ print(wind.dat[1,i]) 

+ } 

[1] 8.1 

[1] 8.7 

[1] 9 

[1] 8.2 

[1] 6.8 

[1] 6 

[1] 5.7 

[1] 5.4 

[1] 6.3 

[1] 6.2 

[1] 7.2 

[1] 7.7 

[1] 7.1 

 

Or, we can work with variable names: 

 
> for(i in 

c("jan","feb","mar","apr","may","jun","jul","aug","sep","oct","nov", 

+ "dec")){ 

+ print(wind.dat[1,i]) 

+ } 

[1] 8.1 

[1] 8.7 

[1] 9 

[1] 8.2 

[1] 6.8 

[1] 6 

[1] 5.7 

[1] 5.4 

[1] 6.3 

[1] 6.2 

[1] 7.2 

[1] 7.7 
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There are many other uses of for loops—if you have an idea that seems reasonable, there is a 

good chance that you can get it to work. But, keep in mind that you can often using indexing and 

functions in place of loops, and end up with cleaner and faster-running code.  

 

The while loop is used to repeat a set of commands until some condition is met. While the 

simple example below doesn‘t do much, it should give you an idea of how while loops can be 

used. 

 
> par(mfrow=c(1,1)) 

 

> r.sum<-0 

> i<-1 

 

> while (max(r.sum) < 100) { 

+ i<-i + 1 

+ r.sum[i]<-r.sum[i-1] + rnorm(n=1,mean=1,sd=5) 

+ } 

  

> plot(r.sum,xlab="Iteration",ylab="Cumulative sum",type="o") 

 

 
 

Here is a more complicated (and useful) example that uses both for and while loops. This code 

calculates the first 10 roots of the equation 
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which are required for some analytical mass transfer models. 

 
> L<-7 

> r<-NULL 

> for (i in 1:10) { 

+ b<-pi/4 

+ ct<-0 

+ while (abs(log10((b + (i-1)*pi)*tan(b)/L))>1E-5){ 

+ ct<-ct+1 

+ b<-ifelse(ct>1,(atan(L/(b + (i-1)*pi)) + b)/2,atan(L/(b + (i- 

+ 1)*pi))) 

+ } 

+ r[i]<-b + (i-1)*pi 

+ } 

>  

> r 

 [1]  1.376618  4.174646  7.064024 10.033909 13.058435 16.117683 

 [7] 19.199171 22.295364 25.401635 28.515054 

 

It is pretty difficult to keep track of this code if you were to enter it in the GUI directly. We 

recommend that you keep your R commands for anything more than the most basic analyses in 

script files. In script files, you should follow good programming practice and use indentation to 

show the structure of your code: 

 
L<-7 

r<-NULL 

for (i in 1:20) { 

   b<-pi/4 

   ct<-0 

   while (abs(log10((b+(i-1)*pi)*tan(b)/L))>1E-5){ 

      ct<-ct+1 

      b<-ifelse(ct>1,(atan(L/(b+(i-1)*pi))+b)/2,atan(L/(b+(i-1)*pi))) 

   } 

   r[i]<-b + (i-1)*pi 

} 

 

Here is a graphical representation of this problem (the plot is only large enough to see the first 

three roots): 

 
> b<-seq(0,2.5*pi,0.01) 

> y<-b*tan(b) 

> y[y>20|y< -20]<-NA 

> plot(b,y,ylim=c(-10,10),type="l",xaxt='n',ylab='b tan(b)') 

> axis(1,at=1:5/2*pi,labels=c(expression(pi/2),expression(pi),  

+ expression(3*pi/2),expression(2*pi),expression(5*pi/2))) 

> abline(v=r,col='red',lty=2) 

> abline(h=7,col='red',lty=2) 
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11.2. Conditional statements 

Conditional statements are another ubiquitous feature of programming languages. In R, there are 

two conditional statements, if...else and ifelse, each designed for a different application. 
 

The if construct will execute a command if a specified condition is met. 
 
> if (10>3) x<-101 

> x 

[1] 101 

 

> a<-10 

> if (!is.na(a)) print(a) 

[1] 10 

 
If you would like several commands to be dependent on a single condition, then simply group 
the commands together using braces. 
 
> a<-100 

> if (a>3) { 

+ print(a) 

+ a<-0 
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+ } 

[1] 100 

 

> a 

[1] 0 

 

The if construct can include an else. The command that follows an else will be executed if 

the condition is not met. 

 
> grade<-82 

> if (grade > 65) result<-"pass" else result<-"fail" 

> result 

[1] "pass" 

 

If you need to group commands using braces, just put the else after (but on the same line as) the 

closing brace
45

. 

 
> if (your.grade > 65) { 

+ result<-"pass" 

+ message<-"Nice job" 

+ } else { 

+ result<-"fail" 

+ message<-"See you next semester" 

} 

 

> result 

[1] "pass" 

 

Of course, you could group multiple commands within nested curly braces. 

 
> your.grade<-82 

> if (your.grade > 65) { 

+ result<-"pass" 

+ print("Way to go")  

+ } else { 

+ result<-"fail" 

+ print("See you next semester") 

+ } 

[1] "Way to go" 

 

This is important: if...else works only with length-one vectors (i.e. scalars). If you want to 

apply an if...else type construct to multiple elements in a data structure, use ifelse. 

 
> grades<-c(82,64,95,54,96,96,92,90,99,72) 

> results<-ifelse(grades > 65,"pass","fail") 

                                                 

 

 
45

 Another way to do this is by grouping the entire if…else construct. 
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> results 

[1] "pass" "fail" "pass" "fail" "pass" "pass" "pass" "pass" 

[9] "pass" "pass" 

 

The ifelse construct is handy for adding to data frames new columns which contains values 

that are dependent on the value of some other variable(s) in the same data frame. 

 
> flow.dat<-read.table("River_flow.txt",header=TRUE) 

 

> names(flow.dat) 

[1] "agency"         "site"           "date"           "discharge"      

[5] "flag.discharge" 

 

> flow.dat$site<-factor(flow.dat$site) 

> levels(flow.dat$site) 

[1] "1509000" "4232730" 

 

> flow.dat$name<-ifelse(flow.dat$site==1509000,"Tioughnioga","Seneca") 

> flow.dat[1:3,] 

  agency    site       date discharge flag.discharge   name 

1   USGS 4232730 2006-01-01        75              P Seneca 

2   USGS 4232730 2006-01-02       493              P Seneca 

3   USGS 4232730 2006-01-03      1380              P Seneca 

 

> flow.dat[500:502,] 

    agency    site       date discharge flag.discharge        name 

500   USGS 1509000 2006-05-15       302              A Tioughnioga 

501   USGS 1509000 2006-05-16       317              A Tioughnioga 

502   USGS 1509000 2006-05-17       286              A Tioughnioga 

 

Much or all of what can be done using ifelse can also be done using indexing. One or the 

other approach may make more sense or use less code in some cases. 

Exercises 

1. Vectorized operations make R code efficient to write and execute. To get an idea of the effect 

of this on execution time, calculate the square root of all the integers from one to 10000 two 

different ways: as a simple vectorized operation, and within a loop. Time the two methods using 

system.time. 

 

2. Read in the data in the file Eagles.txt. Using a loop, create a separate file for each invidual site 

that contains the output for the summary function applied to data for the specific site only. 

 

3. Generate a 100 element vector contains random numbers—specify whatever mean you like (or 

use the default). Now use ifelse or if...else (whichever is appropriate) to generate a new 

vector that contains H where the random number is greater than your specifed mean, and L 

where it is lower than your specified mean. 
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12. Graphics II  
Murrell 2005, Crawley 2007, Dalgaard 2008 

12.1. Arranging multiple plots per page 

There are two common ways of putting multiple plots on one page. One way is to modify the 

graphic parameter mfrow (or mfcol), with the par function. This is a simple method for setting 

the number of plot regions per page, but its one disadvantage is that all of the plot regions are 

equally sized. More flexibility is available through use of the layout function
46

.  Before we start 

describing each of these methods, it is useful to view the current graphic parameters. Query the 

settings with par(). 

 
> par() 

$xlog 

[1] FALSE 

 

$ylog 

[1] FALSE 

 

... 

 

$mfcol 

[1] 1 1 

 

$mfg 

[1] 1 1 1 1 

 

$mfrow 

[1] 1 1 

 

... 

 

$yaxt 

[1] "s" 

 

Since we have not yet modified these settings, these are the defaults (some of them—there are a 

total or 70). Note that the default setting for mfcol and mfrow is the two element vector 1,1, i.e., 

c(1,1). This means that plots are arranged on a page in a one row-by-one column fashion, i.e., 

one plot per page. To create a plot layout that consists of four equal sized plot regions, mfrow (or 

mfcol) would be set to c(2,2). The difference between mfrow and mfcol is that with mfrow, 

the plots are first organized by row, and with mfcol, the plots are first organized by column.  

 
> x<-c(0,1) 

> y<-c(0,1) 

> par(mfrow=c(2,2)) 

                                                 

 

 
46

 You can find more flexibility still in the lattice package, which is not covered in this workshop. 
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> plot(x,y,type="n",main="Plot 1") 

> plot(x,y,type="n",main="Plot 2") 

> plot(x,y,type="n",main="Plot 3") 

> plot(x,y,type="n",main="Plot 4") 

 

 
 

Or, with a loop: 
 

> for (i in 1:4) plot(x,y,type="n",main=paste("Plot",i)) 

 

Notice the order of plots as they are arranged on the page. The plotting starts with the upper left 

region of the page, fills out the top row, continues to the second row, and eventually ends in the 

bottom right region of the page (i.e., left to right and then top to bottom). If another plot had been 

specified, it would have been placed in the upper left region of a new page. With mfcol, plot 

order goes from top to bottom before left to right. 
 

There is a lot of blank space around the plots in the above example. The amount of space around 

individual plots and aroud the edge of the page as a whole can be adjusted by changing the 

values for the parameters mar (margins) and oma (outer margins) (outer margins really only 
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make sense when you are creating a figure in a graphics file, which is covered later). The default 

setting is  mar=c(5.1,4.1,4.1,2.1), which are the margins in ―lines‖ from the bottom 

moving clockwise. In the example below, the margins have been reduced
47

. 

 
> par(mfrow=c(2,2),mar=c(4,4,3,1)) 

> for (i in 1:4) plot(x,y,type="n",main=paste("Plot",i)) 

 

 
 

The following code displays the areas controlled by mar and oma. 

 
> mars<-c(5.1,4.1,4.1,2.1) 

> omas<-c(2,2,2,2) 

> par(mfrow=c(2,2),mar=mars,oma=omas) 

> for(i in 1:4) { 

+ plot(NULL,xlim=c(1,10),ylim=c(1,10),xlab="",ylab="") 

                                                 

 

 
47

 We have also reduced the code for producing four plots to a single line using a loop.  
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+ box("figure",col="red") 

+ for(i in 1:4) mtext(paste("mar[",i,"]",sep=""),side=i,line=4- 

+ i,col="red") 

+ } 

> for(i in 1:4) mtext(paste("oma[",i,"]",sep=""),side=i,line=1,  

+ col="blue",outer=TRUE) 

 

 
 

More flexibility is allowed with the layout function because plot regions with different sizes 

can be specified. First, let‘s reset the mfrow, mar, and oma to the defaults:  

 
> par(mfrow=c(1,1),mar=c(5,4,4,2)+0.1,oma=c(0,0,0,0)) 

 

The only required argument to the layout function is mat, which must be a matrix that shows 

where each panel should go. For example, take a look at the following matrix. 

 
> matrix(1:4,nrow=2) 

     [,1] [,2] 

[1,]    1    3 

[2,]    2    4 
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You can probably guess what kind of a layout this will give when you submit it to layout: 

 
> layout(matrix(1:4,nrow=2)) 

> for (i in 1:4) plot(x,y,type="n",main=paste("Plot",i)) 

 

 
 

An easier way to quickly show where your plots will show up is to use the layout.show 

function: 

 
> layout.show(4) 
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This layout also could have been created by setting mfcol=c(2,2) in a par call. But, layout 

can do much more than this. For example, how about something like this? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The only challenge in using layout is in figuring out a matrix that accurately reflects what you 

want. In this case, the narrow dimensions of plots 1 & 2 are about half as large as a side of plot 3, 

so a 3 × 3 matrix should work. How about this: 

 
> matrix(c(0,1,1,2,3,3,2,3,3),nrow=3) 

     [,1] [,2] [,3] 

1

2

3

4

Plot 1 

Plot 2 

Plot 3 
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[1,]    0    2    2 

[2,]    1    3    3 

[3,]    1    3    3 

 

Note that you can just put a 0 where you don‘t want any plot. 

 
> layout.show(3) 

 

 
 

Additional flexibility comes from the heights argument in layout, which allows you to set 

the relative height of each row in your matrix. 

 
> layout(matrix(1:9,nrow=3,byrow=TRUE)) 

> layout.show(9) 

 

1

2

3
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Compare that to this: 

 
> layout(matrix(1:9,nrow=3,byrow=TRUE),heights=c(0.5,2,1)) 

> layout.show(9) 

 

 
 

Once you get the hang of using layout, it is very easy to manipulate the number, arrangement, 

and size of plots in graphical output. However, if multiple plots of equal size are to be created, 

specifying mfrow is an easier option.  
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12.2. More on the plot function: arguments and values 

R allows the user to have fine control over essentially all aspects of graphical output. Some of 

the most common optional arguments to the plot function are given in the table below, along 

with common values. These arguments primarily allow users to control axis limits and 

appearance. 

 

Argument Common values Additional information 

cex 

0 

to 

3 (or greater) 

Numerical value. Controls size of 

plotting text and symbols. No upper 

limit, but typically 0.5-2. Default is 

1. Is reset to 1 when the layout is 

changed. 

cex.axis 

0 

to 

3 (or greater) 

Magnification for axis annotation, 

relative to cex. 

col.axis Any color 
Color for axis annotation. Default of 

"black". 

col.lab Any color 
Color for axis label. Default of 

"black". 

font.lab 

1 

through 
5 

Font of axis label. 1, plain; 2, bold; 

3, italic; 4, bold italic; 5 symbol. See 

also family. 

font.axis 

1 

2 

3 

4 
5 

Font of axis annotation. 1, plain; 2, 

bold; 3, italic; 4, bold italic; 5 

symbol. See also family. 

las 

0 

1 

2 

3 

Rotation of axis annotation. 0, 

parallel to axis; 1, horizontal; 2, 

perpendicular to axis; 3 vertical.  

mgp 

c(0,0,0) 

through 

c(5,5,5) (or greater) 

Location of axis title, labels, and 

line. Default is c(3,1,0). Adjust mgp 

to move title and numeric labels 

closer to or farther from plot edge. 

tcl 

0 

through 

2 (or greater) 
Tick mark length. 

xaxs 

"r" 

"i" 

 

Style of x axis interval. Default is 

"r", which extends a bit beyond 

limits. To stick with specified limits, 

use "i". 

yaxs 
"r" 

"i" 
Style of y axis interval. See xaxs. 
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The following code and resulting graphics demonstrate some of the options listed in the table 

above. (We will cover the text function, which is used below to annotate the plots, in the next 

subsection.) 

 
> par(mfrow=c(2,2),mar=c(4,4,2,2)) 

> x<-1:10;y<-100*x 

> plot(x,y,type="n",xlab="Time (days)",ylab="Mass (kg)") 

> text(6,500,"las=0\n tcl=-0.5\n col.axis='black'\n cex.axis= 

+ 1.0\n(Default options)") 

 

> plot(x,y,type="n",xlab="",ylab="",las=1,tcl=1,col.axis="green", 

+ cex.axis=1.5) 

> text(6,500,"las=1\n tcl=1\n col.axis='green'\n cex.axis= 

+ 1.5") 

 

> plot(x,y,type="n",xlab="Time (days)",ylab="Mass (kg)",las=2, 

+ col.lab="red") 

> text(6,500,"las=2\n tcl=-0.5\n col.axis='black'\n col.lab='red' \n 

+ cex.axis= 1.0") 

 

> plot(x,y,type="n",xlab="Time(days)",ylab="Mass (kg)",las=3, 

+ font.lab=2,font.axis=3) 

> text(6,500,"las=3\n tcl=-0.5\n col.axis='black'\n cex.axis= 

+ 1.0\n font.lab=2 \n font.axis=3") 
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A complete description of the various plot parameter settings that can be specified as arguments 

to plot can be viewed in the help file for par. This will provide a list of the plot parameter 

settings that can either be set by specifying values in a par command, or by specifying values as 

arguments through the plot function. Note that any parameters that are specified in par will 

remain set at the specified value until another value is specified. For example, future plots will be 

displayed corresponding to the specified settings. If settings are set in a plot command, they are 

only set for that individual plot. 

12.2 Adding data to plots 

What is the best way to plot multiple data series? The answer probably depends on the details of 

your data and plot, as well as your preferred approach to writing R code (e.g., as short and 

efficient as possible versus easy-to-understand). You can plot multiple data series with one plot 

call by using its vectorized capabilities, but this isn‘t the most straightforward option, and 

doesn‘t work well with lines. Functions that add data to an existing plot include points, lines, 

and curve. For this set of examples, let‘s revisit some data we‘ve looked at previously on 

fruitfly longevity. 

 
> library(faraway) 

> summary(fruitfly) 

 

   thorax         longevity         activity  

 Min.   :0.6400   Min.   :16.00   isolated:25   

 1st Qu.:0.7600   1st Qu.:46.00   one     :25   

 Median :0.8400   Median :58.00   low     :25   

 Mean   :0.8224   Mean   :57.62   many    :24   

 3rd Qu.:0.8800   3rd Qu.:70.00   high    :25   

 Max.   :0.9400   Max.   :97.00                 

 

Let‘s select just a few activity levels, to keep things simple. 
 

> ff.dat<-subset(fruitfly,activity %in% c("isolated","low","high")) 

 

To start, let‘s produce one plot with different series for each activity condition.  This example 

demonstrates the vectorized usage of the col argument.  In this case, different colors are 

automatically used for observations with different values for activity: 

 
> plot(ff.dat$thorax,ff.dat$longevity,col=ff.dat$activity) 
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This simple approach can also be applied with character or factor data—just use as.numeric as 

needed
48

. Moreover, you can use the same type of expression to produce a different plotting 

symbol for each group. The downside with this approach is that you are stuck with whichever 

colors or symbols happen to correspond with the numeric data that are in your data set. A more 

sophisticated and flexible approach is to use indexing or ifelse to use a vector of colors or 

plotting symbols that are based on the value of activity. This is most clear if done in a few 

separate steps 

 
> cols<-ifelse(ff.dat$activity=="isolated","black", 

+ ifelse(ff.dat$activity=="low",'blue','red')) 

 

> symbs<- ifelse(ff.dat$activity=="isolated",1, 

+ ifelse(ff.dat$activity=="low",2,5)) 

 

> plot(ff.dat$thorax,ff.dat$longevity, 

+ xlab="Thorax length (mm)",ylab="Longevity (d)",  

+ pch=symbs,col=cols,las=1) 

                                                 

 

 
48

 When applied to character data, as.numeric will sort the unique values alphabetically, and assign integer values. 
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The downside with this approach is that it is a bit complicated, and it doesn't work well with 

lines. It may be easier to just add points or lines to a plot that already exists. The points 

function can be used to add points or lines to an existing plot. The code below will produce a plot 

that is identical to the one just above. 

 
> plot(ff.dat$thorax,ff.dat$longevity,type="n", 

+ xlab="Thorax length (mm)",ylab="Longevity (d)",  

+ pch=1,col=ff.dat$activity,las=1) 

 

> points(ff.dat$thorax[ff.dat$activity=="isolated"],  

+ ff.dat$longevity[ff.dat$activity=="isolated"],pch=1) 

 

> points(ff.dat$thorax[ff.dat$activity=="low"],  

+ ff.dat$longevity[ff.dat$activity=="low"],pch=2,col="blue") 

 

> points(ff.dat$thorax[ff.dat$activity=="high"],  

+ ff.dat$longevity[ff.dat$activity=="high"],pch=5,col="red") 

 

Lines can also be added to a plot with points. 

 
> plot(ff.dat$thorax,ff.dat$longevity,type="n", 

+ xlab="Thorax length (mm)",ylab="Longevity (d)",las=1) 

> x<-seq(0.65,0.92,length=20) 

> y<-50*x 

> points(x,y,type="l") 
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But, the lines function requires a little less code. 

 
> lines(x,y) 

 

Line color, weight, and pattern can be specified in any function that plots lines. Line type, 

controlled by lty, is very flexible and therefore a bit complicated. The easiest approach is to use 

just use the integers 0 to 6. For (many) more options, see the lty entry in the help file for par. 

 
> lines(x,y+10,lwd=2,col="red",lty=2) 

> lines(x,y+20,lwd=1,col="blue",lty="solid") 

> lines(x,y+rnorm(20,30,10),lwd=1.5,col="orange",lty=3242) 
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If you can arrange your data as a matrix (this requires that all series have identical x values), 
three functions for plotting multiple series simultaneously are available. We could add all these 

lines at once using the matlines function. The single command below will do the same thing 
that three separate commands did above. 
 
> matlines(x,matrix(c(y,y+20,y+rnorm(20,30,10)),nrow=20), 

+ lwd=c(2,1,1.5),col=c("red","blue","orange"),lty=c(2,1,1)) 

 

For adding multiple series as points, an analogous function matpoints is available. And, to 

generate a plot and add multiple series of points or lines at once, use matplot. 
 
What if you want to plot multiple data series on a single plot, but with different axes? There are 
at least two ways to do this, and although both are easy, they may not be easy to remember. In 

the first method, use par to set the limits of the y axis. 
 
> plot(1:10,runif(10)) 

> par(usr=c(par('usr')[1:2],0,100)) 

> axis(4) 

> lines(1:10,rnorm(10,50,25),col="red") 
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The alternative is to plot a new plot over a previous one, setting axes and other arguments to 

FALSE so they don't show up. Then, set par(new=TRUE) (this tells R that the plotting device is 

on a new page already, and that it is therefore OK to go ahead and plot), and finally, submit the 

command to produce a new plot. To generate the same example shown above, you could use the 

following code. This approach is very flexible, because there is no limit to what type of plots can 

be overlaid. But, you need to be sure that your plots align as you think they do. 

 
> plot(1:10,rnorm(10,50,25),ylim=c(0,100),axes=FALSE,xlab="", 

+ ylab="",col="red",type="l") 

> axis(4) 

 

The curve function is used for plotting functions. Given alone, it will create a plot, but if 

submitted after a plot call has already been made with the argument add=TRUE, it will add a new 

line to the plot. This function is the easiest way to see visualize a function. 

 
> curve(sin(x),-10,10) 
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If you want to add model predictions to a plot, we can of course use lines or points after we 

have generated predictions. If you want to plot model predictions as a function of the only 

predictor variable, the flexible abline function is easier. Let's demonstrate with the fruit fly 

data. 

 
> plot(ff.dat$thorax,ff.dat$longevity, 

+ xlab="Thorax length (mm)",ylab="Longevity (d)",  

+ pch=symbs,col=cols,las=1) 

 

> mod<-lm(longevity ~ thorax,data=ff.dat,subset=activity=="low") 

> abline(mod,col="blue") 
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The abline function can only be used for straight lines (unlike points, lines, and curve). 

With it, you can specify a slope and intercept manually, or plot horizontal or vertical lines. 

 
> abline(a=200,b=-200,col="red",lty=5) 

> abline(v=mean(ff.dat$thorax),col="darkgray",lty="dotted") 

> abline(h=mean(ff.dat$longevity),col="orange",lwd=2.5) 
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12.3. Annotating plots  

Let's start with an important addition to a plot—a legend. The legend function in R is perhaps a 
little less automatic than in other graphics software, but once you get the hang of it, you may 
appreciate its flexibility. Let's generate a plot using, again, the fruit fly data. 
 
> plot(ff.dat$thorax,ff.dat$longevity, 

+ xlab="Thorax length (mm)",ylab="Longevity (d)",  

+ pch=symbs,col=cols,las=1) 

 

There are many optional arguments for the legend function (see the help file for a list), but 
most of the time, you just need to specify a location, the text labels, and plotting characters or 
lines. For example, using the plot generated. 
 
> legend(0.65,85,c("isolated","low","high"),pch=c(1,2,5), 

+ col=c("black","red","blue")) 
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This function has some handy shortcuts for positioning a legend—instead of specifying x and y 

coordinates, you can just use "top","bottom","left","right","middle", or combinations of these. 

You can also use lines in place of plotting symbols, or you can combine lines and plotting 

symbols. 

 
> plot(ff.dat$thorax,ff.dat$longevity,type="n", 

+ xlab="Thorax length (mm)",ylab="Longevity (d)",las=1) 

 
> legend("topleft",c("isolated","low","high"),pch=c(1,2,5), 

+ col=c("black","red","blue")) 

 
> legend("bottomleft",c("isolated","low","high"),lty=1:3, 

+ col=c("black","red","blue"),bty="n") 

 

> legend("topright",c("isolated","low","high","model"), 

+ pch=c(1,2,5,-1),lty=c(0,0,0,1),col=c("black","red","blue","purple")) 

 

> legend("bottomright",c("isolated","low","high","model 1","model 2"), 

+ pch=c(21,2,5,-1,6),lty=c(0,0,0,2,1),pt.bg="red", 

+ col=c("black","red","blue","purple","darkgreen")) 
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Notice that it can be a little tricky to get combinations of lines and symbols. The trick is to use 

lty=0 for no line and pch= - 1 for no plotting symbol. 
 

To add text to a plot, you can use the text or the mtext functions. These two functions are 

similar, but mtext is for adding text in the plot margins. 
 
> plot(ff.dat$thorax,ff.dat$longevity, 

+ xlab="Thorax length (mm)",ylab="Longevity (d)",  

+ pch=symbs,col=cols,las=1) 
 

> text(0.7,80,"Mean longevity") 

 

> mtext("Fruit fly longevity",side=3,line=1,cex=3,col="gray") 

 

0.65 0.75 0.85 0.95

20

40

60

80

Thorax length (mm)

L
o

n
g

e
v
it
y
 (

d
)

isolated
low

high

isolated

low
high

isolated
low

high
model

isolated
low
high

model 1
model 2



152 

 

 
Both text and mtext have several optional arguments that can be used to adjust font, size, or 

color (as is demonstrated in the mtext command above). See the help file for par for more 

information. 

 

With the function arrows, it is easy to create arrows and specify a color, head length and angle, 

and line characteristics. Again, see the help file for par for more information. Note that text and 

arrows are both vectorized functions. Let's add a line and an arrow to the plot we just made. 

 
> abline(h=mean(ff.dat$longevity),lty=2) 

 

> arrows(0.7,75,0.75,mean(ff.dat$longevity),length=0.2,col="red") 

 

0.65 0.70 0.75 0.80 0.85 0.90 0.95

20

40

60

80

Thorax length (mm)

L
o

n
g

e
v
it
y
 (

d
)

Mean longevity

Fruit fly longevity



153 
 

 
Polygons of any shape can be added to a plot in R. 
 
> polygon(x=c(0.8,0.8,1,1),y=c(0,mean(ff.dat$longevity),  

+ mean(ff.dat$longevity),0),density=50,col="orange") 

 

> polygon(x=c(0.6,0.6,0.8,0.8),y=c(0,mean(ff.dat$longevity),  

+ mean(ff.dat$longevity),0),col="gray") 

> box() 
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A more interesting example of using polygon showing the vectorized nature of the vertices 
follows: 
 
> x<-seq(-3,3,0.01) 

> y<-dnorm(x) 

> plot(x,y,type="l") 

> polygon(c(1,x[x>=1]),c(y[x==3],y[x>=1]), 

+ col="blue") 

 

We will cover the dnorm function later, but as you might guess, it is associated with the normal 
distribution. This figure shows that you can specify a vector for the vertices, and the resulting 
polygon appears to have smooth edges.  
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Equations and symbols can be added to figures by using the expression function for the value 

for any argument that accepts text. The syntax for writing equations and symbols with function 

can be viewed by typing: 

 
> demo(plotmath) 

 

The code below shows just a few uses of expression. 

  
> plot(ff.dat$thorax,ff.dat$longevity,type="n", 

+ xlab=expression("Thorax length"~~(10^3~mu*m)), 

+ ylab="Longevity (d)",las=1) 

 

> text(0.8,40,expression(bar(y)==sum(frac(y[i],m),i==1,m))) 

> text(0.8,60,expression(y[i]==sqrt(x[i]^2+z[i]^2))) 

> text(0.8,80,expression(integral(f(x)*dx,a,b))) 
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If you are not happy with the default axes that R produces, you can produce custom ones using 

the axis function. The only required argument is side (1=bottom, 2=left, 3= top, 4=right). 

Some examples are shown below. 

 
> plot(ff.dat$thorax,ff.dat$longevity, 

+ xlab="Thorax length (mm)",ylab="Longevity (d)",  

+ pch=symbs,col=cols,las=1,axes=F) 

 

> axis(1,at=7:9/10) 
> axis(2,at=2:9*10,labels=F,tcl=-0.2) 

> axis(2,at=c(20,40,60,80)) 

> axis(3,at=7:9/10,labels=c("small","medium","large")) 

> box() 
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All these possibilities for adding "stuff" to plots may seem a bit overwhelming. We do not 

recommend that you try to memorize all of them. Instead, use the functions we covered as you 

need them. As if this wasn't complicated enough, each function accepts numerous optional 

arguments that are not listed in the corresponding help file. These arguments adjust graphical 

parameters, and you can find information on them in the help file for par. If you think that some 

option should exist (What if I want to rotate text in text? Can I change the line thickness of an 

arrow? Shouldn't I be able to align a text label based on its center?) it probably does—take a 

look at the par help file. 

12.4. Other high-level plotting functions 

Many other high level plotting functions are available in R. We are not going to cover many, and 

won't cover any in detail, but we hope the code given below gives you some idea of possibilities. 

More information can be found online, and in books on R graphics (e.g., Murrell 2005).  
 

> par(mfrow=c(2,2)) 

> cu.tox.dat<-read.table("Thakali_Cu_EC50s.txt",header=TRUE) 

> barplot(cu.tox.dat$ec50.cu, names.arg=as.numeric(cu.tox.dat$soil), 

+ ylab=expression("Cu EC50 "~(mu*g/L)),xlab="Soil") 

> contour(volcano) 

> image(volcano) 

> persp(volcano,theta=30,phi=15,d=1.5,expand=0.3,box=FALSE,shade=0.3) 
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And, for plotting factor data, check out two options. 

 
> mosaicplot(Titanic, main="Survival on the Titanic", color = TRUE) 

> squirrel.dat<-read.table("Squirrel_color.txt",header=T) 

> squirrel.dat$black<-factor(squirrel.dat$black) 

> spineplot(black~dist2ctr,data=squirrel.dat,breaks=100, 

+ col=c('gray70','gray25')) 

12.5. Graphics output 

R can be used to produce graphics output in a variety of graphical formats. Output is directed to 

a particular output ―device‖ that dictates the output format that will be produced. The device 

must be opened in order to receive graphical output, and then it must be closed to complete the 

output. 
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For example, to create a pdf file that contains some of the plots we produced above, we start by 

opening the device. 

 
> pdf("Plots.pdf",height=11,width=8.5) 

 

Now we can go ahead and add our plots to the pdf file. In this case, we first change some of the 

plotting parameters. 
 

> par(mfrow=c(2,2),oma=c(1,1,1,1)) 

> # First plot 

> plot(ff.dat$thorax,ff.dat$longevity, 

+ xlab="Thorax length (mm)",ylab="Longevity (d)",  

+ pch=symbs,col=cols,las=1) 

 

> mod<-lm(longevity ~ thorax,data=ff.dat,subset=activity=="low") 

> abline(mod,col="blue") 

 

> # Second plot  

> plot(ff.dat$thorax,ff.dat$longevity, 

+ xlab="Thorax length (mm)",ylab="Longevity (d)",  

+ pch=symbs,col=cols,las=1) 
 

> text(0.7,80,"Mean longevity") 

 

> mtext("Fruit fly longevity",side=3,line=1,cex=3,col="gray") 

 

> abline(h=mean(ff.dat$longevity),lty=2) 

> arrows(0.7,75,0.75,mean(ff.dat$longevity),length=0.2,col="red") 

 

> # Third plot 

> x<-seq(-3,3,0.01) 

> y<-dnorm(x) 

> plot(x,y,type="l") 

> polygon(c(1,x[x>=1]),c(y[x==3],y[x>=1]), 

+ col="blue") 

 

> # Fourth plot 

> plot(ff.dat$thorax,ff.dat$longevity,type="n", 

+ xlab=expression("Thorax length"~~(10^3~mu*m)), 

+ ylab="Longevity (d)",las=1) 

 

> text(0.8,40,expression(bar(y)==sum(frac(y[i],m),i==1,m))) 

> text(0.8,60,expression(y[i]==sqrt(x[i]^2+z[i]^2))) 

> text(0.8,80,expression(integral(f(x)*dx,a,b))) 

 

We have to close the device when we are finished. 

 
> dev.off() 

 

If you run the above code, you should end up with a new pdf file in your working directory. 
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In addition to pdf files, R can create bmp, jpeg, png, and tiff files, as well as postscript files. For 

example: 

 
> png(file="Fig.png",width=4,height=4,units="in",res=400) 

> filled.contour(volcano) 

> dev.off() 

  

A png file cannot be more than one page (neither can jpeg, bmp, or tiff), so if multiple pages are 

desired, they must be in different files. It is very easy to create multiple graphics files in a single 

command: just insert %02d (or %01d or %03d. . .) in the file name
49

. 

 
> png(file="Fig%02d.png",width=4,height=4,units="in",res=400) 

> image(volcano) 

> contour(volcano) 

> filled.contour(volcano) 

> dev.off() 

 

This code produces three files: Fig01.png, Fig02.png, and Fig03.png (but it could produce more). 

Conversely, pdf and postscript files can contain multiple pages. 
 

Each of the graphics output types has several optional arguments, e.g., for adjusting the size and 

quality of the resulting files. 

Exercises 

1. Produce a two-panel plot like the one shown below. (Hint: you can use the plot fuction to 

make the plots, but recall that there is an easier way.) Now plot both series on a single plot. See 

if you can do this using more than one approach. 

                                                 

 

 
49

 The expression %02d tells R to number the files using a two-digit number. The default file name value actually 

uses this option. 
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2. Check out the data in the data frame Loblolly (in the datasets package), on the growth of 
loblolly pine trees from different stocks. Create the following plot, or something similar (note 
that you will need to convert height from ft to m). 
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3. Read in the data on wind speed in US cities in the file Ave_wind_US.txt (note that you need to 

specify the tab separator explicitly, because the column of names contains spaces). Using a loop, 

produce a histogram like the one below for each month. 

 

 
Export each one of the 12 plots produced to a separate jpeg file. Then, try exporting all the plots 

to a single pdf file, but six per page. 
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4. Using the Janka.txt dataset that was used earlier for the lm example, create the following plots. 

You will have to use layout to get plotting regions of different size. Export this plot to a pdf 
file.    
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13. Functions   
Crawley 2007: 47, R-Intro: Chapter 10, R-Lang: Chapter 4 

13.1. Writing functions 

User-definied functions are a very useful feature of R. Once defined, these functions are stored 

internally, and effectively do not differ from the functions that come with any R packages. 

Functions can be entered directly into the R GUI or saved in a script file that can be later loaded. 

It is also possible to store your function calls (or a source call to a script) in a special file 

Rprofile.site so that they are loaded every time you start R. 

 

To define a function in R, use the following syntax. 

 
> function_name<-function(arg1,arg2,arg3) expression1 

 

If your function requires more than one command (all but the simplest functions will), you can 

use braces to group them. 

 

Here is a simple function for calculating the geometric mean of a set of numbers. 

 
> geomean<-function(x) 10^mean(log10(x)) 

 

Here our function name is geomean, and it expects a single argument x. Braces are not needed 

for grouping since there is only one expression. Also note that the result of your expression does 

not need to be assigned to anything—it is automatically returned when you call up the 

expression. Let's test out this function. 

 
> x<-c(100,1000,10000) 

 

> geomean(x) 

[1] 1000 

 

Let's look at a more complicated example. Let's say we want a function that will calculate the 

fraction of sample variance explained by a model (while statistical model output in R generally 

give this or similar information, in some cases it is necessary to calculate this separately, for 

example when the model calculations are made by a separate piece of software). 

 
r2<-function(meas,mod) { 

   tss<-sum((meas - mean(meas))^2) 

   e<-(mod - meas)^2 

   1.0 - sum(e)/tss 

} 

 

To test this function out, let's use the an example of a simple linear regression from above. 

 
> hard.dat<-read.table("Janka.txt",header=T) 

> mod.1<-lm(hardness ~ density, data = hard.dat) 

> hard.dat$hard.pred<-predict(mod.1) 

> hard.dat 
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   density hardness hard.pred 

1     24.7      484  259.9152 

2     24.8      427  265.6658 

3     27.3      413  409.4325 

... 

36    69.1     3140 2813.2115 

 

> r2(meas=hard.dat$hardness,mod=hard.dat$hard.pred) 

[1] 0.9493278 

 

Note that the variables defined within the function are not available outside the function—they 

are locally stored (i.e. they are not global) and are lost when R exits the function. 
 

> tss 

Error: object "tss" not found 

 

As with all the functions we covered, you can use both named and positional arguments. 

 
> r2(hard.dat$hardness,hard.dat$hard.pred) 

[1] 0.9493278 

 

If you ever forget the arguments or their order, just use the args function (or type the function 

name without parentheses to see the complete code). 
 

> args(r2) 

function (meas, mod)  

NULL 

 

It is possible (and very common) to call up functions from within other functions. For example, 

let's say you want a specific variation on the plot function so that the result always looks a 

certain way. 

 
plot4me<-function(x,y,z) { 

   plot(x,y,xlab="Some x variable",ylab="some y variable",pch=21, bg="blue") 

   points(x,z,pch=21,bg="red") 

   legend("topleft",c("X","Y"),pch=21,pt.bg=c("blue","red")) 

} 

 

> a<-rnorm(15) 

> b<-2*a 

> c<-1.5*a - 2 

 

> plot4me(a,b,c) 
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When you write functions like this, it often makes sense to retain the option for the user to 

modify some of the arguments within the nested function(s). For example, with the above 

function plot4me, there are several optional plotting functions that cannot be modified, e.g. cex, 

mgp. We can leave room for these arguments by adding ... (an ellipsis) to the end of the 

argument list when you define your function. 

 

 
plot4me<-function(x,y,z,...) { 

   plot(x,y,xlab="Some x variable",ylab="some y variable", 

        pch=21,bg="blue",...) 

   points(x,z,pch=21,bg="red",...) 

   legend("topleft",c("X","Y"),pch=21,pt.bg=c("blue","red")) 

} 

 

This code tells R that if there are any additional arguments passed to the function plot4me (in 

addition to x, y, and z), they should be passed to both plot and points. This is very handy, 

and saves a lot of code. One warning: any additional arguments will be passed to all the nested 

functions that contain ..., so there is a bit of inflexibility here. 

 
plot4me<-function(x,y,z,...) { 

   plot(x,y,xlab="Some x variable",ylab="some y variable",pch=21, 

        bg="blue",...) 

   points(x,z,pch=21,bg="red",...) 
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   legend("topleft",c("X","Y"),pch=21,pt.bg=c("blue","red")) 

} 

 

Now we can modify the cex argument. 

 
> plot4me(a,b,c,cex=3) 

 

 
> plot4me(a,b,c,cex=3,log="x") 

Warning messages: 

1: In xy.coords(x, y, xlabel, ylabel, log) : 

  4 x values <= 0 omitted from logarithmic plot 

2: In plot.xy(xy.coords(x, y), type = type, ...) : 

  "log" is not a graphical parameter 

 

It is very easy to make a vectorized function—simply use expressions that carry out vectorized 

operations. Here is a simple example for converting lb (mass) to kg. 

 
> lb2kg<-function(x) 0.453592*x 

> weights<-rnorm(10,mean=175,sd=9) 

> weights 

 [1] 180.2066 175.0223 167.4249 167.5359 168.7322 165.2813 174.4403 

175.7840 171.4901 

[10] 167.9036 
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> lb2kg(weights) 

[1] 81.74029 79.38870 75.94259 75.99295 76.53558 74.97028 

 [7] 79.12472 79.73420 77.78655 76.15971 

 

A slightly more complicated example is given below. The alk2ic function converts an 

alkalinity to a dissolved inorganic carbon concentration. 

 
alk2ic<-function(alk,pH) { 

   H<-10^-pH 

   K1<-10^-6.352       

   K2<-10^-10.329 

   2E-5*alk*(((H/K1)+1+(K2/H))/(1+2*(K2/H))) 

} 

 

> alkalinity<-c(55,62.1,45.1) 

> ph<-c(7.23,8.10,7.75) 

 

> alk2ic(alkalinity,ph) 

[1] 0.0012445716 0.0012566845 0.0009355203 

 

The flow control structions that were discussed earlier can, of course, be used in functions. 

 
alk2ic<-function(alk,pH) { 

   if (max(alk)<500) { 

      H<-10^-pH 

      K1<-10^-6.352 

      K2<-10^-10.329 

      2E-5*alk*(((H/K1)+1+(K2/H))/(1+2*(K2/H))) 

   } else print("Error: alkalinity too high for dilute solution assumption") 

} 

 

> alkalinity<-c(55,62.1,45.1) 

> ph<-c(7.23,8.10,7.75) 

 

> alk2ic(alkalinity,pH) 

[1] 0.0012445716 0.0012566845 0.0009355203 

> alkalinity<-c(550,62.1,45.1) 

> alk2ic(c(alkalinity,700),c(pH,9.5)) 

[1] "Error: alkalinity too high for dilute solution assumption" 

 

Here is a different way of solving the same problem: 
 

alk2ic<-function(alk,pH) { 

   ifelse (alk<500, { 

      H<-10^-pH 

      K1<-10^-6.352 

      K2<-10^-10.329 

      2E-5*alk*(((H/K1)+1+(K2/H))/(1+2*(K2/H))) 

   },NA) 

} 

 

> alk2ic(alkalinity,ph) 

[1]           NA 0.0012566845 0.0009355203 
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When you are writing simple functions, such as those shown above, it is pretty easy to debug 

your function. If you have a more complicated function, it can be very difficult to isolate a 

problem in your code, since the function acts like black box. However, you can use the debug 

function to step through your function code one line at a time, all the while being able to see the 

value of internal variables. For example, to debug the alk2ic function, submit: 

 
> debug(alk2ic) 

 

and then call it up. Once you have flagged a function using debug, you won't notice anything 

different until you call it up. To move through the function, just hit enter. R will print the line of 

code that it is about to submit on the line before the prompt. You can have R evaluate any other 

code by typing it at the prompt. 

Exercises  

1. Write a function for calculting the root mean square error (RMSE), which is often used to 

compare model predictions to observed values. RMSE is given by 
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where 
,p ix is i

th
 predicted value, and

,o ix is the i
th

 observed value. Generate some model 

predictions somehow, and test your function. 

 

2. The density of puer water (in kg/L or g/mL) can be approximated by the following equation. 

  

 -5 -6 2 -8 3 -10 40.9999 + 4.892 10  - 7.410 10  + 3.998 10  - 1.233 10T T T T     

 

where T = temperature in °C. Write a function to calculate the density of water given a 

temperature and a temperature unit. Include the option to use °C, °F, and K. Note that °C = (°F – 

32)×9/5 = K – 273.15. Test your function to make sure it works, and that it is vectorized. 

 

3. R does not have a function in the base packages for error bars, but they can easily be added 

using arrows. Write a function that will add error bars to either a plot, and test it out. 

 

4. This is tricky. The merge function is really handy, but one limitation is that it can only merge 

two data frames at once. Try to come up with a function that can merge any number of data 

frames. Test your function. Hint: we recommend that you store the data frames as lists. 
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14. Generalized linear models   

Crawley 2007: Chapter 13, R-Intro: Section 11.6.2, Faraway 2005b 

14.1. The glm function 

Generalized linear models (GLMs) are a very flexible class of statistical models. The generic 

form of a GLM is given by 

 

   0 1 1 2 2... m mg E Y x x x        

 

where g is the link function,  E Y represents the expected values of the response variable (i.e., 

the observed values minus the error) , 1x through mx are predictors, and 0 through m are 

coefficients. In R, GLM models can be specified using the glm function. There are eight 

different error distributions available in glm, including binomial and poisson, each with a default 

link function. Arguments and default argument values can be found in the help file for glm: 

 
glm(formula, family = gaussian, data, weights, subset, 

    na.action, start = NULL, etastart, mustart, 

    offset, control = glm.control(...), model = TRUE, 

    method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL, 

    ...) 

 

The glm function can be used for data that do not follow the normal distribution. For example, 

when a response variable is a binomial (e.g. presence/absence, dead/alive) or a proportion (i.e. a 

value between zero and unity). In this case, errors are not normally distributed, since values 

greater than unity or less than zero are not possible (instead we need to use a binomial 

distribution), and the relationship between a predictor and response variable is not linear (but can 

be linearlized by applying the logit transformation). To carry out logistic regression in glm, we 

just need to specify a binomial distribution and a logistic link function (the logistic link function 

is the default for the binomial distribution in glm). You can see a list of the available 

distributions and their default link functions in the help file for family. 

 
family(object, ...) 

 

binomial(link = "logit") 

gaussian(link = "identity") 

Gamma(link = "inverse") 

inverse.gaussian(link = "1/mu^2") 

poisson(link = "log") 

quasi(link = "identity", variance = "constant") 

quasibinomial(link = "logit") 

quasipoisson(link = "log") 

  

To demonstrate, let's read in the results of a single Cu toxicity test with Daphnia magna. 

 
> tox.dat<-read.table("Cu_tox_test.txt",header=T) 

> tox.dat 

     cu alive tot 
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1  1.20    20  20 

2  8.19    20  20 

3 14.29    18  20 

4 22.21    11  20 

5 30.68     4  20 

6 47.45     2  20 

7 59.21     0  20 

 

With the data in tox.dat, we can specify the model using one of two forms—either specify the 

response as a fraction and specify an argument weights, which is the total number of 

organisms, so that R can calculate the number dead and alive, or we can use a matrix with the 

number dead and the number alive as the response variable. Both methods are shown. 

 
> tox.dat$dead<-tox.dat$tot-tox.dat$alive 

> tox.dat$prop.dead<-tox.dat$dead/tox.dat$tot 

> tox.dat 

     cu alive tot dead prop.dead 

1  1.20    20  20    0      0.00 

2  8.19    20  20    0      0.00 

3 14.29    18  20    2      0.10 

4 22.21    11  20    9      0.45 

5 30.68     4  20   16      0.80 

6 47.45     2  20   18      0.90 

7 59.21     0  20   20      1.00 

 

Now for the regression. 
 

> mod.1<-glm(prop.dead~cu,binomial,weights=tot,data=tox.dat) 

> summary(mod.1) 

 

Call: 

glm(formula = prop.dead ~ cu, family = binomial, data = tox.dat,  

    weights = tot) 

 

Deviance Residuals:  

      1        2        3        4        5        6        7   

-0.7689  -1.4015  -0.3770   0.7625   0.8531  -1.8014   0.3306   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept) -4.41625    0.76028  -5.809 6.29e-09 *** 

cu           0.17425    0.03067   5.681 1.34e-08 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 119.8180  on 6  degrees of freedom 

Residual deviance:   7.3608  on 5  degrees of freedom 

AIC: 22.887 
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Number of Fisher Scoring iterations: 5 

 

For the other (matrix) method, we can create a matrix using cbind. 

 
> resp<-cbind(tox.dat$dead,tox.dat$alive) 

> mod.2<-glm(resp~cu,binomial,data=tox.dat) 

> summary(mod.2) 

 

Call: 

glm(formula = resp ~ cu, family = binomial, data = tox.dat) 

 

Deviance Residuals:  

      1        2        3        4        5        6        7   

-0.7689  -1.4015  -0.3770   0.7625   0.8531  -1.8014   0.3306   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept) -4.41625    0.76028  -5.809 6.29e-09 *** 

cu           0.17425    0.03067   5.681 1.34e-08 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 119.8180  on 6  degrees of freedom 

Residual deviance:   7.3608  on 5  degrees of freedom 

AIC: 22.887 

 

Number of Fisher Scoring iterations: 5 

 

Let's take a look at the data and model predictions. 

 
> predict.dat<-data.frame(cu=seq(0,60,2)) 

> predict.dat$prop.dead<-predict(mod.1,newdata=predict.dat,  

+ type="response") 

 

> plot(tox.dat$cu, tox.dat$prop.dead,xlab=expression("Dissolved Cu"  

+ ~(mu*g/L)),ylab="Proportion Dead",las=1,pch=21,bg="green",cex=1.2) 

> lines(predict.dat$cu,predict.dat$prop.dead,col="blue") 
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The glm function is very flexible. To demonstrate a very different application, let‘s read in the 

data on insect numbers in response to insecticide spraying. This data set was analyzed above 

using an ANOVA, but recall that it required a transformation of the response. 

 
> insects.dat<-InsectSprays 

> summary(insects.dat) 

     count       spray  

 Min.  : 0.00   A:12   

 1st Qu.: 3.00   B:12   

 Median : 7.00   C:12   

 Mean   : 9.50   D:12   

 3rd Qu.:14.25   E:12   

 Max.  :26.00   F:12   

 

In this case, we want to carry out an ANOVA, but the GLM lets us use an appropriate 

distribution for count data: the Poisson distribution. Note that the default link function for the 

Poisson distribution is log. 

 
> mod.1<-glm(count~spray,poisson,data=insects.dat) 

> summary(mod.1) 

 

Call: 

glm(formula = count ~ spray, family = "poisson", data = insects.dat) 
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Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-2.3852  -0.8876  -0.1482   0.6063   2.6922   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  2.67415    0.07581  35.274  < 2e-16 *** 

sprayB       0.05588    0.10574   0.528    0.597     

sprayC      -1.94018    0.21389  -9.071  < 2e-16 *** 

sprayD      -1.08152    0.15065  -7.179 7.03e-13 *** 

sprayE      -1.42139    0.17192  -8.268  < 2e-16 *** 

sprayF       0.13926    0.10367   1.343    0.179     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for poisson family taken to be 1) 

 

    Null deviance: 409.041  on 71  degrees of freedom 

Residual deviance:  98.329  on 66  degrees of freedom 

AIC: 376.59 

 

Number of Fisher Scoring iterations: 5 

 

To get an ANOVA table, we can use the anova function. 

 
> anova(mod.1,test="Chisq") 

Analysis of Deviance Table 

 

Model: poisson, link: log 

 

Response: count 

 

Terms added sequentially (first to last) 

 

 

      Df Deviance Resid. Df Resid. Dev P(>|Chi|) 

NULL                     71     409.04           

spray  5   310.71        66      98.33 4.979e-65 

 

To get diagnostic plots, use the plot function. 

 
> plot(mod.1) 
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Exercises 

1. Organism response to metal is often a function of the logarithm of metal concentration. Repeat 

the above example on logistic regression, but use log10(cu) as the predictor variable. 

Additionally, try to fit a probit regression model to the data (just use 

binomial(link="probit")). Which model provides the best fit?  Plot measured data and 

predictions from all three models. 

 

2. The file Squirrel_color.txt contains observations on squirrel color in and near Syracuse. Carry 

out logistic regression to determine if the proportion of squirrels that are black increases as one 

moves toward the city center. Make sure you take a look at the data to decide how to specify the 

model formula. Try to plot the data to see if it is consistent with the model results. 

 

3. The data frame esoph, from the datasets package, contains data on a case-control study of 

esophogeal cancer. Determine if age group, alcohol consumption, and tobacco usage had an 

effect on the occurrence of cancer. Check out the help file for the data set to get more 

information on the predictor variables if needed. Note that the predictors are ordered factors—R 

will automatically use orthogonal polynomials for regression (as you can see by applying the 

model.matrix function). 
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15. Generalized additive models   

Crawley 2008: Chapter 18 

15.1. The gam function 

If glm is not flexible enough for you, more flexibility can be found using generalized additive 

models (GAMs). GAMs can be used for analyzing the relationships between a continuous 

dependent variable and one to many predictors. A generic form for a GAM is given in the 

following equation. 

 

         0 1 1 2 2 ... m mg E Y f x f x f x     

 

Here,  E Y is the expected value of the dependent variable, g is the link function (analogous to 

the link function in GLM), and 1f through mf are parametric (e.g. a linear response) or 

nonparametric (e.g. a smoothing function) functions that are applied to the predictor variables 1x

through mx . The flexibility of GAMs make this approach useful for cases where relationships 

between variables is complex and not easily captured by a typical linear or nonlinear model, or 

where there is no reason to assume that the relationship between variables should follow a 

particular form. Unlike the other approaches that we have discussed for modeling the effect of 

continuous predictors on a dependent variable, generalized additive models (GAM) do not 

require the assumption of any particular mathematical relationship between predictor(s) and a 

dependent variable. 

 

Multiple packages provide functionality for fitting GAMs. We use the gam function from the 

package mgcv package. As with glm, gam is a very flexible function, and the following 

treatment only scratches the surface. 

 

We need to install and load the mgcv package. 

 
> install.packages("mgcv") 

... 

> library(mgcv) 

This is mgcv 1.4-1.1 

 

Also install the package gamair, which contains the data sets used in Wood (2006). 

 
> install.packages("gamair") 

> library(gamair) 

 

You can see a list of the data sets available by typing 

 
> ?gamair 
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Let's take a look at the co2s data set, which contains atmospheric CO2 concentrations at the 

South Pole for the last 50 years or so. 

 
> data(co2s) 

> summary(co2s) 

      co2           c.month          month        

 Min.  :313.2   Min.  :  1.0   Min.  : 1.000   

 1st Qu.:325.1   1st Qu.:127.5   1st Qu.: 3.000   

 Median :337.7   Median :254.0   Median : 6.000   

 Mean   :338.2   Mean   :254.0   Mean   : 6.473   

 3rd Qu.:351.2   3rd Qu.:380.5   3rd Qu.: 9.000   

 Max.  :365.2   Max.  :507.0   Max.  :12.000   

 NA's   : 80.0                                    

 

> plot(co2 ~ c.month,type="l",xlab="Months since Jan 1957",  

+ ylab=expression(CO[2]~~"concentration"~~(ppm[v])),data=co2s) 

 

 
 

 

With the gam function, model formulae are expressed similarly to lm and glm. From the help file 

for the gam function: 

 
gam(formula,family=gaussian(),data=list(),weights=NULL,subset=NULL, 

    na.action,offset=NULL,control=gam.control(),method=gam.method(), 

    scale=0,knots=NULL,sp=NULL,min.sp=NULL,H=NULL,gamma=1, 

    fit=TRUE,paraPen=NULL,G=NULL,in.out,...) 
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When specifying a formula in gam, use s(x1) to indicate that a smoothing function should be 

applied to predictor x1. 

 

OK, so let's fit a GAM. Note that there are some NAs in the data set—we are going to remove 

them from the start. 

 
> co2.dat<-na.omit(co2s) 

> mod.1<-gam(co2 ~ c.month + s(month), data = co2.dat) 

 

In this model, we are assuming a linear response to the time since 1957, and a smoothed 

response to the month of the year. 
 

> summary(mod.1) 

 

Family: gaussian  

Link function: identity  

 

Formula: 

co2 ~ c.month + s(month) 

 

Parametric coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 3.076e+02  1.962e-01  1568.0   <2e-16 *** 

c.month     1.074e-01  6.225e-04   172.5   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Approximate significance of smooth terms: 

           edf Ref.df     F  p-value     

s(month) 3.342  3.842 5.035 0.000688 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

R-sq.(adj) =  0.986   Deviance explained = 98.6% 

GCV score =  3.034   Scale est. = 2.996     n = 427 

 

Let's try an alternate model. 

 
> mod.2<-gam(co2 ~ s(c.month) + s(month), data = co2.dat) 

> summary(mod.2) 

 

Family: gaussian  

Link function: identity  

 

Formula: 

co2 ~ s(c.month) + s(month) 

 

Parametric coefficients: 

             Estimate Std. Error t value Pr(>|t|)     
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(Intercept) 338.24515    0.01308   25869   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Approximate significance of smooth terms: 

             edf Ref.df        F p-value     

s(c.month) 8.980  9.480 130546.9  <2e-16 *** 

s(month)   5.921  6.421    132.9  <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

R-sq.(adj) =      1   Deviance explained =  100% 

GCV score = 0.075826   Scale est. = 0.073002  n = 427 

 

How do the models look? 

 
> plot(co2 ~ c.month,pch=1,cex=0.4,col='blue', 

+ xlab="Months since Jan 1957",ylab=expression(CO[2]~  

+ ~"concentration"~~(ppm[v])),data=co2.dat) 

> lines(co2.dat$c.month,predict(mod.1),col='red') 

> lines(co2.dat$c.month,predict(mod.2),col='green') 

> legend("topleft",c("Measured","GAM 1","GAM 2"),pch=1, 

+ pt.cex=c(0.5,0,0),lty=c(0,1,1),col=c("blue","red","green"),bty='n') 

 

 
 

> plot(mod.2,residuals=T) 
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While GLMs and GAMs are very flexibles approaches for statistical modeling, they certainly 

don't represent the full range of statistical models that can be carried out in R. R can also be used 

for mixed effect models (lme4, nlme, and mgcv packages),  tree-based models (tree package), 

and local regression models (loess function). These topics are covered in the respective 

package documentation and several books on R. See the information in the section on R 

documents below. 

Exercises 

1. The file isolation.txt (from Crawley 2008) contains data on the presence of a particular species 

of bird on some islands. Apply a GAM to quantify and test the effects of island size and isolation 

(distance from mainland) on the presence of this species. 

 

2. The data frame mtcars contains data (from 1974) on cars' fuel economny. Use GAM to 

quantify and test the effects of the potential predictors on fuel economy. See the help file for 

mtcars for more information. 
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16. Nonlinear regression   

Dalgaard 2008: Chapter 16, Ritz & Streibig 2009 

16.1. The nls function 

R has some powerful algorithms for nonlinear regression. Let's demonstrate this with a data 

frame called Puromycin, which is included in the datasets package. This data set contains 

data on the reaction rate of an enzymatic reaction with and without treatment with the antibiotic 

puromycin. 

 
> puromycin.dat<-Puromycin 

 

> plot(rate ~ conc, las = 1, xlab = "Substrate concentration (ppm)", 

+ ylab = "Reaction velocity (counts/min/min)", pch= 

+ as.numeric(state),col=as.numeric(state),main="Puromycin data",  

+ data=puromycin.dat) 

> legend("topleft",c("Treated","Untreated"),pch=1:2,col=1:2,bty="n") 

 

 

 
 

To model these data, let's use the Michaelis-Menten equation: 
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The asymptote maxV  is the maximum reaction velocity, and mK is the Michaelis-Menten constant. 

Let‘s fit a model to the ―treated‖ group—as with lm and other functions, this can be specified in 

the subset argument in the nls function call, but we will just make a subset of the original data 

frame that contains only these data. 

 
> puromycin.dat<-subset(Puromycin,state=="treated") 

> mod.1<-nls(rate ~ Vm*conc/(K + conc),data=puromycin.dat, 

+ start=c(Vm=250,K=0.1),trace=TRUE) 

3993.976 :  250.0   0.1  

1196.486 :  212.02378920   0.06342989  

1195.456 :  212.63961223   0.06405238  

1195.449 :  212.67946886   0.06411461  

1195.449 :  212.68333056   0.06412064  

1195.449 :  212.68370347   0.06412122 

 

By specifying trace=TRUE, we get nls to print out its iterations as it runs. The first column 

gives the sum of residuals (sum of squares), and parameter estimates follow in the order they are 

specified in the start argument setting (headings would be nice though). 
 

> summary(mod.1) 

 

Formula: rate ~ Vm * conc/(K + conc) 

 

Parameters: 

    Estimate Std. Error t value Pr(>|t|)     

Vm 2.127e+02  6.947e+00  30.615 3.24e-11 *** 

K  6.412e-02  8.281e-03   7.743 1.57e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 10.93 on 10 degrees of freedom 

 

Number of iterations to convergence: 5  

Achieved convergence tolerance: 8.813e-06  

 

The extractor functions that we used earlier for lm output can also be used with nls output. For 

example: 

  
> coef(mod.1) 

          Vm            K  

212.68357944   0.06412103 

 

> predict(mod.1) 

 [1]  50.56601  50.56601 102.81096 102.81096 134.36161 134.36161 

 [7] 164.68469 164.68469 190.83292 190.83292 200.96883 200.96883 

 

The performance of the Gauss-Newton algorithm that does the work in nls can be dependent on 

the quality of initial guesses you give it. If you provide guesses reasonably close to the true 
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values, nls will probably do a good job. If you provide very poor guesses, nls may not be able to 

find least-squares estimates. For some common models that can be linearized, R has self-starting 

functions, which estimate starting values automatically using data transformations and linear 

regression. Here is an example of the models fit in the example above, but this time, a self-

starting function (SSmicmen) is used: 

 
> mod.2<-nls(rate ~ SSmicmen(conc,Vm,K),data=puromycin.dat) 

> summary(mod.2) 

 

Formula: rate ~ SSmicmen(conc, Vm, K) 

 

Parameters: 

    Estimate Std. Error t value Pr(>|t|)     

Vm 2.127e+02  6.947e+00  30.615 3.24e-11 *** 

K  6.412e-02  8.281e-03   7.743 1.57e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 10.93 on 10 degrees of freedom 

 

Number of iterations to convergence: 0  

Achieved convergence tolerance: 1.917e-06 

 

Comparing the results of the model fitting exercises, we see that the self-starting function 

provided the same parameter estimates as the nls in which we had to specify initial guesses.  

 

Now let's make some model predictions and show them on a new figure. 

 
> mod.dat<-data.frame(conc=seq(0,1.2,0.01)) 

> mod.dat$rate.pred<-predict(mod.1,newdata=mod.dat) 

> plot(puromycin.dat$conc,puromycin.dat$rate,xlab="Substrate  

+ concentration (ppm)",ylab=expression("Reaction velocity"~~ 

+ (counts~min^"-2")),las=1) 

> lines(mod.dat$conc,mod.dat$rate.pred) 
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The nls function is very flexible, and can, in theory, be used with any model that you can 

specify within the function call. Common nonlinear models are given in Crawley (2007: Table 

20.1) and Ritz & Steibig (2008: Table B.1). Several of these models have associated self-starting 

functions in R. 

 

Asymptotic models:  

Michaelis-Menton 

2-parameter asymptotic exponential 

3-parameter asymptotic exponential 

 

S-shaped models: 

2-parameter logistic 

3-parameter logistic 

4-parameter logistic 

Weibull 

Gompertz 

 

Humped curves: 

Ricker curve 

First-order compartment 

Bell-shaped 

Biexponential 
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Use of the nls function is not limited to models that can be specified as an algebraic expression. 

The formula argument can actually be a call to another function, and so it is possible to use 

nls to calibrate a complicated numeric model, for example. 

 

As mentioned above, the nls function uses (by default) the Gauss-Newton algorithm, which 

does not perform well for all data. A similar function, nls.lm, available in the minpack.lm 

package, uses the Levenberg-Marquardt algoritm, which may be more reliable. We have had 

good luck with nls.lm on problems that nls has had difficultly with. 

Exercises 

1. Read in the data in the file Dimethyl-death.txt. This file contains fabricated data on the 

concentration of the toxicant dimethyl-death in a water body over time, following a spill. Time 

(t) is given in days, while concentration is in g/L. Fit a first-order decay model to these data 

using the function nls. First-order decay is described by:  

 

 
0

tc c e   

 

where c  is the concentration at time t, 0c  is the initial concentration, and   is the decay 

constant. Calculate the half-life (
ln(2)


). Be sure to use the coef function. Plot the data and the 

model predictions. Hint: if you need some help in estimating the starting value for  , note that 

the slope of ln(c) vs. t provides one. Try fitting a similar model, but with some low ―background‖ 

concentration of dimethyl-death. 

 

2. The data set DNase, from the datasets package, contains data on the measured optical density 

of protein solutions. Create a subset that consits of only a single run, and fit a logistic model 

using a self-starter function (see the help file for SSlogis for more information). 
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17. Survival Analysis 
Dalgaard 2002: Chapter 12, Crawley 2008: Chapter 25 

 

17.1. Log-rank test and Cox proportional hazards model 

The analysis of lifetimes is an important topic within many fields of study including biology, 

medicine, toxicology, and engineering. In ecotoxicology, standardized toxicity tests often consist 

of dosing studies designed to determine an LC50 for a substance when organisms are exposed 

for fixed duration (e.g. a 96-h LC50). Survival analysis allows for the more rigorous 

investigation of the combined effects of concentration and exposure duration on lifetimes. R 

supports a wide range of tools for the analysis of survival data, including methods to evaluate the 

effects of multiple treatments (both continuous and discrete) simultaneously.  

 

The organization of survival data for analysis in R is geared toward what you might expect with 

human-based data; data are organized so that each row represents an individual subject (e.g. 

person). It is essential to understand that we are dealing with time to death in the following 

examples, not simply the fraction of individuals surviving.  

 

When analyzing survival data, it is necessary to indicate when subjects are removed from the 

study due to something other than death by the cause of interest. This is referred to as censoring 

in survival analysis. An example of censoring that is relevant to aquatic toxicity testing is a 

daphnid being crushed by a pipette during the course of the experiment. This death would not be 

attributed to the toxicant, so the organism would have to be censored from the dataset. Another 

case of censoring involves organisms that are still alive by the end of the experiment. We do not 

know when these organisms will die, so we do not have a complete understanding of their 

lifetime.  

 

For this we will use two experiments on survival of Daphnia exposed to copper.  

 
> install.packages('survival') 

> library(survival) 

> daph.surv<-read.table("Daphnids_surv.txt", header=T)  

> attach(daph.surv) 

> daph.surv 

 

   exp.id c.cu tt.death status 

1      1a   64        2      1 

2      1a   64        2      1 

3      1a   64        2      1 

4      1a   64        2      1 

5      1a   64        3      1 

6      1a   64        3      1 

7      1a   64        3      1 

8      1a   64        3      1 

9      1a   64        3      1 

10     1a   64        4      1 

11     1a   64        4      1 

12     1a   64        4      1 
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13     1a   64        9      1 

14     1a   64        9      1 

15     1a   64       21      0 

16     1a   64       21      0 

17     1a   64       21      0 

18     1a   64       21      0 

19     1a   64       21      0 

20     1a   64       21      0 

... 

40     1b   48       21      0 

 

This data frame contains two blocks of 20 rows (although only the first set of complete blocks is 

shown). Each row corresponds to a single organism, and in column tt.death, the time to death 

(in days) of that organisms is recorded.  In this example, the column status contains a value of 

1 if the organisms was dead at the end of the experiment, and a value of 0 if the organism did not 

die. This is used for censoring.  

 

The function survfit is used to generate an estimate of a survival curve (i.e. the trajectory of 

survival over time). This function requires at least a survival object that contains the data. The 

function Surv can be used to generate a survival object, which simply combines the time to 

death and censor data into a single vector. 

 
> mod1=survfit(Surv(tt.death,status)~exp.id) 

> summary(mod1) 

Call: survfit(formula = Surv(tt.death, status) ~ exp.id) 

 

                exp.id=1a  

 time n.risk n.event survival std.err lower 95% CI upper 95% CI 

    2     20       4     0.80  0.0894        0.643        0.996 

    3     16       5     0.55  0.1112        0.370        0.818 

    4     11       3     0.40  0.1095        0.234        0.684 

    9      8       2     0.30  0.1025        0.154        0.586 

 

                exp.id=1b  

 time n.risk n.event survival std.err lower 95% CI upper 95% CI 

    1     20       1     0.95  0.0487        0.859        1.000 

    3     19       2     0.85  0.0798        0.707        1.000 

    4     17       1     0.80  0.0894        0.643        0.996 

    9     16       1     0.75  0.0968        0.582        0.966 

   20     15       1     0.70  0.1025        0.525        0.933 

 

This is a tabular summary of the survival function at the times when a death occurred. The output 

corresponds to the time at which an event occurred (i.e. a death), the number at risk of dying 

during that time interval (the number present), the number dying during that time interval, and 

the value of the survival function at each time interval. This is typically viewed graphically, and 

can be accomplished as follows: 

 
> plot(mod1,ylab="Survivorship",xlab="Days",lty=c(1,2),las=1) 
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This shows the results for exp.id=1a as a solid line and the results for exp.id=2 as a dashed 

line. Note that the end of the survival curve shows a "+" symbol, which indicates where 

censoring occurred. In both experiments, some organisms still remained alive. When a single 

survival curve is plotted, 95% confidence intervals are included by default, but we can also force 

them to be added to our current plot by specifying the argument conf.int=T. This can get 

confusing when there are multiple curves plotted, but you can specify different colors for each 

series: 

 
> plot(mod1,ylab="Survivorship",xlab="Days",conf.int=T, 

+ col=c("blue","red"), lty=c(1,2),las=1) 
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R contains a tool for comparing different survival curves, which is much more desirable than 

comparing various point estimates from the curves. In this case, we might want to test if the two 

survival curves shown above are identical. For this, R uses the log-rank test, which is invoked 

with the survdiff function: 

 
> survdiff(Surv(tt.death,status)~exp.id) 

Call: 

survdiff(formula = Surv(tt.death, status) ~ exp.id) 

 

           N Observed Expected (O-E)^2/E (O-E)^2/V 

exp.id=1a 20       14      8.6      3.38      6.82 

exp.id=1b 20        6     11.4      2.55      6.82 

 

 Chisq= 6.8  on 1 degrees of freedom, p= 0.00901  

 

From this analysis, we would conclude that the survival curves do appear to be different.  

 

There are other methods for conducting survival analysis in R, including the Cox proportional 

hazards model (semi-parametric) and Accelerated Failure Time (AFT) models (parametric). 

Cox's Proportional-Hazards Model uses a baseline hazard function (t) (hazard is the 

instantaneous risk of death), which can take any form. Covariates (i.e. predictor variables) are 

assumed to have a linear effect on hazard, and the relative effect of a covariate on hazard is 

always constant (i.e. the ratio of hazards is independent of time, hence the name proportional-

hazards). The Cox proportional-hazards model can be applied using the coxph function.  

 

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Days

S
u

rv
iv

o
rs

h
ip



191 

 

> mod2<-coxph(Surv(tt.death,status)~exp.id) 

> summary(mod2) 

Call: 

coxph(formula = Surv(tt.death, status) ~ exp.id) 

 

  n= 40  

          coef exp(coef) se(coef)    z     p 

exp.id1b -1.23     0.292    0.492 -2.5 0.012 

 

         exp(coef) exp(-coef) lower .95 upper .95 

exp.id1b     0.292       3.42     0.111     0.767 

 

Rsquare= 0.159   (max possible= 0.967 ) 

Likelihood ratio test= 6.94  on 1 df,   p=0.00844 

Wald test            = 6.24  on 1 df,   p=0.0125 

Score (logrank) test = 7.02  on 1 df,   p=0.00806 

 

To plot model predictions, we can use the survfit function within a plot command, as above. 

Note that we need to use a new data frame to generate model predictions for both treatments. 

 
> cox.plot.data<-data.frame(exp.id=c('1a','1b')) 

> plot(survfit(mod2,newdata=cox.plot.data),conf.int=T,  

+ col=c("blue","red"),lty=c(1,2)) 

 

 
 

 

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0



192 

 

 

Exercise 

1. Use the dataset rats, which is included with the survival package, to fit a Cox's 

proportional hazard model. This dataset has survival times (time) for rats that were injected with 

a carcinogen, and then treated with one of two drugs (rxn = 1 or 0). Fit a Cox's proportional 

hazard model to these data to determine if the drugs had differing effects on survival time.  
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18. Distributions and simulations  

Crawley 2007: Chapter 7,  Dalgaard 2008: Chapter  3, Kuhnert & Venables 2005: pp. 38-40 

18.1. Available distributions 

Many of the distributions associated with statistical modeling have been built into R. There are 

nearly 30 such distributions, including normal (norm), t (TDist), and F (FDist). These 

distributions can be used for simulating data, determining quantiles, probabilities, and density 

functions. For each distribution, R has four functions available, the names of which start with a 

prefix (p, q, d, r, which represent distribution, quantile, density, and random, respectively) and 

the distribution name. For example, to calculate a cumulative probability for the normal 

distribution: 

 
> pnorm(2.5,mean=0,sd=1) 

[1] 0.9937903 

 

The first argument is a quantile or a vector of quantiles, which simply represent the number of 

standard deviations from the mean.  

 

Suppose that we wanted to know the cumulative probabilities associated with a vector of 

quantiles representing 1, 2, and 3 standard deviations above and below the mean (i.e. z values): 

 
> pnorm(-3:3) 

[1] 0.001349898 0.022750132 0.158655254 0.500000000 0.841344746 

[6] 0.977249868 0.998650102 

 

We can calculate two-tail results by difference. For example, for the probability of obtaining a 

value that was within one standard deviation of the mean: 

 
> pnorm(1)-pnorm(-1) 

[1] 0.6826895 

 

The density function is not used as frequently as the other four functions associated with the 

distributions, but one of its uses is to provide the well-known shape of various distributions. In 

the case of the normal distribution, this is of course, the bell-shaped curve. The probability 

density represents the slope of the cumulative probability distribution. The area under a specified 

section of the density curve represents the probability of obtaining a value from within that 

interval. However, we just demonstrated that it was easy to do that with pnorm. 

 
> curve(dnorm(x),-3,3,ylab="Density") 
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Either a single quantile or a vector of quantiles (i.e. z values) is the necessary argument for the 

pnorm and dnorm functions. Since the quantile function is the inverse of the probability function, 

a probability or a vector of probabilities is the necessary argument for qnorm. Suppose we 

wanted to know the quantile below which 50% of the distribution lies.  

 
> qnorm(0.5) 

[1] 0 

 

Lastly, rnorm and analogous functions return (pseudo-)random samples. 

 
> r.100<-rnorm(100) 

 

Let‘s see what it looks like. 

 
> hist(r.100) 
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18.2. Monte Carlo simulations 
Robert & Casella 2010 

 

R is a great language for Monte Carlo simulations. Although it is possible to carry out 

sophisticated simulations, we will cover some very simple examples in this section. Say we are 

interested in determining if the river flow from two different rivers is different. This sounds like 

it could be an appropriate situation for using a t test. Using the River_flow.dat dataset, let‘s 

conduct a t test to see if the flow is different for two different rivers. 

 
rivers.dat<-read.table("River_flow.txt",header=T) 

 

> names(rivers.dat) 

[1] "agency"         "site"           "date"           "discharge"      

[5] "flag.discharge" 

 

There are two different rivers in this dataset, so subset them so that we have 2 different 

dataframes. It has also been noticed that some of the observations are ―NA‖, meaning that values 

were not reported. 

 
> river1.dat<-na.omit(subset(rivers.dat,site==1509000)) 

> river2.dat<-na.omit(subset(rivers.dat,site==4232730)) 

 

> t.test(river1.dat$discharge,river2.dat$discharge) 
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        Welch Two Sample t-test 

 

data:  river1.dat$discharge and river2.dat$discharge  

t = -5.4734, df = 721.814, p-value = 6.096e-08 

alternative hypothesis: true difference in means is not equal to 0  

95 percent confidence interval: 

 -386.0811 -182.2323  

sample estimates: 

mean of x mean of y  

 701.0356  985.1923  

 

This result suggests that the mean flow from each river is in fact different. After conducting this 

t-test, you might wonder how appropriate this method is for this test, since you have assumed 

that the assumptions were not violated. In this case, the assumption that the data are normally 

distributed. Lets take a look at the distributions: 

 
> par(mfrow=c(2,2)) 

> hist(river1.dat$discharge) 

> hist(river2.dat$discharge) 

> qqnorm(river1.dat$discharge) 

> qqline(river1.dat$discharge) 

> qqnorm(river2.dat$discharge) 

> qqline(river2.dat$discharge) 
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The data do not appear to be normally distributed. Perhaps the non-parametric alternative, the 

Wilcoxon signed rank test, would have been more appropriate, or maybe a log transformation 

might have helped. It looks like it would help with river1.dat, but maybe not with 

river2.dat. Log transform the data and see what they look like: 

 
> river1.dat$l.discharge=log10(river1.dat$discharge) 

> river2.dat$l.discharge=log10(river2.dat$discharge) 

> qqnorm(river1.dat$l.discharge) 

> qqline(river1.dat$l.discharge)  

> qqnorm(river2.dat$l.discharge) 

> qqline(river2.dat$l.discharge) 

 
 

This did appear to help with the river1.dat dataset, but not so much for the river2.dat dataset. 

Now we wonder how adversely the t-test method is affected by violation of assumptions. This 

will probably not answer the original question dealing with assessing the difference in the mean 

flows for each river, but it will be an interesting exercise, nonetheless.  

 

We can answer this general question regarding violation of assumptions with a simple Monte 

Carlo simulation. The example that follows is a slightly modified version of an example 

described in Alberts (2007). 

 

We want to determine the true significance level of a t test, given various population 

distributions and variances.  

 

For this, the true significance level is calculated as the probability that the absolute value of the 

calculated t statistic is greater than or equal to the calculated critical t-value. To do this, we have 

to write some code to calculate the pooled standard deviation (sp) and the t-statistic (t). 
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where m and n are the sample sizes, 2

xs  and 2

ys  are the standard deviations, and x  and y are the 

means. In R this can look like: 

 
> sp<-sqrt(((m-1)*sd(x)^2+(n-1)*sd(y)^2)/(m+n-2)) 

> t<-(mean(x)-mean(y))/(sp*sqrt(1/m+1/n)) 

 

Normally, it would be beneficial to write this into a function, but that will not be covered until 

the next section, so for now we will specify this code for each simulation that we will conduct.  

 

To set up the simulation, we will need to take random samples from the first population, and 

random samples from the second population. This can be easily accomplished with rnorm. Then 

we will need to compute the t-statistic from the two samples, and we will have to determine if 

the absolute value of the t-statistic is equal to or greater than the critical t-value. When this 

occurs, it represents a rejection of the null hypothesis that there is no difference in means.  

 

For each simulation, we will keep track of the number of null hypothesis rejections, and we will 

use that to estimate the true significance level, which is calculated by the number of null 

hypothesis rejections divided by the total number of simulations. Let‘s set up the first problem: 

 
a<-0.05 

m<-20 

n<-20 

n.sim<-10000 

n.reject<-0 

for (i in 1:n.sim) { 

 x<-rnorm(m,mean=10,sd=2) 

 y<-rnorm(n,mean=10,sd=2) 

 sp<-sqrt(((m-1)*sd(x)^2+(n-1)*sd(y)^2)/(m+n-2)) 

 t<-(mean(x)-mean(y))/(sp*sqrt(1/m+1/n)) 

 if (abs(t)>qt(1-a/2,n+m-2)) { 

  n.reject<-n.reject+1 

 } 

} 

 

> est.sig.level<-n.reject/n.sim 

> est.sig.level 

[1] 0.0489 

 

From this simulation, we see that the estimated true significance level is 0.0489, which is very 

close to our specified alpha (a) of 0.05. The simulation above tested a situation in which the 

distributions were the same, but what happens if we specify different distributions?  In the river 

flow example above, it looked like the first river had nearly log-normally distributed data, and 

the second river had a strange distribution of data. Lets see what happens if we assume that the 
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first set of samples comes from a log normal distribution, and the second set of samples comes 

from a normal distribution: 
 

n.reject<-0 

for (i in 1:n.sim) { 

 x<-rlnorm(m,mean=log(10),sd=log(2)) 

 y<-rnorm(n,mean=10,sd=2) 

 sp<-sqrt(((m-1)*sd(x)^2+(n-1)*sd(y)^2)/(m+n-2)) 

 t<-(mean(x)-mean(y))/(sp*sqrt(1/m+1/n)) 

 if (abs(t)>qt(1-a/2,n+m-2)) { 

  n.reject=n.reject+1 

 } 

} 

 

> est.sig.level<-n.reject/n.sim 

> est.sig.level 

[1] 0.1469 

In this case, it appears that the estimated actual significance level is highly affected by the type 

of distribution. So, a violation of the normal distribution assumption appears to be cause for 

concern. Lets now consider the effect of unequal variance.  

 
n.reject<-0 

for (i in 1:n.sim) { 

 x<-rnorm(m,mean=10,sd=3) 

 y<-rnorm(n,mean=10,sd=1) 

 sp<-sqrt(((m-1)*sd(x)^2+(n-1)*sd(y)^2)/(m+n-2)) 

 t<-(mean(x)-mean(y))/(sp*sqrt(1/m+1/n)) 

 if (abs(t)>qt(1-a/2,n+m-2)) { 

  n.reject<-n.reject+1 

 } 

} 

 

> est.sig.level<-n.reject/n.sim 

> est.sig.level 

[1] 0.056 

 

It appears that the significance level is much less affected by violation of the equality of variance 

assumption. We can also use this simulation to look at the importance of sample size. Let‘s say 

that we were only able to collect 3 samples from each population: 

 
a<-0.05 

m<-3 

n<-3 

n.sim<-10000 

n.reject<-0 

for (i in 1:n.sim) { 

 x<-rnorm(m,mean=10,sd=2) 

 y<-rnorm(n,mean=10,sd=2) 

 sp<-sqrt(((m-1)*sd(x)^2+(n-1)*sd(y)^2)/(m+n-2)) 

 t<-(mean(x)-mean(y))/(sp*sqrt(1/m+1/n)) 

 if (abs(t)>qt(1-a/2,n+m-2)) { 

  n.reject<-n.reject+1 

 } 

} 
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> est.sig.level<-n.reject/n.sim 

> est.sig.level 

[1] 0.0542 

 

This suggests that the true significance level is not largely affected by the sample size. However, 

this is not saying that the power of the tests is not affected. This is simply a testament to the 

central limit theorem. A different type of test can be constructed to look at the effect of sample 

size on the power of a t test. To evaluate the power of a t test, we can simply make some minor 

modifications to the code that we have been using. For this example, lets say that the actual 

difference in means is 1, and the standard deviation is 2. We will set the sample size at 30, and 

we will run the Monte Carlo simulation. Again, we will keep track of the number of rejections. 

With different means specified, the resulting calculation will provide us with an estimate of the 

probability that the test will correctly reject the null hypothesis when it is false (i.e. the power). 

 
m<-30 

a<-0.05 

n.sim<-10000 

n.reject<-0 

for (i in 1:n.sim) { 

 x<-rnorm(m,mean=8,sd=2) 

 y<-rnorm(m,mean=9,sd=2) 

 sp<-sqrt(((m-1)*sd(x)^2+(m-1)*sd(y)^2)/(m+m-2)) 

 t<-(mean(x)-mean(y))/(sp*sqrt(1/m+1/m)) 

 if (abs(t)>qt(1-a/2,m+m-2)) { 

  n.reject<-n.reject+1 

 } 

} 

est.power<-n.reject/n.sim 

 

> est.power 

[1] 0.4786 

 

The power is not very high, so in this case, it might be advisable to increase the number of 

observations. We could write a little more code to iteratively determine the sample size that is 

required to achieve a power of 0.8, but R has built-in functions for that. The function 

power.t.test can be used to calculate power. Let‘s use that function for comparison with our 

Monte Carlo results. We have to specify the sample size, the true difference in means, and the 

standard deviation: 

 
> power.t.test(n=30,delta=1,sd=2) 

 

     Two-sample t test power calculation  

 

              n = 30 

          delta = 1 

             sd = 2 

      sig.level = 0.05 

          power = 0.477841 

    alternative = two.sided 

 



201 

 

 NOTE: n is number in *each* group  

 

From this, it is apparent that the Monte Carlo results are very similar to the results of the explicit 

calculation of power.  

18.3. Numerical simulations 

Although R may not be as capable as Matlab or Octave nor as flexible as Fortran (nor as capable) 

for simulation modeling, it is possible to carry out numerical modeling with R. Use of vectors, 

matrices, arrays, and lists, as well as vectorized operations, can make for very compact and 

efficient code. The package deSolve contains some powerful ordinary differential equation 

(ODE) solvers. 

 
> install.packages("deSolve") 

> library(deSolve) 

 

The ODE solvers available in deSolve require the initial state of a vector of state variables, plus a 

function that will calculate the state variable. A simple example is shown below. 

 

Let‘s model population growth of a predator-prey system using the Lotka-Volterra equations. 

 
pops.calc<-function(t,y,parms) { 

   a<-parms$a 

   b<-parms$b 

   g<-parms$g 

   d<-parms$d 

 

   dprey.dt<-y[1]*(a - b*y[2]) 

   dpred.dt<- -y[2]*(g - d*y[1]) 

   return(list(c(dprey.dt,dpred.dt))) 

} 

 

a<-2 

b<-0.2 

g<-0.4 

d<-0.01 

 

prey<-20 

pred<-20 

 

times<-c(0,1:2400/100) 

 

pp.sys.out<-lsoda(c(prey,pred),times,pops.calc,parms=list(a=a,b=b,g=g,d=d)) 

  

plot(pp.sys.out[,1],pp.sys.out[,2],type="l",col="red") 

points(pp.sys.out[,1],pp.sys.out[,3],type="l",col="blue") 

legend("topleft",c("Prey","Predator"),lty=1,col=c("red","blue"),bty="n") 
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Here is a slightly more complicated (and useful) example. Say we want to simulate the diffusion 
of Na+ through groundwater. 
 
  
 
 
 
 
 
The flux of Na+ movement across each boundary is given by: 
 

 
c

j D
x

∆
= −

∆
 

 

where c  = concentration (mass/length3) and x  = position (length). Concentration is given by: 
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m
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where m  = mass of Na+ in our model cells (or layers) and width  = the width of our model cells. 
Lastly, let’s assume that there is an infinite pool with 1500 mg/L Na+ at the far left side of the 
system, and an infinite pool with no Na+ at the far right. 
 

0 5 10 15 20

0
5

0
1

0
0

1
5

0

pp.sys.out[, 1]

p
p

.s
y
s
.o

u
t[
, 
2

]

Prey
Predator

m1 m2 m3 mi 



203 

 

# Set up function for calculating derivatives 

diff.calc<-function (t,y,parms) { 

   D<-parms$D 

   w<-parms$w 

   por<-parms$por 

   c<-y 

   flux<- -D*diff(c(1500,c,0))/w 

   dc.dt<- -diff(flux)/(w*por) 

   return(list(dc.dt=dc.dt)) 

} 

 
# Set model parameters 

D<-0.5 # m2/yr 

times<-c(0,1:3,2*2:99,10*20:100) 

w<-1.0 

por<-0.5 

dimens<-100 

 

# Set initial concentrations 

c<-rep(0,dimens) 

 

# Now solve system 

na.diff.out<-ode.band(c,times,diff.calc,nspec=1,parms=list(D=D,w=w,por=por)) 

 

plot(na.diff.out[,1],na.diff.out[,11],type='l',xlab="Time (yr)",ylab="Na       

concentration (mg/L)",las=1,main="10 m from source") 
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plot((w-0.5)*(1:dimens),na.diff.out[1,-1],type='l',ylim=c(0,1500),          

xlab="Distance from source (m)",ylab="Na concentration             

(mg/L)",las=1,col="gray",main="Concentration profiles") 

lines((w-0.5)*(1:dimens),na.diff.out[2,-1],col="red") 

lines((w-0.5)*(1:dimens),na.diff.out[57,-1],col="blue") 

lines((w-0.5)*(1:dimens),na.diff.out[62,-1],col="green") 

legend("topright",c("0 years","1 year","500 years","1000 

years"),lty=1,col=c("gray","red","blue","green"),bty="n") 

 

 
Of course, one could come up with an analytical expression for this (relatively) simple scenario, 

but the approach used in this example can be used to implement much more complicated models. 

Exercises 

1. Use Monte Carlo simulation to estimate the 95% confidence limits for population size (N) 

estimates for 5 and 10 years, when the intrinsic rate of natural increase (r) is 0.3 yr
-1

 (with 

standard deviation of 0.1 yr
-1

) and the initial population size (No) is 200. The quantile function 

will be useful for summarizing the results of the simulation. For this example, assume 

exponential growth (i.e. N=Noe
rt
, where t = time in years). If you are really ambitious, create a 

simulation that estimates the confidence limits for 1 through 20 years, create a summary table, 

and summarize the results with a plot.  

 

2. Use Monte Carlo to estimate the constant . This can be tricky to set-up, and will probably be 

easiest if you deal with only 1 quadrant of the figure below. For this, you might want to think of 

throwing darts at a dartboard and quantify the number of hits within the circle vs. within the 
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square. The number of hits within each area (i.e. circle or square) is proportional to the area of 

that portion. Therefore, if you are only dealing with ¼ of the figure:  
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Hint: you will have to use the Pythagorean theorem to determine if your ―dart‖ lands within the 

circle. Also, think about the type of distribution you will need to use for your random sampling! 

 

Create a figure that summarizes your analysis. Show points in red if they are within your circle, 

and points in blue if they are outside the circle. 

 

3. Write a simple program that simulates exponentional population growth using the ODE solver 

lsoda.  

 

4. Bored? Here is a challenge. Using Newton‘s laws of gravity and motion, develop a simulation 

model of the Earth‘s orbit around the Sun using lsoda. Relevant laws are: 

 

Newton‘s law of gravitation: 

2

21

r

mm
GF   

 

where F = force (N), G = gravitational constant (6.67428 × 10
-11

 m
3
 kg

-1
 s

-1
), m = mass (kg), and 

r = distance between objects (m). 

 

Newton‘s second law of motion: 

 

 maF   

 

radius =

1 inch
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where a = acceleration (m s
-2

). 

 

Constants: 

Earth‘s mass: 5.9736 × 10
24

 kg 

Sun‘s mass: 1.9891 × 10
30

 kg  

Perihelion (shortest distance between Earth and Sun): 1.4709 × 10
11

 m (147 million km) 

Maximum orbital velocity: 30.287 km/s 

And, for checking your results: 

Aphelion (greatest distance between Earth and Sun): 1.521 × 10
11

 m (152 million km) 

Minimum orbital velocity: 29.29 km/s 
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19. Batch processing   
R-Intro: Appendix B 

19.1. Running R in batch mode 

For most uses of R, it is perfectly efficient to write and save script files, and call them up in the R 

GUI with the source function, or even paste code directly into the R GUI. Of course, simple 

analyses can be typed directly into the R GUI. However, for automating data analysis, it is 

possible to execute an R script without opening the R GUI, using the Windows Command 

Prompt, Bash shell in Cygwin, or other shells. As listed in the BATCH help file, the command for 

running an R script in batch mode is: 

 
R CMD BATCH [options] infile [outfile] 

 

One useful option is --no-save, which will prevent R from saving your workspace to a file 

named .RData.  

 

If you ever get the following error:  

 
'R' is not recognized as an internal or external command, operable 

program or batch file. 

 

it means that Windows cannot find the R software. In this case, you need to manually add the 

directory that contains the R executable to your computer‘s list of directories that it should look 

in for executables, i.e. the Path variable. With Windows XP, this is Control Panel  

Performance and Maintenance  System  Advanced tab  Environment Variables  find 

and highlight Path in the list  Click Edit, and then add ;C:\Program Files\R\R-

2.8.1\bin (or whatever path is correct) to the list. For more information or for other operating 

systems, search online. 

 

As an example, let's create a script file with the following code: 

 
# Set up function for calculating derivatives 

diff.calc<-function (t,y,parms) { 

   D<-parms$D 

   w<-parms$w 

   por<-parms$por 

   c<-y 

   flux<- -D*diff(c(1500,c,0))/w 

   dc.dt<- -diff(flux)/(w*por) 

   return(list(dc.dt=dc.dt)) 

} 

 

# Set model parameters 

D<-0.5 # m2/yr 

times<-c(0,1:3,2*2:99,10*20:100) 

w<-1.0 

por<-0.5 

dimens<-100 
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# Set initial concentrations 

c<-rep(0,dimens) 

 

# Now solve system 

na.diff.out<-ode.band(c,times,diff.calc,nspec=1,parms=list(D=D,w=w,por=por)) 

 

# Open a pdf for exporting plots 

pdf("Na_diffusion_sim.pdf",width=8,height=11) 

   par(mfrow=c(2,1),oma=c(2,5,2,5)) 

   plot(na.diff.out[,1],na.diff.out[,11],type='l',xlab="Time (yr)",ylab= 

       "Na concentration (mg/L)",las=1,main="10 m from source") 

    

   plot((w-0.5)*(1:dimens),na.diff.out[1,-1],type='l',ylim=c(0,1500),      

        xlab="Distance from source (m)", 

        ylab="Na concentration (mg/L)",las=1,col="gray", 

        main="Concentration profiles") 

   lines((w-0.5)*(1:dimens),na.diff.out[2,-1],col="red") 

   lines((w-0.5)*(1:dimens),na.diff.out[57,-1],col="blue") 

   lines((w-0.5)*(1:dimens),na.diff.out[62,-1],col="green") 

   legend("topright",c("0 years","1 year","500 years", 

         "1000 years"),lty=1,col=c("gray","red","blue","green"),bty="n") 

dev.off() 

 

If we save this file as Na_diff_sim.R, we can call it up with the following command in the 

Windows Command Prompt. 

 
> R CMD BATCH Na_diff_sim.R 

 

The simulation runs, and the pdf is created. 

 

Once you are familiar with running R via batch mode, it will be trivial to integrate R scripts with 

other software. For example, you may want to make some type of predictions using an external 

numerical model, and export the results for plotting in R. To do this, simply write a batch file 

that first calls the numerical model, and then calls an R script that plots the results.  
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20. Specialized packages, related documents, and additional 
information 
User contributions to the CRAN website have made R very capable for many specialized 

analyses. Before writing a new function or developing a code-intensive analysis, it is a good idea 

to search CRAN to see if someone has already solved the problem for you. 

 

If you typically carry out a certain type of analyses, say econometrics or ―environmetrics‖, there 

are collections of useful packages on the CRAN website called task views. You can find a list of 

all the task views at http://cran.r-project.org/web/views/. For econometrics, for example, you 

should look at the econometrics task view. To install all the packages in a task view, you first 

need to have the ctv package installed. 

 
> install.packages("ctv") 

trying URL 

'http://lib.stat.cmu.edu/R/CRAN/bin/windows/contrib/2.8/ctv_0.5-1.zip' 

Content type 'application/zip' length 222936 bytes (217 Kb) 

opened URL 

downloaded 217 Kb 

 

package 'ctv' successfully unpacked and MD5 sums checked 

 

The downloaded packages are in 

        C:\Documents and Settings\Sasha\Local 

Settings\Temp\RtmpkEfLER\downloaded_packages 

updating HTML package descriptions 

 

> library(ctv) 

 

Then, to load a task view, say envirometrics for analysis of environmental and ecological data: 

 
> install.views("Environmetrics") 

 

will install the few dozen or so packages included in the task view. 

 

There are also many books on R available—check out the list on CRAN: http://www.r-

project.org/doc/bib/R-publications.html. In addition to general texts, e.g. Dalgaard (2008) and 

Crawley (2008), there are books dedicated to specific types of analyses, such as Introductory 

Time Series with R (Cowpertwait & Metcalfe 2009) and Generalized Additive Models: An 

Introduction with R (Wood 2006). Many of these authors have posted R code and data sets 

online. 

 

Lastly, there are several free documents on R on CRAN: http://cran.r-project.org/other-

docs.html, including documents in multiple languages. After checking out Venables et al. (2008), 

you might want to look at these documents next. 

 

 

http://cran.r-project.org/other-docs.html
http://cran.r-project.org/other-docs.html
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Appendix 1. Solutions to exercises 

Section 1. Introduction to R 
#1. 

128*2 

256+12 

268/2 

134-128 

 

#2. A vector. A data frame. 

 

#3. 

 

#4. 

my.name<-"Sasha Hafner" 

my.name-10  

class(my.name)  

?class 

 

#5. 

??"generalized additive" 

Section 2. Vectors, matrices, and arrays 
# 1.  

x<-1:10 

log10(x) 

 

 

#2.  

x<-seq(0,2*pi,length.out=100)  

y<-sin(2*x - 0.5)  

min(y)  

max(y) 

 

#3.  

v1<-rnorm(10)  

v2<-rnorm(10)  

v3<-rnorm(10)  

v4<-rnorm(10)  

v5<-rnorm(10) 

s<-v1+v2+v3+v4+v5  

s  

mean(s) 

 

 

#4.  

matrix(1:25,nrow=5,byrow=T) 

 

#5. 

# This can be set up using matrix algebra:  

 

# C%*%X = R  
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# Set up a coefficient matrix: 

C<-matrix(c(27.2,32,-10.8,1,-1.48,0,409.1,0,13.5),nrow=3,byrow=T) 

 

# A response matrix 

R<-matrix(c(401.2,0,2.83),nrow=3) 

 

# Now solve for X  

X<-solve(C)%*%R 

X 

 

# or  

X<-solve(C,R) 

X 

 

# Check solution  

C%*%X 

Section 3. Data frames, data import, and data export 
# 1.  

read.table("Thakali_Ni_EC50s.txt",header=T) 

ni.dat<-read.table("Thakali_Ni_EC50s.txt",header=T)  

ni.dat 

ni.dat<-read.table("Thakali_Ni_EC50s.txt",header=T,sep="\t") 

wheat.dat<-read.table("Wheat.txt",header=T) 

wheat.dat<-read.table("Wheat.txt",header=T,sep="\t") 

 

# 2.  

names(ni.dat)  

min(ni.dat$ph.soil)  

max(ni.dat$ph.soil) 

ni.dat$l.ec50.ni<-log10(ni.dat$ec50.ni)  

ni.dat 

 

# 3.  

ni.m.dat<-

data.frame(ec50=mean(ni.dat$ec50.ni),ph=mean(ni.dat$ph.soil),oc=mean(n

i.dat$oc)) 

write.table(ni.m.dat,"Ni_EC50_means1.out") 

write.table(ni.m.dat,"Ni_EC50_means3.out",row.names=F,sep="\t") 

 

 

# 4. There are a few ways to produce a file that you can read into R: select, 

copy, and then paste the data into a text file (will produce a tab-delimited 

file); use the “Save as” option in Excel to save the data as a tab delimited 

text file (*.txt), as a comma-delimited file (*.csv), or as a space-delimited 

file (*.prn) (except for this last option, you would have to add quotes 

around the site names). 

 

# This doesn’t work because there are spaces in the site names: 

beetles.dat<-read.table("Carion_beetles.txt",header=TRUE) 

 

# This does: 
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beetles.dat<-read.table("Carion_beetles.txt",header=TRUE,sep="\t") 

 

# Or, if you used csv: 

beetles.dat<-read.table("Carion_beetles.csv",header=TRUE,sep=",") 

Section 4. Graphics, part I 
#1.  

x<-seq(-2*pi,2*pi,0.05)  

y<-cos(x)  

dat<-data.frame(x=x,y=y) 

plot(dat$x,dat$y,type="l")  

plot(dat$x,dat$y,type="l",lty=4,col="darkgray") 

plot(dat$x,dat$y,type="l",lty="52",col="darkgray") 

 

#2.  

ochem.dat<-read.table("Oxychem.txt",header=T)  

names(ochem.dat) 

 

plot(ochem.dat$dist,ochem.dat$dechlor,pch=21,bg="blue",xlab="Distance  

from OxyChem (km)",ylab="Conc. in tree bark (ng/kg)",main="Dechlorane Plus 

contamination") 

 

plot(ochem.dat$dist,ochem.dat$dechlor,pch=21,bg="blue",log="xy",xlab="Distanc

e from OxyChem (km)", ylab="Conc. in tree bark (ng/kg)",main="Dechlorane Plus 

contamination") 

 

plot(ochem.dat$dist,ochem.dat$dechlor,pch=2,col="red",log="xy",xlab="Distance 

from OxyChem (km)", ylab="Conc. in tree bark (ng/kg)",main="Dechlorane Plus 

contamination") 

 

# For a better log axis (a bit more advanced) 

source('Functions.R') # This is the file of functions that we provided 

plot(ochem.dat$dist,ochem.dat$dechlor,axes=FALSE,pch=2,col="red",log="xy", 

xlab="Distance from OxyChem (km)", ylab="Conc. in tree bark 

(ng/kg)",main="Dechlorane Plus contamination") 

logaxis(1,1,1000) 

logaxis(2,0.01,100) 

Section 5. Manipulating data, part I 
# 1. 

gdp.dat<-read.table("US_GDP.txt",header=T) 

gdp.dat[1:10,c("year","gdp.real")] 

gdp.dat[gdp.dat$year>1799 & gdp.dat$year<1900,"gdp.nom"] 

gdp1800s.dat<-subset(gdp.dat,year>=1800 & year<1900) 

 

# 2. 

match(max(gdp.dat$gdp.real),gdp.dat$gdp.real) 

gdp.dat[order(gdp.dat$gdp.real),] 

 

# 3. 

cvtort.dat<-read.table("Cacti_v_tort.txt",header=T)  

names(cvtort.dat) 

cvtort.2.dat<-subset(cvtort.dat,tortoises=="Yes") 
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Section 6. Manipulating data, part II 
#1. 

react.dat<-read.table("Reactors.txt",header=T) 

h2.dat<-read.table("Biohydrogen.txt",header=T) 

all.dat<-merge(react.dat,h2.dat) 

all.dat 

 

# 2. 

# There are two steps involved in conversion to a date-time object 

h2.dat$date.time<-as.POSIXct(paste(h2.dat$date,h2.dat$time),format='%m/%d/%Y 

%H:%M') 

 

# There are at least two ways to calculate the elapsed time 

h2.dat$time.e<-h2.dat$date.time - as.POSIXct('2006-09-18 11:12:00') 

h2.dat$time.e<-difftime(h2.dat$date.time,'2006-09-18 11:12:00',units='hours') 

 

# And, to get rid of the units label 

h2.dat$time.e<-as.numeric(h2.dat$time.e) 

 

# Here is an alternate approach using ave 

h2.dat$date.time<-as.numeric(h2.dat$date.time) 

h2.dat$time.e<-

ave(as.numeric(h2.dat$date.time),h2.dat$reactor,FUN=function(x) x-x[1]) 

 

# And another approach, which does essentially what ave does: 

h2.dat$time.e<-

unsplit(lapply(split(h2.dat$date.time,h2.dat$reactor),function(x) x-

x[1]),f=h2.dat$reactor) 

 

# 3.  

eagles.dat<-read.table("Eagles.txt",header=T)  

summary(eagles.dat) 

 

# Gives you the data you want, but not good for data frames  

by(eagles.dat$achlor,eagles.dat$site,mean)  

by(eagles.dat$achlor,eagles.dat$site,sd) 

by(eagles.dat$achlor,eagles.dat$site,length)  

  

# This will give you a data frame 

eagles.summ.dat<-data.frame(mean=tapply(eagles.dat$achlor, 

eagles.dat$site,mean),SD=tapply(eagles.dat$achlor,eagles.dat$site,sd),

n=tapply(eagles.dat$achlor,eagles.dat$site,length)) 

 

write.table(eagles.summ.dat,"Eagle_summary.out") 

 

# 4.  

now<-Sys.time()  

bd<-as.POSIXlt("1978-01-02 23:12")  

age<- now - bd  

age 

age<-difftime(now,bd,units="hours")  

age 
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Section 7. Exploratory data analysis 
# 1. 

install.packages("ISwR") 

library(ISwR)  

insects.dat<-InsectSprays  

summary(insects.dat) 

tapply(insects.dat$count,insects.dat$spray,summary)  

# or 

by(insects.dat$count,insects.dat$spray,summary)  

# or 

aggregate(insects.dat$count,list(spray=insects.dat$spray),summary) 

boxplot(count~spray,data=insects.dat,xlab="Spray",ylab="Count",las=1) 

 

# 2. 

cu.dat<-read.table("StreamCu.txt",header=T)  

cu.dat  

# Assume log-normal dist  

cu.ros<-ros(cu.dat$cu,cu.dat$nondetect)  

cu.ros  

plot(cu.ros)  

# If we want the geomean  

cu.est<-data.frame(cu.ros) 

cu.est$l.cu.mod<-log10(cu.est$modeled)  

cu.est  

mean(cu.est$l.cu.mod) 

sd(cu.est$l.cu.mod)  

10^mean(cu.est$l.cu.mod)  

# Another option for log statistics  

cu.ros<-ros(log10(cu.dat$cu),cu.dat$nondetect,forwardT=NULL) 

cu.ros 

                                    

# 3. 

summary(IgM)  

IgM  

qqnorm(IgM)  

qqline(IgM)  

# Try log-transformed 

qqnorm(log10(IgM))  

qqline(log10(IgM)) 

 

# 4.  

# Find range in ppoints  

range(ppoints(IgM)) 

plot(qnorm(ppoints(IgM)),sort(IgM),log="y",xaxt="n") 

axis(1,qnorm(c(0.001,0.01,0.1,0.1,0.5,0.9,0.99,0.999)),c(0.001,0.01,0.1,0.1,0

.5,0.9,0.99,0.999)) 

Section 8. One- and two-sample tests 
#1. 

?sleep  

summary(sleep)  

t.test(extra~group,data=sleep) 

 

#2. 

sleep.tt<-t.test(extra~group,data=sleep)  
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names(sleep.tt) 

attributes(sleep.tt) # Gives two rows 

sleep.tt.summ.dat<-

data.frame(tstat=sleep.tt$parameter,Pval=sleep.tt$p.value,CI=sleep.tt$conf.in

t) 

sleep.tt.summ.dat<-

data.frame(tstat=sleep.tt$parameter,Pval=sleep.tt$p.value,LCL=sleep.tt$conf.i

nt[1],UCL=sleep.tt$conf.int[2]) 

# A bit shorter 

sleep.tt.summ.dat<-

with(sleep.tt,data.frame(tstat=parameter,Pval=p.value,LCL=conf.int[1],UCL=con

f.int[2])) 

write.table(sleep.tt.summ.dat,"Sleep_ttest.out") 

Section 9. Classical linear models 
#1. 

mammalsleep 

summary(mammalsleep) 

# Note that there are some missing values. We can leave them in, and lm will  

# skip any observations that contain them, but let’s delete them from the  

# start 

# Let’s focus on the variables we are going to use 

s.dat<-na.omit(mammalsleep[,-(3:4)]) 

pairs(s.dat) 

cor(s.dat) 

# Danger indices are highly correlated, so I am going to pick one 

mod.1<-lm(sleep ~ body + brain + lifespan + gestation + predation,data=s.dat) 

summary(mod.1) 

summary(mod.2<-update(mod.1, ~. - body))   

summary(mod.3<-update(mod.2, ~. - lifespan))  

summary(mod.4<-update(mod.3, ~. - brain))  

plot(mod.4)  

# Elephants have a lot of leverage (rule-of-thumb is 2p/n). Try dropping. 

summary(mod.5<-update(mod.4,subset=body<2000))  

# Or, for clarity 

s.dat<-subset(s.dat,body<2000) 

mod.5<-lm(sleep ~ gestation + predation,data=s.dat) 

summary(mod.5) 

plot(mod.5) 

prplot(mod.5,1) 

prplot(mod.5,2) 

# Plot results 

preds<-predict(mod.5,int='c') 

preds<-preds[order(preds[,1]),] 

plot(predict(mod.5),s.dat$sleep) 

matlines(preds[,1],preds,lty=c(1,2,2),col=c('black','red','red')) 

preds2<-predict(mod.5,int='p') 

preds2<-preds2[order(preds2[,1]),] 

matlines(preds2[,1],preds2[,-1],lty=3,col='blue')) 

 

#2.  

install.packages('MASS') 

library(MASS) 

cab.dat<-cabbages 

summary(cab.dat) 

# To plot the data 
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interaction.plot(Date,Cult,HeadWt,data=cab.dat) 

# Or, something like this 

plot(HeadWt ~ as.numeric(Date),data=cab.dat,col=as.numeric(cab.dat$Cult), 

pch=as.numeric(cab.dat$Cult)) 

mod<-aov(HeadWt ~ (Cult + Date)^2, data = cab.dat) 

summary(mod) 

model.tables(mod,type="mean") 

plot(mod) 

 

#3. 

library(faraway) 

ff.dat<-fruitfly 

summary(ff.dat) 

plot(longevity ~ thorax, pch=as.numeric(ff.dat$activity),col=ff.dat$activity, 

data=ff.dat) 

legend('topleft',levels(ff.dat$activity),pch=1:5,col=1:5) 

mod1<-lm(longevity ~ (thorax + activity)^2, data = ff.dat) 

anova(mod1) 

mod2<-update(mod1, ~. - thorax:activity) 

anova(mod2) 

summary(mod2) 

plot(mod2) 

# Try with a log transformation to eliminate heteroscedasticity 

mod3<- lm(log10(longevity) ~ thorax + activity, data = ff.dat) 

anova(mod3) 

summary(mod3) 

plot(mod3) 

plot(longevity ~ thorax, pch=as.numeric(ff.dat$activity),col=ff.dat$activity, 

data=ff.dat) 

legend('topleft',levels(ff.dat$activity),pch=1:5,col=1:5) 

# Code for adding predictions is a bit more advanced (there are many  

# different ways to do this 

preds<-10^predict(mod3) 

for(i in 1:5) { 

   lines(ff.dat$thorax[as.numeric(ff.dat$activity)==i], 

   preds[as.numeric(ff.dat$activity)==i],col=i) 

} 

# An alternate approach 

preds<-10^predict(mod3,newdata=data.frame(thorax=rep(thorax<-

seq(0.6,0.95,length.out=20),5), 

activity=rep(levels(ff.dat$activity),each=20))) 

matlines(thorax,matrix(preds,nrow=20),col=1:5,lty=1) 

 

#4. 

cact.dat<-read.table("Cactus_width.txt",header=T)  

summary(cact.dat) 

cact.dat$hw.ratio<-cact.dat$height/cact.dat$width 

cact.dat$tortoise<-factor(cact.dat$tortoise) 

mod.1<-lm(hw.ratio~tortoise + understory,data=cact.dat)  

summary(mod.1) 

anova(mod.1)  

 

# Some plotting options  

coplot(hw.ratio ~ understory|tortoise, data = cact.dat) 

plot(cact.dat$understory,cact.dat$hw.ratio,type="n") 

points(cact.dat$understory[cact.dat$tortoise==1],cact.dat$hw.ratio[cact.dat$t

ortoise==1],col="red") 



218 

 

points(cact.dat$understory[cact.dat$tortoise==0],cact.dat$hw.ratio[cact.dat$t

ortoise==0],col="blue") 

Section 10. Nonparametric alternatives to t tests and ANOVA 
# 1. 

sleep.dat<-sleep  

split(sleep.dat,sleep.dat$group) 

by(sleep.dat$extra,sleep.dat$group,mean) 

boxplot(extra~group,data=sleep.dat) 

wilcox.test(extra~group,data=sleep.dat) 

Section 11. Groups, looping, and conditional execution 
#1. 

n<-1000000  

x<-1:n  

system.time( for (i in 1:n) { sqrt(x[i]) } ) 

system.time(sqrt(x)) 

 

#2. 

eagles.dat<-read.table("Eagles.txt",header=TRUE) 

# See what we have 

summary(eagles.dat) 

# Note that there are other ways to do this. . . 

eagles.lst<-split(eagles.dat,eagles.dat$site) 

for(i in levels(eagles.dat$site)) { 

   write.table(summary(eagles.lst[[i]]),paste(i,"out",sep=".")) 

} 

 

#3. 

x<-rnorm(100)  

a<-ifelse(x>0,"H","L") 

Section 12. Graphics II 
# 1.  

par(mfrow=c(1,2)) 

curve(sin,-10,10,col="red",las=1,xlab="x",ylab="Sine(x)") 

curve(cos,-10,10,col="blue",lty=2,las=1,xlab="x",ylab="Cosine(x)") 

 

# Now for both series on one plot 

# First method 

curve(sin,-10,10,col="red",las=1,xlab="x",ylab="Sine(x) or Cosine(x)") 

curve(cos,-10,10,col="blue",lty=2,las=1,add=TRUE) 

 

# Second method 

curve(sin,-10,10,col="red",las=1,xlab="x",ylab="Sine(x) or Cosine(x)") 

par(new=TRUE) 

curve(cos,-10,10,col="blue",lty=2,las=1,axes=F,xlab="",ylab="") 

 

# Third method 

x<-seq(-10,10,0.1) 

y<-sin(x) 

z<-cos(x) 

matplot(x,cbind(y,z),col=c("red","blue"),las=1,xlab="x",ylab="Sine(x) or 

Cosine(x)",lty=1:2,type="l") 
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# 2. 

ll.dat<-Loblolly 

ll.dat$height<-ll.dat$height*0.3048 

summary(ll.dat) 

plot(height~age,type="n",xlab="Age (yr)",ylab="Height 

(m)",las=1,xlim=c(0,25),data=ll.dat) 

points(ll.dat$age[ll.dat$Seed==307],ll.dat$height[ll.dat$Seed==329],pch=1,col

="red",type="o") 

points(ll.dat$age[ll.dat$Seed==311],ll.dat$height[ll.dat$Seed==307],pch=6,col

="blue",type="o") 

points(ll.dat$age[ll.dat$Seed==311],ll.dat$height[ll.dat$Seed==311],pch=22,co

l="black",type="o") 

legend("topleft",legend=c(311,307,329),pch=c(1,6,22),col=c("red","blue","blac

k")) 

 

# 3. 

# Code for plots 

for (i in names(wind.dat)[3:14]) { 

   hist(wind.dat[,i],xlim=c(0,50),ylim=c(0,0.25),freq=FALSE, 

   col="lightgray",xlab="Wind speed (m/s)",ylab="Density", 

   main=paste("Wind speed,",i),breaks=10) 

} 

 

# jpeg files first 

jpeg("Wind%02d.jpg",height=4,width=4,units="in",res=300)  

   for (i in names(wind.dat)[3:14]) { 

      hist(wind.dat[,i],xlim=c(0,50),ylim=c(0,0.25),freq=FALSE, 

      col="lightgray",xlab="Wind speed (m/s)",ylab="Density", 

      main=paste("Wind speed,",i),breaks=10) 

   } 

dev.off() 

 

pdf("Wind.pdf",height=11,width=8.5) 

   for (i in names(wind.dat)[3:14]) { 

      hist(wind.dat[,i],xlim=c(0,50),ylim=c(0,0.25),freq=FALSE, 

      col="lightgray",xlab="Wind speed (m/s)",ylab="Density", 

      main=paste("Wind speed,",i),breaks=10) 

   } 

dev.off() 

 

# 4. 

hard.dat<-read.table("Janka.txt",header=T)  

layout(matrix(c(1,1,2,3,3,4,3,3,4),ncol=3,byrow=T)) 

layout.show(4) 

 

hist(hard.dat$density,xlab="Wood Density",col="grey",main="Histogram of Wood 

Density")  

 

plot(1,type="n",xlab="",ylab="",axes=F) 

 

mtext(paste("Meanhardness\n=",signif(mean(hard.dat$hardness),3)), 

side=3,line=0,cex=0.8) 

 

mtext(paste("Mean density\n=",signif(mean(hard.dat$density),3)),side=3,line=-

3,cex=0.8) 
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plot(hard.dat$density,hard.dat$hardness,xlab="Wood density",pch=23, 

bg="green", ylab="Wood Hardness",las=1) 

 

abline(lm(hard.dat$hardness~hard.dat$density),lty=2,col="red") 

 

legend("topleft",c("data series","linear model"), pch=c(23,-1), 

pt.bg="green", lty=c(0,2), col=c("black","red"),bty="n") 

 

mean.hard<-mean(hard.dat$hardness) 

mean.dens<-mean(hard.dat$density) 

 

lines(c(20,mean.dens),c(mean.hard,mean.hard),lty=5) 

lines(c(mean.dens,mean.dens),c(240,mean.hard),lty=5) 

text(40,2200,"Mean Hardness",pos=3) 

arrows(40,2200,33,mean.hard,length=0.2,angle=20)  

boxplot(hard.dat$hardness,las=1,col="blue")  

 

dev.off() 

Section 13. Functions 
# 1. 

rmse<-function(obs,pred) { 

   sqrt(sum((pred-obs)^2)/length(obs)) 

} 

 

# Generate model predictions 

x<-1:100 

y<-2*x + rnorm(100,5) 

y.pred<-predict(lm(y ~ x)) 

rmse(y,y.pred) 

# Compare to 

sd(y) 

 

 

# 2.  

wdens<-function(T,units='C') { 

   if (sum(units==c('C','F','K'))==0) return(paste('Error, expect C, F, or 

                                                    K for units, got',units)) 

   if (units=='K') T<-T - 273.15 

   if (units=='F') T<-(T - 32)*5/9 

   if (max(T)>100 | min(T)<0) return('Temperature outside 0-100 C range') 

   0.9999 + 4.8916e-05*T - 7.4098E-06*T^2 + 3.9982E-08*T^3 - 1.2329E-10*T^4 

} 

 

# Test it 

wdens(0:30,'K') 

wdens(274:295,'K') 

 

 

# 3. 

ebars<-function(x,y,y.upper,y.lower,angle=90,length=0.02,...) { 

   arrows(x,y,x,y.upper,angle=angle,length=length,...) 

   arrows(x,y,x,y.lower,angle=angle,length=length,...) 

} 

 

# Test it, using InsectSprays 
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dat<-data.frame(mean=tapply(InsectSprays$count,list(InsectSprays$spray), 

mean),sd= tapply(InsectSprays$count,list(InsectSprays$spray),sd)) 

plot(dat$mean) 

ebars(1:6,dat$mean,dat$mean+dat$sd,dat$mean-dat$sd,col='red') 

# Or 

x<-barplot(dat$mean,ylim=c(0,25)) 

ebars(x,dat$mean,dat$mean+dat$sd,dat$mean-dat$sd,lwd=2,col='green') 

 

 

# 4. 

mmerge<-function(dframes,bys,...) { 

   m.dat<-dframes[[1]] 

   if (length(dframes)>2) { 

      for (i in 2:length(dframes)) { 

         m.dat<-merge(m.dat,dframes[[i]], 

                      by.x=bys[[i-1]],by.y=bys[[i]],...) 

      } 

   } 

   m.dat 

} 

 

# Test it 

react.dat<-read.table("Reactors.txt",header=T) 

h2.dat<-read.table("Biohydrogen.txt",header=T) 

junk.dat<-data.frame(bottle=levels(react.dat$reactor),nothing=1:15) 

junk.dat$nothing[5:8]<- -20 

 

test.dat<-mmerge(list(react.dat,h2.dat,junk.dat), 

list('reactor','reactor','bottle')) 

test.dat 

 

Section 14. Generalized linear models 

 
#1. 

tox.dat<-read.table("Cu_tox_test.txt",header=T) 

tox.dat$dead<-tox.dat$tot-tox.dat$alive 

tox.dat$prop.dead<-tox.dat$dead/tox.dat$tot 

tox.dat$l.cu<-log10(tox.dat$cu) 

mod.1<-glm(prop.dead~cu,binomial,weights=tot,data=tox.dat) 

mod.2<-glm(prop.dead~l.cu,binomial,weights=tot,data=tox.dat) 

mod.3<-glm(prop.dead~l.cu,binomial(link="probit"),weights=tot,data=tox.dat) 

summary(mod.1)  

summary(mod.2)  

summary(mod.3) 

# Make predictions 

tox.pred.dat<-data.frame(cu=x<-seq(0.001,60,1),l.cu=log10(x)) 

tox.pred.dat$pred.1<-predict(mod.1,newdata=tox.pred.dat,type="response") 

tox.pred.dat$pred.2<-predict(mod.2,newdata=tox.pred.dat,type="response") 

tox.pred.dat$pred.3<-predict(mod.3,newdata=tox.pred.dat,type="response") 

# And plot them 

plot(tox.dat$cu,tox.dat$prop.dead,pch=21,bg="green",xlab=expression("Cu 

concentration"~~(mu*g/L)),ylab="Proportion dead",las=1) 

lines(pred.1~cu, col="blue",data=tox.pred.dat) 

lines(pred.2~cu, col="red",data=tox.pred.dat) 
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lines(pred.3~cu, col="green",data=tox.pred.dat) 

legend("topleft",c("Logistic","Logisic 

(log)","Probit"),lty=1,col=c("blue","red","green"),bty="n") 

 

#2. 

squirrel.dat<-read.table("Squirrel_color.txt",header=T) 

summary(squirrel.dat)  

squirrel.dat$black<-factor(squirrel.dat$black) 

mod.1<-glm(black~dist2ctr,binomial,data=squirrel.dat)  

summary(mod.1) 

boxplot(squirrel.dat$dist2ctr~squirrel.dat$black) 

# Try to visualize data 

plot(squirrel.dat$dist2ctr,squirrel.dat$black) # Hard to see much 

plot(black~dist2ctr,data=squirrel.dat) # Useful but what is it? See 

?plot.factor  

spineplot(black~dist2ctr,data=squirrel.dat,breaks=100,col=c('gray70','gray25'

)) 

 

 

#3. 

esoph.dat<-esoph 

summary(esoph.dat) 

# Are alcohol and tobacco consumption groups ordered factors? They should be. 

is.ordered(esoph.dat$alcgp) 

is.ordered(esoph.dat$tobgp) 

is.ordered(esoph.dat$agegp) 

# All in one line of code 

mod.1<-glm(cbind(ncases,ncontrols) ~ agegp + alcgp + tobgp, data = esoph.dat, 

family=binomial) 

summary(mod.1) 

Section 15. Generalized additive models 
#1. 

library(mgcv)  

isolation.dat<-read.table("Isolation.txt",header=T) 

summary(isolation.dat) 

mod.1<-gam(incidence~s(area)+s(isolation),binomial,data=isolation.dat) 

summary(mod.1)  

plot(mod.1,resid=T,cex=3) 

# One way to view data 

plot(isolation.dat$area,isolation.dat$isolation,pch=isolation.dat$incidence,c

ol=isolation.dat$incidence+1) 

legend('topright',c('Absent','Present'),pch=0:1,col=1:2) 

 

#2. 

cars.dat<-mtcars  

summary(cars.dat) 

mod.1<-gam(mpg~s(disp)+s(hp)+s(wt),data=cars.dat)  

summary(mod.1) 

plot(mod.1,resid=T,cex=3) 

# One way to view these data 

coplot(mpg ~ disp | factor(cyl), data=cars.dat, rows=1) 

Section 16. Nonlinear regression 
#1. 
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dimethyl.dat<-read.table("Dimethyl-death.txt",header=T) 

summary(dimethyl.dat)  

plot(dimethyl.dat$t,log(dimethyl.dat$dmd.conc)) 

# Plot suggests a guess of around 4/100 = 0.04 per d for rate 

mod.1<-nls(dmd.conc~c0*exp(-d*t),start=list(c0=100,d=0.04),data=dimethyl.dat) 

summary(mod.1)  

coef(mod.1) 

pred.dat<-data.frame(t=1:110) 

pred.dat$conc.pred<-predict(mod.1,newdata=pred.dat) 

plot(dimethyl.dat$t,dimethyl.dat$dmd.conc,pch=24,bg="red",xlab="Time 

(days)",ylab="DMD concentration (g/L)",las=1) 

lines(pred.dat$t,pred.dat$conc.pred,col='red') 

# Model with background concentration 

mod.2<-nls(dmd.conc~c0*exp(-d*t) + bg,start=list(c0=100,d=0.04,bg=5), 

data=dimethyl.dat) 

summary(mod.2) 

pred.dat$conc.pred.2<-predict(mod.2,newdata=pred.dat) 

lines(pred.dat$t,pred.dat$conc.pred.2,col='blue') 

 

#2. 

summary(DNase) 

dnase.dat<-subset(DNase,Run==5)  

summary(dnase.dat) 

plot(dnase.dat$conc,dnase.dat$density) 

mod.1<-nls(density~SSlogis(conc,Asym,xmid,scal),data=dnase.dat) 

summary(mod.1) 

Section 18. Distributions and simulations 
# 1.  

n.i<-2   

n.years<-10 

# Generate 1000 estimates of r to work with 

r<-rnorm(1000,mean=0.3,sd=0.1) 

# Let’s go for 20 years 

pred.dat<-data.frame(year=year<-0:20) 

# Use outer to make calculations, and keep all estimates in a matrix 

pop<-outer(year,r,FUN=function(yr,r) n.i*exp(r*yr)) 

# Calculate 5% and 95% percentile (note that we have to transpose a matrix) 

pred.dat[,c('pop.lower','pop.med','pop.upper')]<-t(apply(pop,1,function(x) 

quantile(x,c(0.05,0.5,0.95)))) 

plot(pred.dat$year,pred.dat$pop.upper,xlab='Time 

(year)',ylab='Population',las=1,type='l',lty=2) 

lines(pred.dat$year,pred.dat$pop.med,lty=1) 

lines(pred.dat$year,pred.dat$pop.lower,lty=2) 

 

#2. 

# Recommended approach—no loops 

# calculate pi with one call to runif, and use a data frame 

n.samples<-10000  

x<-runif(n.samples,0,1)  

y<-runif(n.samples,0,1) 

hyp<-sqrt(x^2+y^2) 

pi.dat=data.frame(x=x,y=y,hyp=hyp) 

n.in<-sum(pi.dat$hyp<1) 

pi.est=4*n.in/n.samples 

pi.est 
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plot(pi.dat$x,pi.dat$y,col=ifelse(pi.dat$hyp<1,'red','blue'), 

xlab="x",ylab="y",pch=21,cex=0.5,asp=1) 

 

# Calculation using a loop, without figure  

n.sim<-10000  

n.in.circle<-0  

for (i in 1:n.sim) {  

   x<-runif(1,0,1) 

   y<-runif(1,0,1) 

   hyp<-sqrt(x^2+y^2) 

   if (hyp<=1) { n.in.circle<-n.in.circle+1 }  

}  

pi.est<-4*n.in.circle/n.sim 

pi.est 

 

# Calculated pi and draws a figure while working through the loop 

# Looks cool 

n.sim<-10000  

n.in.circle<-0 

plot(0,0,type="n",xlim=c(0,1),ylim=c(0,1),ylab="y",xlab="x",asp=1)  

for (i in 1:n.sim) {  

   x<-runif(1,0,1)  

   y<-runif(1,0,1) 

   hyp<-sqrt(x^2+y^2)  

   if (hyp<=1) {  

      n.in.circle<-n.in.circle+1  

      points(x,y,pch=21,col="red",bg="red",cex=0.5)  

   }  

   if (hyp>1) { 

      points(x,y,pch=21,col="blue",bg="blue",cex=0.5)  

   }  

} 

pi.est<-4*n.in.circle/n.sim 

pi.est 

legend("topleft",paste("estimate of pi=",pi.est),bty="n") 

 

#3. 

install.packages("deSolve") 

library(deSolve) 

 

pop.calc<-function(t,y,parms) { 

   dy.dt<-y*parms$r  

   return(list(dy.dt)) 

} 

 

t<-0:100  

out<-lsoda(1,t,func=pop.calc,parms=list(r=0.1))  

plot(t,out[,2],xlab='Time',ylab='Population') 

 

#4. 

# orb.calc calculates four derivatives: dx/dt, dz/dt, dv(x)/dt, and dv(y)/dt 

orb.calc<-function(t,y,parms) { 

   m.s<-parms$m.s 

   m.e<-parms$m.e 

   G<-parms$G 

 

   x<-y[1] 
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   z<-y[2] 

   v.x<-y[3] 

   v.z<-y[4] 

 

   # Calculate force (N) acting on Earth--Newton's law of gravitation 

   d<-sqrt(x^2 + z^2) 

   F.x<- -x/d*m.s*m.e*G/d^2 

   F.z<- -z/d*m.s*m.e*G/d^2 

 

   # Calculate acceleration (m/s2) based on Newton's second law of motion 

   a.x<-F.x/m.e 

   a.z<-F.z/m.e 

    

   # Summarize 

   dv.x.dt<-a.x # dv(x)/dt (m/s^2) 

   dv.z.dt<-a.z # dv(y)/dt (m/s^2) 

   dp.x.dt<-v.x # dx/dt (m/s) 

   dp.z.dt<-v.z # dy/dt (m/s) 

 

   # Collison with sun 

   if(d<=6.96E8) dv.x.dt<-dv.z.dt<-dp.x.dt<-dp.z.dt<-0 

 

   # Return output 

   return(list(c(dp.x.dt,dp.z.dt,dv.x.dt,dv.z.dt))) 

} 

 

# orb.mod solves ODEs 

orb.mod<-function(m.s=1.98892E30,m.e=5.9742E24,x0=0,z0=147098290000,v.x=-

30287,v.z=0,G=6.67428E-11,times=0:365*86400) { 

 

   out<-data.frame(lsoda(c(x=x0,z=z0,v.x=v.x,v.z=v.z),times,orb.calc,  

           parms=list(m.s=m.s,m.e=m.e,G=G))) 

   out$d<-sqrt(out$x^2 + out$z^2) 

   return(data.frame(out)) 

} 

 

# Now write function to call up and plot results intermittently 

orb.plot<-function(m.s=1.98892E30,m.e=5.9742E24,x0=0,z0=147098290000,  

          v.x=-30287,v.z=0,G=6.67428E-11,time=365,step=5,t.pause=0.2,   

          new.plot=T) { 

   steps<-ceiling(max(time)/step) 

   if(new.plot==T) { 

      plot(x0/1E9,z0/1E9,xlim=c(-160,160),ylim=c(-160,160),xlab='x  

                 location (million km)',ylab='y location (million  

                  km)',asp=1,las=1) 

      points(0,0,pch=21,cex=2,bg='yellow') 

   } 

   for (i in 0:steps) { 

      out<-orb.mod(m.s=m.s,m.e=m.e,x0=x0,z0=z0,v.x=v.x,v.z=v.z,G=G,  

                 times=86400*c(max(0,(i-1)*step),i*step)) 

      points(out$x[1]/1E9,out$z[1]/1E9,pch=21,col='white',bg='white') 

      text(out$x[1]/1E9,out$z[1]/1E9,as.character(ceiling(i*step)),  

                 col='gray',cex=0.5) 

      points(out$x[2]/1E9,out$z[2]/1E9,pch=21,col='blue',bg='blue') 

      x0=out$x[2] 

      z0=out$z[2] 

      v.x=out$v.x[2] 
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      v.z=out$v.z[2] 

      Sys.sleep(t.pause) 

   } 

} 

 

# Check it out 

orb.plot() 

orb.plot(v.x=-10000,new.plot=F) 

orb.plot(v.x=-3000,new.plot=F) 

orb.plot(v.x=-35000,time=700,new.plot=F,t.pause=0.1) 

orb.plot(v.x=-45000,time=1000,new.plot=F,t.pause=0.1) 

Appendix 2. list of data files and their sources 
We thank James Gibbs, Amy Roe, and Joe Besessi for sharing data for this workshop. Data from 

USGS were downloaded from the USGS Surface-Water Data site (http://waterdata.usgs.gov/ 

nwis/sw). Data from published papers were either copied from the paper itself or the online 

supporting information. Data labeled FAO are from the UN Food and Agriculture Organization 

(www.fao.org). Data from Kuhnert & Venables were downloaded from http://cran.r-

project.org/doc/contrib/Kuhnert+Venables-R_Course_Notes.zip. Data from books were either 

entered manually or downloaded from associated websites. For other sources, see the list of 

references. 

 

File     Source 

Oxychem.txt    Qui & Hites 2008 

River_flow.txt    USGS 

Cacti_v_tort.txt   James Gibbs 

Muddy_Crk.txt   USGS 

Thakali_Ni_EC50s.txt  Thakali et al. 2006 

Thakali_Cu_EC50s.txt  Thakali et al. 2006 

Eagles.txt    Amy Roe 

DO_methods_1.txt   Wilcock et al. 1981 

DO_methods_2.txt   Wilcock et al. 1981 

Janka.txt    Kuhnert & Venables  

Ozone.txt    Crawley 2008 

Wheat.txt    FAO 

Crabs.txt    Zar 1999 

Ogeechee_tox_summary.txt  Personal data 

Cu_tox_test.txt   Personal data 

Carion_beetles.xls   James Gibbs 

Stream_Cu.txt    Generated data 

Daphnids.txt    Personal data 

Cactus_width.txt   James Gibbs 

Squirrel_color.txt   James Gibbs 

Isolation.txt    Crawley 2008 

Dimethyl-death.txt   Generated data 

Biohydrogen.txt   Personal data 

US_GDP.txt    MeasuringWorth 2010 

Mammal_sleep.txt   Faraway 2005 

http://waterdata.usgs.gov/
http://www.fao.org/
http://cran.r-project.org/doc/contrib/Kuhnert+Venables-R_Course_Notes.zip.
http://cran.r-project.org/doc/contrib/Kuhnert+Venables-R_Course_Notes.zip.
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Disclaimer: 
The views expressed in this workbook do not necessarily represent the views of USDA or the 

United States. 
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