Training- versus Test-Set Performance

Low

Model Complexity

Prediction Error

More on prediction-error estimates

- Best solution: a large designated test set. Often not available
- Some methods make a *mathematical adjustment* to the training error rate in order to estimate the test error rate. These include the *Cp statistic*, *AIC* and *BIC*. They are discussed elsewhere in this course
- Here we instead consider a class of methods that estimate the test error by *holding out* a subset of the training observations from the fitting process, and then applying the statistical learning method to those held out observations

Validation-set approach

- Here we randomly divide the available set of samples into two parts: a *training set* and a *validation* or *hold-out set*.
- The model is fit on the training set, and the fitted model is used to predict the responses for the observations in the validation set.
- The resulting validation-set error provides an estimate of the test error. This is <u>typically assessed using MSE</u> in the case of a quantitative response <u>and misclassification rate</u> in the case of a qualitative (discrete) response.

Example: automobile data

- Want to compare linear vs higher-order polynomial terms in a linear regression
- We randomly split the 392 observations into two sets, a training set containing 196 of the data points, and a validation set containing the remaining 196 observations.

Left panel shows single split; right panel shows multiple splits

K-fold Cross-validation

- Widely used approach for estimating test error.
- Estimates can be used to select best model, and to give an idea of the test error of the final chosen model.
- Idea is to randomly divide the data into K equal-sized parts. We leave out part k, fit the model to the other K-1 parts (combined), and then obtain predictions for the left-out kth part.
- This is done in turn for each part k = 1, 2, ..., K, and then the results are combined.

K-fold Cross-validation in detail

Divide data into K roughly equal-sized parts (K = 5 here)

1	2	3	4	5
Validation	Train	Train	Train	Train

The details

- Let the K parts be $C_1, C_2, \ldots C_K$, where C_k denotes the indices of the observations in part k. There are n_k observations in part k: if N is a multiple of K, then $n_k = n/K$.
- Compute

$$CV_{(K)} = \sum_{k=1}^{K} \frac{n_k}{n} MSE_k$$

where $MSE_k = \sum_{i \in C_k} (y_i - \hat{y}_i)^2 / n_k$, and \hat{y}_i is the fit for observation *i*, obtained from the data with part *k* removed.

• Setting K = n yields *n*-fold or *leave-one out* cross-validation (LOOCV).

A nice special case!

• With least-squares linear or polynomial regression, an amazing shortcut makes the cost of LOOCV the same as that of a single model fit! The following formula holds:

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - h_i} \right)^2$$

where \hat{y}_i is the *i*th fitted value from the original least squares fit, and h_i is the leverage (diagonal of the "hat" matrix; see book for details.) This is like the ordinary MSE, except the *i*th residual is divided by $1 - h_i$.

- LOOCV sometimes useful, but typically doesn't *shake up* the data enough. The estimates from each fold are highly correlated and hence their average can have high variance.
- a better choice is K = 5 or 10.

Auto data revisited

True and estimated test MSE for the simulated data

Other issues with Cross-validation

- Since each training set is only (K-1)/K as big as the original training set, the estimates of prediction error will typically be biased upward. *Why*?
- This bias is minimized when K = n (LOOCV), but this estimate has high variance, as noted earlier.
- K = 5 or 10 provides a good compromise for this bias-variance tradeoff.

Cross-Validation for Classification Problems

- We divide the data into K roughly equal-sized parts $C_1, C_2, \ldots C_K$. C_k denotes the indices of the observations in part k. There are n_k observations in part k: if n is a multiple of K, then $n_k = n/K$.
- Compute

$$CV_K = \sum_{k=1}^{K} \frac{n_k}{n} Err_k$$

where $\operatorname{Err}_k = \sum_{i \in C_k} I(y_i \neq \hat{y}_i) / n_k.$

• The estimated standard deviation of CV_K is

$$\widehat{\operatorname{SE}}(\operatorname{CV}_K) = \sqrt{\sum_{k=1}^{K} (\operatorname{Err}_k - \overline{\operatorname{Err}_k})^2 / (K-1)}$$

• This is a useful estimate, but strictly speaking, not quite valid.

The Bootstrap

- The *bootstrap* is a flexible and powerful statistical tool that can be used to quantify the uncertainty associated with a given estimator or statistical learning method.
- For example, it can provide an estimate of the standard error of a coefficient, or a confidence interval for that coefficient.

A simple example

- Suppose that we wish to invest a fixed sum of money in two financial assets that yield returns of X and Y, respectively, where X and Y are random quantities.
- We will invest a fraction α of our money in X, and will invest the remaining 1α in Y.
- We wish to choose α to minimize the total risk, or variance, of our investment. In other words, we want to minimize $\operatorname{Var}(\alpha X + (1 \alpha)Y)$.
- One can show that the value that minimizes the risk is given by

$$\alpha = \frac{\sigma_Y^2 - \sigma_{XY}}{\sigma_X^2 + \sigma_Y^2 - 2\sigma_{XY}},$$

where $\sigma_X^2 = \operatorname{Var}(X), \sigma_Y^2 = \operatorname{Var}(Y)$, and $\sigma_{XY} = \operatorname{Cov}(X, Y)$.

- But the values of σ_X^2 , σ_Y^2 , and σ_{XY} are unknown.
- We can compute estimates for these quantities, $\hat{\sigma}_X^2$, $\hat{\sigma}_Y^2$, and $\hat{\sigma}_{XY}$, using a data set that contains measurements for X and Y.
- We can then estimate the value of α that minimizes the variance of our investment using

$$\hat{\alpha} = \frac{\hat{\sigma}_Y^2 - \hat{\sigma}_{XY}}{\hat{\sigma}_X^2 + \hat{\sigma}_Y^2 - 2\hat{\sigma}_{XY}}.$$

Each panel displays 100 simulated returns for investments X and Y. From left to right and top to bottom, the resulting estimates for α are 0.576, 0.532, 0.657, and 0.651.

- To estimate the standard deviation of $\hat{\alpha}$, we repeated the process of simulating 100 paired observations of X and Y, and estimating α 1,000 times.
- We thereby obtained 1,000 estimates for α , which we can call $\hat{\alpha}_1, \hat{\alpha}_2, \ldots, \hat{\alpha}_{1000}$.

• The mean over all 1,000 estimates for α is

$$\bar{\alpha} = \frac{1}{1000} \sum_{r=1}^{1000} \hat{\alpha}_r = 0.5996,$$

very close to $\alpha = 0.6$, and the standard deviation of the estimates is

$$\sqrt{\frac{1}{1000-1}\sum_{r=1}^{1000} (\hat{\alpha}_r - \bar{\alpha})^2} = 0.083.$$

- This gives us a very good idea of the accuracy of $\hat{\alpha}$: SE $(\hat{\alpha}) \approx 0.083$.
- So roughly speaking, for a random sample from the population, we would expect $\hat{\alpha}$ to differ from α by approximately 0.08, on average.

Now back to the real world

- the bootstrap approach allows us to use a computer to mimic the process of obtaining new data sets, so that we can estimate the variability of our estimate without generating additional samples.
- Rather than repeatedly obtaining independent data sets from the population, we instead obtain distinct data sets by repeatedly sampling observations from the original data set *with replacement*.

- Denoting the first bootstrap data set by Z^{*1} , we use Z^{*1} to produce a new bootstrap estimate for α , which we call $\hat{\alpha}^{*1}$
- This procedure is repeated *B* times for some large value of *B* (say 100 or 1000), in order to produce *B* different bootstrap data sets
- We estimate the standard error of these bootstrap estimates using the formula

$$\operatorname{SE}_B(\hat{\alpha}) = \sqrt{\frac{1}{B-1} \sum_{r=1}^{B} \left(\hat{\alpha}^{*r} - \bar{\hat{\alpha}}^*\right)^2}.$$

Results

Left: A histogram of the estimates of α obtained by generating 1,000 simulated data sets from the true population. Center: A histogram of the estimates of α obtained from 1,000 bootstrap samples from a single data set. Right: The estimates of α displayed in the left and center panels are shown as boxplots. In each panel, the pink line indicates the true value of α .

The bootstrap in general

- In more complex data situations, figuring out the appropriate way to generate bootstrap samples can require some thought.
- For example, if the data is a time series, we can't simply sample the observations with replacement (*why not*?).
- We can instead create blocks of consecutive observations, and sample those with replacements. Then we paste together sampled blocks to obtain a bootstrap dataset.

Other uses of the bootstrap

- Primarily used to obtain standard errors of an estimate.
- Also provides approximate confidence intervals for a population parameter. For example, looking at the histogram in the middle panel of the Figure on slide 29, the 5% and 95% quantiles of the 1000 values is (.43, .72).
- This represents an approximate 90% confidence interval for the true α. How do we interpret this confidence interval?
- The above interval is called a *Bootstrap Percentile* confidence interval. It is the simplest method (among many approaches) for obtaining a confidence interval from the bootstrap.