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More on prediction-error estimates

• Best solution: a large designated test set. Often not
available

• Some methods make a mathematical adjustment to the
training error rate in order to estimate the test error rate.
These include the Cp statistic, AIC and BIC. They are
discussed elsewhere in this course

• Here we instead consider a class of methods that estimate
the test error by holding out a subset of the training
observations from the fitting process, and then applying the
statistical learning method to those held out observations
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Validation-set approach

• Here we randomly divide the available set of samples into
two parts: a training set and a validation or hold-out set.

• The model is fit on the training set, and the fitted model is
used to predict the responses for the observations in the
validation set.

• The resulting validation-set error provides an estimate of
the test error. This is typically assessed using MSE in the
case of a quantitative response and misclassification rate in
the case of a qualitative (discrete) response.
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Example: automobile data

• Want to compare linear vs higher-order polynomial terms
in a linear regression

• We randomly split the 392 observations into two sets, a
training set containing 196 of the data points, and a
validation set containing the remaining 196 observations.
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K-fold Cross-validation

• Widely used approach for estimating test error.

• Estimates can be used to select best model, and to give an
idea of the test error of the final chosen model.

• Idea is to randomly divide the data into K equal-sized
parts. We leave out part k, fit the model to the other
K − 1 parts (combined), and then obtain predictions for
the left-out kth part.

• This is done in turn for each part k = 1, 2, . . .K, and then
the results are combined.
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K-fold Cross-validation in detail

Divide data into K roughly equal-sized parts (K = 5 here)
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The details

• Let the K parts be C1, C2, . . . CK , where Ck denotes the
indices of the observations in part k. There are nk
observations in part k: if N is a multiple of K, then
nk = n/K.

• Compute

CV(K) =

K∑
k=1

nk
n

MSEk

where MSEk =
∑

i∈Ck
(yi − ŷi)2/nk, and ŷi is the fit for

observation i, obtained from the data with part k removed.

• Setting K = n yields n-fold or leave-one out
cross-validation (LOOCV).
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A nice special case!

• With least-squares linear or polynomial regression, an
amazing shortcut makes the cost of LOOCV the same as
that of a single model fit! The following formula holds:

CV(n) =
1

n

n∑
i=1

(
yi − ŷi
1− hi

)2

,

where ŷi is the ith fitted value from the original least
squares fit, and hi is the leverage (diagonal of the “hat”
matrix; see book for details.) This is like the ordinary
MSE, except the ith residual is divided by 1− hi.

• LOOCV sometimes useful, but typically doesn’t shake up
the data enough. The estimates from each fold are highly
correlated and hence their average can have high variance.

• a better choice is K = 5 or 10.
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Auto data revisited
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True and estimated test MSE for the simulated data
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Other issues with Cross-validation

• Since each training set is only (K − 1)/K as big as the
original training set, the estimates of prediction error will
typically be biased upward. Why?

• This bias is minimized when K = n (LOOCV), but this
estimate has high variance, as noted earlier.

• K = 5 or 10 provides a good compromise for this
bias-variance tradeoff.
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Cross-Validation for Classification Problems

• We divide the data into K roughly equal-sized parts
C1, C2, . . . CK . Ck denotes the indices of the observations
in part k. There are nk observations in part k: if n is a
multiple of K, then nk = n/K.

• Compute

CVK =

K∑
k=1

nk
n

Errk

where Errk =
∑

i∈Ck
I(yi 6= ŷi)/nk.

• The estimated standard deviation of CVK is

ŜE(CVK) =

√√√√ K∑
k=1

(Errk − Errk)2/(K − 1)

• This is a useful estimate, but strictly speaking, not quite
valid.

Why not?
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The Bootstrap

• The bootstrap is a flexible and powerful statistical tool that
can be used to quantify the uncertainty associated with a
given estimator or statistical learning method.

• For example, it can provide an estimate of the standard
error of a coefficient, or a confidence interval for that
coefficient.

22 / 44



A simple example

• Suppose that we wish to invest a fixed sum of money in
two financial assets that yield returns of X and Y ,
respectively, where X and Y are random quantities.

• We will invest a fraction α of our money in X, and will
invest the remaining 1− α in Y .

• We wish to choose α to minimize the total risk, or
variance, of our investment. In other words, we want to
minimize Var(αX + (1− α)Y ).

• One can show that the value that minimizes the risk is
given by

α =
σ2Y − σXY

σ2X + σ2Y − 2σXY
,

where σ2X = Var(X), σ2Y = Var(Y ), and σXY = Cov(X,Y ).
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Example continued

• But the values of σ2X , σ2Y , and σXY are unknown.

• We can compute estimates for these quantities, σ̂2X , σ̂2Y ,
and σ̂XY , using a data set that contains measurements for
X and Y .

• We can then estimate the value of α that minimizes the
variance of our investment using

α̂ =
σ̂2Y − σ̂XY

σ̂2X + σ̂2Y − 2σ̂XY
.
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Example continued
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Each panel displays 100 simulated returns for investments X
and Y . From left to right and top to bottom, the resulting
estimates for α are 0.576, 0.532, 0.657, and 0.651.
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Example continued

• To estimate the standard deviation of α̂, we repeated the
process of simulating 100 paired observations of X and Y ,
and estimating α 1,000 times.

• We thereby obtained 1,000 estimates for α, which we can
call α̂1, α̂2, . . . , α̂1000.

• The left-hand panel of the Figure on slide 29 displays a
histogram of the resulting estimates.

• For these simulations the parameters were set to
σ2X = 1, σ2Y = 1.25, and σXY = 0.5, and so we know that
the true value of α is 0.6 (indicated by the red line).
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Example continued

• The mean over all 1,000 estimates for α is

ᾱ =
1

1000

1000∑
r=1

α̂r = 0.5996,

very close to α = 0.6, and the standard deviation of the
estimates is √√√√ 1

1000− 1

1000∑
r=1

(α̂r − ᾱ)2 = 0.083.

• This gives us a very good idea of the accuracy of α̂:
SE(α̂) ≈ 0.083.

• So roughly speaking, for a random sample from the
population, we would expect α̂ to differ from α by
approximately 0.08, on average.
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Now back to the real world

• The procedure outlined above cannot be applied, because
for real data we cannot generate new samples from the
original population.

• However, the bootstrap approach allows us to use a
computer to mimic the process of obtaining new data sets,
so that we can estimate the variability of our estimate
without generating additional samples.

• Rather than repeatedly obtaining independent data sets
from the population, we instead obtain distinct data sets
by repeatedly sampling observations from the original data
set with replacement.

• Each of these “bootstrap data sets” is created by sampling
with replacement, and is the same size as our original
dataset. As a result some observations may appear more
than once in a given bootstrap data set and some not at all.
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• Denoting the first bootstrap data set by Z∗1, we use Z∗1 to
produce a new bootstrap estimate for α, which we call α̂∗1

• This procedure is repeated B times for some large value of
B (say 100 or 1000), in order to produce B different
bootstrap data sets, Z∗1, Z∗2, . . . , Z∗B, and B
corresponding α estimates, α̂∗1, α̂∗2, . . . , α̂∗B.

• We estimate the standard error of these bootstrap
estimates using the formula

SEB(α̂) =

√√√√ 1

B − 1

B∑
r=1

(
α̂∗r − ¯̂α∗

)2
.

• This serves as an estimate of the standard error of α̂
estimated from the original data set. See center and right
panels of Figure on slide 29. Bootstrap results are in blue.
For this example SEB(α̂) = 0.087.
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Results
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Left: A histogram of the estimates of α obtained by generating
1,000 simulated data sets from the true population. Center: A
histogram of the estimates of α obtained from 1,000 bootstrap
samples from a single data set. Right: The estimates of α
displayed in the left and center panels are shown as boxplots. In
each panel, the pink line indicates the true value of α.
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The bootstrap in general

• In more complex data situations, figuring out the
appropriate way to generate bootstrap samples can require
some thought.

• For example, if the data is a time series, we can’t simply
sample the observations with replacement (why not?).

• We can instead create blocks of consecutive observations,
and sample those with replacements. Then we paste
together sampled blocks to obtain a bootstrap dataset.
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Other uses of the bootstrap

• Primarily used to obtain standard errors of an estimate.

• Also provides approximate confidence intervals for a
population parameter. For example, looking at the
histogram in the middle panel of the Figure on slide 29, the
5% and 95% quantiles of the 1000 values is (.43, .72).

• This represents an approximate 90% confidence interval for
the true α. How do we interpret this confidence interval?

• The above interval is called a Bootstrap Percentile
confidence interval. It is the simplest method (among many
approaches) for obtaining a confidence interval from the
bootstrap.
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