Binomial Probability Model: n independent trials with 2 outcomes (S / F) and $p=\mathrm{P}(S)$
$\mathrm{Y}=$ \# of successes in n trials
$\mathrm{Y} \sim \operatorname{Binomial}(3, p)=\#$ of affected individuals in a sample of size $n=3$

	\boldsymbol{y}			
\boldsymbol{p}	0	1	2	3
	sum			
	0.2	0.512	0.348	0.096
0.6	0.064	0.288	0.432	0.216
	1.0			

Bernoulli Trials: a series of independent trials with 2 outcomes (S / F) and $p=\mathrm{P}(S)$ is constant Y~Bernoulli $(p) \leftrightarrow \rightarrow$ Binomial $(1, p)$

y	$\mathrm{P}(Y=y)$		
1	p	$f(y)=p^{y}(1-p)^{1-y}$	$y=0,1$
0	$(1-p)$	$L(p)=p^{y}(1-p)^{l-y}$	$0 \leq p \leq 1$

a function of y for a fixed p a function of p for a fixed y

Disease Odds Ratio (DOR)

$$
\begin{aligned}
= & \frac{O(D \mid E)}{O(D \mid \bar{E})}=\frac{\frac{P(D \mid E)}{[1-P(D \mid E)]}}{\frac{P(D \mid \bar{E})}{[1-P(D \mid \bar{E})]}} \\
=\frac{15}{100} / \frac{85}{100} & \frac{15}{100} / \frac{90}{100}
\end{aligned}
$$

Exposure Odds Ratio (EOR)

$E O R=\frac{O(E \mid D)}{O(E \mid \bar{D})}=\frac{\frac{P(E \mid D)}{[1-P(E \mid D)]}}{\frac{P(E \mid \bar{D})}{[1-P(E \mid \bar{D})]}}$

When the probability of the disease is small, the Odds Ratio (OR) gives a good approximation to the Relative Risk (RR).

Sampling Distribution for $\ln (O R)$

- $\ln (\hat{O} R)=\ln \left(\frac{a \cdot d}{b \cdot c}\right)$
- Approximately normal with ...

$$
S E=\sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}
$$

y	$\mathrm{P}(Y=y)$		
1	p	$f(y)=p^{y}(1-p)^{l-y}$	$y=0,1$
0	$(1-p)$	$L(p)=p^{y}(1-p)^{l-y}$	$0 \leq p \leq 1$

a function of y for a fixed p a function of p for a fixed y
$\underline{\text { Likelihood function for a sample of } n \text { Bernoulli trials }}$

$$
\begin{aligned}
L(p) & =\prod_{i=1}^{n} p^{y_{i}}(1-p)^{1-y_{i}} \\
& =\exp \left[(\ln p)^{\sum^{y_{i}}}+(\ln (1-p))^{\sum\left(1-y_{i}\right)}\right] \\
& =\exp \left[\sum_{i=1}^{n}\left\{y_{i} \ln \left(\frac{p}{1-p}\right)+\ln (1-p)\right\}\right]
\end{aligned}
$$

1-parameter (no-intercept) Model

Reparametrize the Likelihood function using:

$$
\begin{array}{r}
\ln \left(\frac{p}{1-p}\right)=\beta x_{i} \rightarrow \quad(1-p)=\frac{1}{1+\exp \left(\beta x_{i}\right)} \\
L(\beta)=\exp \left[\sum_{i=1}^{n}\left\{y_{i}\left(\beta x_{i}\right)+\ln \left(\frac{1}{1+\exp \left(\beta x_{i}\right)}\right)\right\}\right]
\end{array}
$$

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Newton's Method

1-parameter (no-intercept) Model

Likelihood: $\quad L(\beta)=\exp \left[\sum_{i=1}^{n}\left\{y_{i}\left(\beta x_{i}\right)+\ln \left(\frac{1}{1+\exp \left(\beta x_{i}\right)}\right)\right\}\right]$
Log Likelihood: $\quad l(\beta)=\sum_{i=1}^{n}\left[y_{i} \beta x_{i}-\ln \left(1+\exp \left(\beta x_{i}\right)\right)\right]$

$$
\frac{\mathrm{d} l}{\mathrm{~d} \beta}=0 \rightarrow \text { Solve for the MLE of } \beta
$$

Let $f(\beta)=\frac{\mathrm{d} l}{\mathrm{~d} \beta}=\sum_{i=1}^{n}\left[y_{i} x_{i}-\frac{x_{i} \exp \left(\beta_{n} x_{i}\right)}{1+\exp \left(\beta_{n} x_{i}\right)}\right]$

$$
\hat{\beta}_{n+1}=\hat{\beta}_{n}-\frac{f\left(\hat{\beta}_{n}\right)}{f^{\prime}\left(\hat{\beta}_{n}\right)}
$$

- In R, you will see these iterations indicated as Fisher Scoring iterations.
- Rather than Sums of Squares, you will see Deviance values for models.
- Rather than residuals (observed - predicted), you will see Deviance Residuals

