Matrices to Simplify Regression Notation

$$
\text { SLR: } \quad Y_{2}=\beta_{0}+\beta_{1} x_{2}+\varepsilon_{2}
$$

$$
\left.\begin{array}{rlr}
Y_{1}=\beta_{0}+\beta_{1} x_{1}+\varepsilon_{1} \\
Y_{2}=\beta_{0}+\beta_{1} x_{2}+\varepsilon_{2} \\
\vdots & \vdots \\
Y_{n}=\beta_{0}+\beta_{1} x_{n}+\varepsilon_{n} & \left(\underset{\sim}{Y_{2}}\right. \\
\vdots \\
Y_{n}
\end{array}\right)=\left(\begin{array}{cc}
1 & X_{1} \\
1 & X_{2} \\
1 & \vdots \\
1 & X_{n}
\end{array}\right)\binom{\beta_{0}}{\beta_{1}}+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{n}
\end{array}\right)
$$

- Least Squares Estimates: $\underset{\sim}{\hat{\beta}}=\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)^{\prime}$ chosen to minimize SSE
- $\underset{\sim}{Y}=\underset{\sim}{X} \underset{\sim}{\beta}+\underset{\sim}{\varepsilon} \rightarrow \underset{\sim}{\varepsilon}=\underset{\sim}{Y}-\underset{\sim}{\hat{Y}}=\underset{\sim}{Y}-\underset{\sim}{X} \underset{\sim}{\beta} \rightarrow{\underset{\sim}{\varepsilon}}^{\prime} \underset{\sim}{\mathcal{B}}=\varepsilon_{1}^{2}+\varepsilon_{2}{ }^{2}+\cdots \varepsilon_{n}{ }^{2}=S S E$
- $\underset{\sim}{\hat{\beta}}=\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)^{\prime}=\left(\underset{\sim}{X}{ }^{\prime} \underset{\sim}{X}\right)^{-1}{\underset{\sim}{X}}^{\prime} \underset{\sim}{Y}$
- Geometry of LEEs:

$$
\text { Let } \underset{\sim}{x} \underset{3 \times 2}{ }=\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22} \\
x_{31} & x_{32}
\end{array}\right] \text { and } \underset{\sim}{y}=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]
$$

Properties of Residuals

1. $\sum e_{i}=0$
2. Same scale as the Y_{i} observations
3. $\frac{\sum e_{i}^{2}}{n-(p+1)}=M S E=s^{2}=\hat{\sigma}^{2}$
4. normalized residuals are scale independent
$\frac{\text { Normalized Residuals }}{r_{i}=\frac{e_{i}-0}{s \sqrt{1-h_{i i}}}} \frac{\text { Text }}{\text { "Standardized" }} \quad \frac{R}{r \text { standard () }} \quad \frac{\text { AKA. }}{\text { internally studentized }}$
$r_{(-i)}=\frac{e_{i}-0}{s_{(-i)} \sqrt{1-h_{i i}}}$ "jackknife" \quad rstudent ()\quad externally studentized

- $S_{(-i)}$ is the MSE computed if we leave ont the th observation

Testing for outliers (in the 4-direction)

- $r_{(-i)}$ is better modeled by a T-distribution than r_{i}
- $H_{0}: r_{(-i)}$ is not from an outlier

Cook's Distance

- Measures the average standardized distance between $\hat{\beta}_{\mathcal{B}}$ and $\hat{\beta}_{\sim}(-i)$
- Measures influence in both the X and Y direction

$$
D_{i}=\left(\frac{r_{i}^{2}}{p+1}\right)\left(\frac{h_{i i}}{1-h_{i i}}\right)
$$

- If the model is correct then $D_{i} \sim F_{p, n-(p+1)}$

Transformations and Tukey's "Rule of the Bulge"

- Observe which way the curve bulges as suggested by a scatterplot of the data
- Transform \boldsymbol{y} or \boldsymbol{x} (or both) according to the signs of the corresponding quadrant:
up $\quad \rightarrow$ powers >1
down \rightarrow powers <1 (including logarithm)

