## Statistical Learning versus Machine Learning

- Machine learning arose as a subfield of Artificial Intelligence.
- Statistical learning arose as a subfield of Statistics.
- There is much overlap - both fields focus on supervised and unsupervised problems:
- Machine learning has a greater emphasis on large scale applications and prediction accuracy.
- Statistical learning emphasizes models and their interpretability, and precision and uncertainty.
- But the distinction has become more and more blurred, and there is a great deal of "cross-fertilization".


## The Supervised Learning Problem

Starting point:

- Outcome measurement $Y$ (also called dependent variable, response, target).
- Vector of $p$ predictor measurements $X$ (also called inputs, regressors, covariates, features, independent variables).
- In the regression problem, $Y$ is quantitative (e.g price, blood pressure).
- In the classification problem, $Y$ takes values in a finite, unordered set (survived/died, digit 0-9, cancer class of tissue sample).
- We have training data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$. These are observations (examples, instances) of these measurements.


## Objectives

On the basis of the training data we would like to:

- Accurately predict unseen test cases.
- Understand which inputs affect the outcome, and how.
- Assess the quality of our predictions and inferences.


## Unsupervised learning

- No outcome variable, just a set of predictors (features) measured on a set of samples.
- objective is more fuzzy - find groups of samples that behave similarly, find features that behave similarly, find linear combinations of features with the most variation.
- difficult to know how well your are doing.
- different from supervised learning, but can be useful as a pre-processing step for supervised learning.


## What is Statistical Learning?





Shown are Sales vs TV, Radio and Newspaper, with a blue linear-regression line fit separately to each.
Can we predict Sales using these three?
Perhaps we can do better using a model

$$
\text { Sales } \approx f(T V, \text { Radio, Newspaper })
$$

## Notation

Here Sales is a response or target that we wish to predict. We generically refer to the response as $Y$.
TV is a feature, or input, or predictor; we name it $X_{1}$.
Likewise name Radio as $X_{2}$, and so on.
We can refer to the input vector collectively as

$$
X=\left(\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right)
$$

Now we write our model as

$$
Y=f(X)+\epsilon
$$

where $\epsilon$ captures measurement errors and other discrepancies.

## What is $f(X)$ good for?

- With a good $f$ we can make predictions of $Y$ at new points $X=x$.
- We can understand which components of $X=\left(X_{1}, X_{2}, \ldots, X_{p}\right)$ are important in explaining $Y$, and which are irrelevant. e.g. Seniority and Years of Education have a big impact on Income, but Marital Status typically does not.
- Depending on the complexity of $f$, we may be able to understand how each component $X_{j}$ of $X$ affects $Y$.


Is there an ideal $f(X)$ ? In particular, what is a good value for $f(X)$ at any selected value of $X$, say $X=4$ ? There can be many $Y$ values at $X=4$. A good value is

$$
f(4)=E(Y \mid X=4)
$$

$E(Y \mid X=4)$ means expected value (average) of $Y$ given $X=4$. This ideal $f(x)=E(Y \mid X=x)$ is called the regression function.

## The regression function $f(x)$

- Is also defined for vector $X$; e.g. $f(x)=f\left(x_{1}, x_{2}, x_{3}\right)=E\left(Y \mid X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}\right)$
- Is the ideal or optimal predictor of $Y$ with regard to mean-squared prediction error: $f(x)=E(Y \mid X=x)$ is the function that minimizes $E\left[(Y-g(X))^{2} \mid X=x\right]$ over all functions $g$ at all points $X=x$.
- $\epsilon=Y-f(x)$ is the irreducible error - i.e. even if we knew $f(x)$, we would still make errors in prediction, since at each $X=x$ there is typically a distribution of possible $Y$ values.
- For any estimate $\hat{f}(x)$ of $f(x)$, we have

$$
E\left[(Y-\hat{f}(X))^{2} \mid X=x\right]=\underbrace{[f(x)-\hat{f}(x)]^{2}}_{\text {Reducible }}+\underbrace{\operatorname{Var}(\epsilon)}_{\text {Irreducible }}
$$

## How to estimate $f$

- Typically we have few if any data points with $X=4$ exactly.
- So we cannot compute $E(Y \mid X=x)$ !
- Relax the definition and let

$$
\hat{f}(x)=\operatorname{Ave}(Y \mid X \in \mathcal{N}(x))
$$

where $\mathcal{N}(x)$ is some neighborhood of $x$.


- Nearest neighbor averaging can be pretty good for small $p$ - i.e. $p \leq 4$ and large-ish $N$.
- We will discuss smoother versions, such as kernel and spline smoothing later in the course.
- Nearest neighbor methods can be lousy when $p$ is large. Reason: the curse of dimensionality. Nearest neighbors tend to be far away in high dimensions.
- We need to get a reasonable fraction of the $N$ values of $y_{i}$ to average to bring the variance down-e.g. $10 \%$.
- A $10 \%$ neighborhood in high dimensions need no longer be local, so we lose the spirit of estimating $E(Y \mid X=x)$ by local averaging.


## The curse of dimensionality

10\% Neighborhood



## Parametric and structured models

The linear model is an important example of a parametric model:

$$
f_{L}(X)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\ldots \beta_{p} X_{p}
$$

- A linear model is specified in terms of $p+1$ parameters $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$.
- We estimate the parameters by fitting the model to training data.
- Although it is almost never correct, a linear model often serves as a good and interpretable approximation to the unknown true function $f(X)$.

A linear model $\hat{f}_{L}(X)=\hat{\beta}_{0}+\hat{\beta}_{1} X$ gives a reasonable fit here


A quadratic model $\hat{f}_{Q}(X)=\hat{\beta}_{0}+\hat{\beta}_{1} X+\hat{\beta}_{2} X^{2}$ fits slightly better.



Simulated example. Red points are simulated values for income from the model

$$
\text { income }=f \text { (education, seniority) }+\epsilon
$$

$f$ is the blue surface.


Linear regression model fit to the simulated data.
$\hat{f}_{L}$ (education, seniority) $=\hat{\beta}_{0}+\hat{\beta}_{1} \times$ education $+\hat{\beta}_{2} \times$ seniority


More flexible regression model $\hat{f}_{S}$ (education, seniority) fit to the simulated data. Here we use a technique called a thin-plate spline to fit a flexible surface. We control the roughness of the fit (chapter 7).


Even more flexible spline regression model $\hat{f}_{S}$ (education, seniority) fit to the simulated data. Here the fitted model makes no errors on the training data! Also known as overfitting.

## Some trade-offs

- Prediction accuracy versus interpretability. - Linear models are easy to interpret; thin-plate splines are not.
- Good fit versus over-fit or under-fit. - How do we know when the fit is just right?
- Parsimony versus black-box.
- We often prefer a simpler model involving fewer variables over a black-box predictor involving them all.



## Assessing Model Accuracy

Suppose we fit a model $\hat{f}(x)$ to some training data $\operatorname{Tr}=\left\{x_{i}, y_{i}\right\}_{1}^{N}$, and we wish to see how well it performs.

- We could compute the average squared prediction error over Tr :

$$
\mathrm{MSE}_{\operatorname{Tr}}=\mathrm{Ave}_{i \in \operatorname{Tr}}\left[y_{i}-\hat{f}\left(x_{i}\right)\right]^{2}
$$

This may be biased toward more overfit models.

- Instead we should, if possible, compute it using fresh test data $\mathrm{Te}=\left\{x_{i}, y_{i}\right\}_{1}^{M}$ :

$$
\mathrm{MSE}_{\mathrm{Te}}=\mathrm{Ave}_{i \in \mathrm{Te}}\left[y_{i}-\hat{f}\left(x_{i}\right)\right]^{2}
$$




Black curve is truth. Red curve on right is $\mathrm{MSE}_{\mathrm{Te}}$, grey curve is $\mathrm{MSE}_{\mathrm{Tr}}$. Orange, blue and green curves/squares correspond to fits of different flexibility.

## Bias-Variance Trade-off

Suppose we have fit a model $\hat{f}(x)$ to some training data $\operatorname{Tr}$, and let $\left(x_{0}, y_{0}\right)$ be a test observation drawn from the population. If the true model is $Y=f(X)+\epsilon($ with $f(x)=E(Y \mid X=x))$, then

$$
E\left(y_{0}-\hat{f}\left(x_{0}\right)\right)^{2}=\operatorname{Var}\left(\hat{f}\left(x_{0}\right)\right)+\left[\operatorname{Bias}\left(\hat{f}\left(x_{0}\right)\right)\right]^{2}+\operatorname{Var}(\epsilon)
$$

The expectation averages over the variability of $y_{0}$ as well as the variability in $\operatorname{Tr}$. Note that $\left.\operatorname{Bias}\left(\hat{f}\left(x_{0}\right)\right)\right]=E\left[\hat{f}\left(x_{0}\right)\right]-f\left(x_{0}\right)$.
Typically as the flexibility of $\hat{f}$ increases, its variance increases, and its bias decreases. So choosing the flexibility based on average test error amounts to a bias-variance trade-off.

## Classification Problems

Here the response variable $Y$ is qualitative - e.g. email is one of $\mathcal{C}=($ spam, ham $)($ ham $=$ good email $)$, digit class is one of $\mathcal{C}=\{0,1, \ldots, 9\}$. Our goals are to:

- Build a classifier $C(X)$ that assigns a class label from $\mathcal{C}$ to a future unlabeled observation $X$.
- Assess the uncertainty in each classification
- Understand the roles of the different predictors among $X=\left(X_{1}, X_{2}, \ldots, X_{p}\right)$.


Is there an ideal $C(X)$ ? Suppose the $K$ elements in $\mathcal{C}$ are numbered $1,2, \ldots, K$. Let

$$
p_{k}(x)=\operatorname{Pr}(Y=k \mid X=x), k=1,2, \ldots, K
$$

These are the conditional class probabilities at $x$; e.g. see little barplot at $x=5$. Then the Bayes optimal classifier at $x$ is

$$
C(x)=j \text { if } p_{j}(x)=\max \left\{p_{1}(x), p_{2}(x), \ldots, p_{K}(x)\right\}
$$

## Classification: some details

- Typically we measure the performance of $\hat{C}(x)$ using the misclassification error rate:

$$
\operatorname{Err}_{\mathrm{Te}}=\operatorname{Ave}_{i \in \mathrm{Te}} I\left[y_{i} \neq \hat{C}\left(x_{i}\right)\right]
$$

- The Bayes classifier (using the true $\left.p_{k}(x)\right)$ has smallest error (in the population).
- Support-vector machines build structured models for $C(x)$.
- We will also build structured models for representing the $p_{k}(x)$. e.g. Logistic regression, generalized additive models.

Example: K-nearest neighbors in two dimensions


KNN: K=10

$\mathrm{KNN}: \mathrm{K}=\mathbf{1}$
$K N N: K=100$


