Blood pressure for American women aged 18-44 is approximately normal with a mean of 75 *mm Hg* and a standard deviation of 10 *mm Hg*. A sample of n=25 women who jog at least 5 miles/week has a sample average blood pressure of 70.7 *mm Hg*.

<u>The research question is</u>: Does the data provide strong evidence that the mean blood pressure for those who exercise regularly is less than 75 *mm Hg*?

- a) State the hypotheses (H_o and H_a) to be tested.
- b) Define the population parameter in (a)
- c) Find the p-value for these data and state a conclusion at the $\alpha = .02$ level.
- 1) Find the RR in terms of z-scores and test H_o at the $\alpha = .02$ level.
- 2) Write the RR for H_o in terms of \overline{X}
- 3) Find the probability of a Type II error if the true mean is 69 mm Hg.

Blood pressure for American women aged 18-44 is approximately normal with a mean of 75 *mm Hg* and a standard deviation of 10 *mm Hg*. A sample of n=25 women who jog at least 5 miles/week has a sample average blood pressure of 70.7 *mm Hg*.

<u>The research question is</u>: Does the data provide strong evidence that the mean blood pressure for those who exercise regularly is less than 75 *mm Hg*?

- a) State the hypotheses (H_o and H_a) to be tested.
- b) Define the population parameter in (a)
- c) Find the p-value for these data and state a conclusion at the $\alpha = .02$ level.
- 1) Find the RR in terms of z-scores and test H_o at the $\alpha = .02$ level.
- 2) Write the RR for H_o in terms of \overline{X}
- 3) Find the probability of a Type II error if the true mean is 69 mm Hg.

(a) Ho:
$$M = 75$$
 (b) M represents the true mean by for women who exercise
 $H_A: M < 75$ regularly
(c) $p \text{-value} = P(\bar{X} \le 70.7 | M = 75) = P(\frac{\bar{X} - M}{WR} \le \frac{70.7 - 75}{10/525})$
 $= P(Z \le -2.15) = .0158$
(d) Reject Ho if $Z_5 < -2.05$
(e) Reject Ho if $Z_5 < -2.05$
(f) $\frac{\bar{X} - 75}{10/525} < -2.05 \Rightarrow \bar{X} < 70.9$
(g) $B(69) = P(Accept H_0 | M = 69)$
 $= P(\bar{X} \ge 70.9 | M = 70.9 |$