Categorical Data (starting with 2 categories)

p = True proportion of "*successes*" in the population (unknown)

 \hat{p} = Observed proportion of "successes" in the sample $\hat{p} = x/n$ (x = # of successes)

Find the probability of a type II error if the true value for p is really 0.13 (i.e., $\beta(0.13)$)

Write the rejection region in terms of z-scores
Write the rejection region in terms of p̂
β(0.13) = P(Accept H₀ | H₀ is true) → p₀ = 0.13 is used to standardize p̂ assuming Ha is true

Sampling Distribution for \hat{p} :

approx. normal with

Conditions for a Valid CI and Hypothesis test

- 1) The data must be a SRS from the population
- 2) The population must be large enough (>10 times the sample size)
- 3) The sample size must be large enough

 $n\hat{p} \ge 5$ and $n(1-\hat{p}) \ge 5$ for CIs $np_0 \ge 5$ and $n(1-p_0) \ge 5$ for Hypothesis tests

Comparing Two Proportions

 $\hat{p}_1 = x_1 / n_1$ proportion of "successes" in sample 1 $\hat{p}_2 = x_2 / n_2$ proportion of "successes" in sample 2

The sampling distribution for ...

$$\hat{p}_1$$
 is approximately Normal with $Mean = p_1$, $SD = \sqrt{\frac{p_1(1-p_1)}{n_1}}$, & $Variance = \frac{p_1(1-p_1)}{n_1}$
 \hat{p}_2 is approximately Normal with $Mean = p_2$, $SD = \sqrt{\frac{p_2(1-p_2)}{n_2}}$, & $Variance = \frac{p_2(1-p_2)}{n_2}$

$$\hat{p}_1 - \hat{p}_2$$
 is approx Normal with *Mean*= $p_1 - p_2$, $SD = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$

For testing $H_0: p_1 - p_2 = 0$ we need the sampling distribution for $\hat{p}_1 - \hat{p}_2$ when H_0 is true.

$$H_0 \rightarrow p_1 = p_2 (= p) \rightarrow \hat{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2} = \frac{x_1 + x_2}{n_1 + n_2}$$

$$z_{s} = \frac{(\hat{p}_{1} - \hat{p}_{2}) - 0}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$$

. .

			Number with Event	
Testing to see if a new flu vaccine in $n_1 = 75$ get the new vaccine	s more effective $x_1 = 12$ develop the flu over the next 6 months	Event	$\begin{aligned} \text{Prevastatin} \\ (n_1 = 900) \end{aligned}$	$\begin{aligned} \text{Placebo}\\ (n_2 = 411) \end{aligned}$
$n_2 = 80$ get the old vaccine	$x_2=24$ develop the flu over the next 6 months	Cardiac Chest Pain	36	14
		Dermatologic Rash	36	5
		Headache	56	16

Conditions for a Valid CI and Hypothesis test

- 1) The samples are independent Simple Random Samples from the population
- 2) The populations must be large enough (>10 times the sample sizes)
- 3) The sample sizes must be large enough:

 $n_1\hat{p}_1, n_1(1-\hat{p}_1), n_2\hat{p}_2, n_2(1-\hat{p}_2) \quad all \ge 5$