• So far we have assumed that σ was known for the population

* CLT \rightarrow Sampling Distribution for \overline{X} is approximately $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$

 $*z_s = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$ has a N(0,1) distribution

• In reality, we will rarely (if ever) know σ

* we estimate σ with $s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n}}$

*
$$t_s = \frac{\overline{X} - \mu}{s / \sqrt{n}}$$
 has a Student's T distribution with *n*-1 degrees of freedom

* Standard Deviation (of the mean) vs. Standard Error (of the mean)

$$SD_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$
 $SE_{\bar{x}} = \frac{s}{\sqrt{n}}$

Properties of the *T*-distribution

- Symmetric & bell shaped with mean = 0
- Larger spread than the N(0,1) distribution
- As the d.f. increase, the *T*-distribution approaches the standard normal curve
- Table 3/C gives upper tail probabilities
- Developed by William S. Gosset http://www.uvm.edu/~rsingle/stats/Gosset.html

Ex: (d.f. = 6)

- 1. Find t^* such that there is 2% area to the right
- 2. Find t^* such that there is 10% area to the left

Normal Distribution in blue T Distribution df = 5 in green T Distribution df = 10 in red

$100(1-\alpha)$ % Confidence Interval for μ

 $\overline{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$ where $t_{\alpha/2}$ is the upper tail critical value with *n*-1 d.f.

- Ex: A study on cholesterol levels in adult males eating fast food >3 times/week A SRS of n = 30 gives \overline{X} = 180.52 mg/dL s = 41.23 mg/dL1. Find a 95% CI for μ and state an interpretation of the interval

 - 2. Based on this CI, test ... H_0 : $\mu=170$ vs. H_a : $\mu\neq170$ at the $\alpha=.05$ *l.o.s.*

Suppose we want to find a p-value for the following set of hypotheses

H_o: $\mu = 170 mg/dL$ H_a: µ>170

$$H_o: \mu = \mu_0$$

t	_	$X - \mu_0$
ls	-	s/\sqrt{n}

		Rejection Region	n p-value
1)	$H_a: \mu > \mu_0$	$t_s \ge t_{\alpha}$	$p-value = P(T \ge t_s)$
2)	H_a : $\mu < \mu_0$	$t_s \leq -t_{\alpha}$	$p-value = P(T \le t_s)$
3)	H_a : $\mu \neq \mu_0$	$ t_s \ge t_{\alpha/2}$	$p-value = 2 \cdot P(T \ge t_s)$

H_o: μ=165 *mg/dL*

H_a: µ>165

Sample Results: A SRS of n = 30 gives $\overline{X} = 180.52$ s = 41.23

a) Find the sample *t*-score (t_s) .

b) Bracket the p-value.

c) State a conclusion for the test at the $\alpha = .05$ level.

1) Write the rejection rule (RR) for H_0 in terms of *t*-scores.

2) Write the rejection rule (RR) for H_0 in terms of \overline{X} .

Assumptions, Robustness, and Conditions for Valid CIs & T-Tests

- T-tests and CIs are based on the assumption that the population values being studied have a Normal distribution.
- In reality, populations may be anywhere from slightly non-normal to very non-normal.

Robustness of the T-procedures

• The T-test and CI are called <u>robust</u> to the assumption of normality because p-values and confidence levels are not greatly affected by violations of this assumption of normally distributed populations, especially if sample sizes are large enough.

Conditions for a Valid 1-Sample CI and T-Test

- The data are a SRS from the population.
- The population must be large enough (at least 10 times larger than the sample size).
- Conditions for the sample:
 - \circ If n is small (n < 15), the data should not be grossly non-normal or contain outliers.
 - o If n is "medium" ($15 \le n \le 40$), the data should not have strong skewness or outliers.
 - If n is large (n \ge 40), the *T*-procedures are robust to non-normality.

Checking if the conditions are met in your sample

• Always make a plot of the data to check for skewness and outliers before relying on T-procedures in small samples.