• So far we have assumed that σ was known for the population

* CLT \rightarrow Sampling Distribution for \bar{X} is approximately $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$ $\left(\frac{\mu}{\sqrt{n}}\right)$

 $\frac{1}{\sigma}$ $\frac{z_s}{\sigma}$ $z_{\rm s} = \frac{X}{\sqrt{2}}$ *n* μ $=\frac{X-\mu}{\sigma/\sqrt{n}}$ has a *N*(0,*1*) distribution

• In reality, we will rarely (if ever) know σ

* we estimate σ with $(x_i - \overline{x})^2$ 1 $s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n}}$ $=\sqrt{\frac{\sum (x_i - n_i)^2}{n_i}}$

*
$$
t_s = \frac{\overline{X} - \mu}{s / \sqrt{n}}
$$
 has a *Student's T distribution* with *n-1* degrees of freedom

* Standard Deviation (of the mean) vs. Standard Error (of the mean)

$$
SD_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \qquad \qquad SE_{\bar{x}} = \frac{s}{\sqrt{n}}
$$

Properties of the *T-distribution*

- Symmetric & bell shaped with mean $= 0$
- Larger spread than the $N(0,1)$ distribution
- As the d.f. increase, the *T-distribution* approaches the *standard normal curve*
- Table 3/C gives *upper tail probabilities*
- Developed by William S. Gosset http://www.uvm.edu/~rsingle/stats/Gosset.html

- 1. Find *t** such that there is 2% area to the right
- 2. Find *t** such that there is 10% area to the left

 Normal Distribution in blue T Distribution df $= 5$ in green Ex: $(d.f. = 6)$ T Distribution df = 10 in red

100(1-α)% Confidence Interval for μ

/ 2 $\overline{x} \pm t_{\alpha/2} \frac{s}{\sqrt{s}}$ $\pm t_{\alpha/2} \frac{b}{\sqrt{n}}$ where $t_{\alpha/2}$ is the upper tail critical value with *n-1* d.f.

- Ex: A study on cholesterol levels in adult males eating fast food >3 times/week A SRS of $n = 30$ gives $\overline{X} = 180.52$ mg/dL *s* = 41.23 *mg/dL* 1. Find a 95% CI for μ and state an interpretation of the interval
	- 2. Based on this CI, test … $H_0: \mu=170$ vs. $H_a: \mu \neq 170$ at the $\alpha = .05$ *l.o.s.*

Suppose we want to find a p-value for the following set of hypotheses

 H_0 : μ =170 *mg/dL* $H_a: \mu > 170$

$$
H_o: \mu = \mu_0
$$

$$
t_s = \frac{\overline{X} - \mu_0}{s/\sqrt{n}}
$$

 $X - \mu_{0}$

s n

Ho: µ=165 *mg/dL*

 $H_a: \mu > 165$

Sample Results: A SRS of $n = 30$ gives $\overline{X} = 180.52$ $s = 41.23$

a) Find the sample t -score (t_s) .

b) Bracket the p-value.

c) State a conclusion for the test at the α = .05 level.

1) Write the rejection rule (RR) for H_o in terms of *t*-scores.

2) Write the rejection rule (RR) for H₀ in terms of \overline{X} .

Assumptions, Robustness, and Conditions for Valid CIs & T-Tests

- T-tests and CIs are based on the assumption that the population values being studied have a Normal distribution.
- In reality, populations may be anywhere from slightly non-normal to very non-normal.

Robustness of the T-procedures

• The T-test and CI are called robust to the assumption of normality because p-values and confidence levels are not greatly affected by violations of this assumption of normally distributed populations, especially if sample sizes are large enough.

Conditions for a Valid 1-Sample CI and T-Test

- The data are a SRS from the population.
- The population must be large enough (at least 10 times larger than the sample size).
- Conditions for the sample:
	- \circ If n is small (n < 15), the data should not be grossly non-normal or contain outliers.
	- o If n is "medium" ($15 \le n \le 40$), the data should not have strong skewness or outliers.
	- o If n is large ($n \ge 40$), the *T*-procedures are robust to non-normality.

Checking if the conditions are met in your sample

• Always make a plot of the data to check for skewness and outliers before relying on T-procedures in small samples.