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It has become common to adopt a hierarchical model struc-
ture when comparing the performance of multiple health-care
providers. This structure allows some variation in such mea-
sures, beyond that explained by sampling variation, to be “nor-
mal,” in recognition of the fact that risk-adjustment is never per-
fect. The shrinkage estimates arising from such a model struc-
ture also have appealing properties.

It is not immediately clear, however, how “unusual” pro-
viders, that is, any with particularly high or low rates, can be
identified based on such a model. Given that some variation in
underlying rates is assumed to be the norm, we argue that it is
not generally appropriate to identify a provider as interesting
based only on evidence of it lying above or below the popula-
tion mean. We note with concern, however, that this practice is
not uncommon.

We examine in detail three possible strategies for identify-
ing unusual providers, carefully distinguishing between statis-
tical “outliers” and “extremes.” A two-level normal model is
used for mathematical simplicity, but we note that much of the
discussion also applies to alternative data structures. Further,
we emphasize throughout that each approach can be viewed
as resulting from a Bayesian or a classical perspective. Three
worked examples provide additional insight.

KEY WORDS: Outliers; Posterior tail areas; Provider profil-
ing; Unusual performance.

1. INTRODUCTION

Since the mid-1990s the case for hierarchical models in mon-
itoring the performance of multiple health-care providers, or
“provider profiling,” has been very strongly argued (Thomas,
Longford, and Rolph 1994; Goldstein and Spiegelhalter 1996;
Morris and Christiansen 1996; Normand, Glickman, and Gat-
sonis 1997; Burgess et al. 2000). A hierarchical or multilevel
model structure arises from assuming there exist provider-
specific “random effects” which are assumed drawn from some
common distribution. Such a model is particularly appealing
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because of the well-documented benefits of the resulting shrink-
age estimates of each unit-specific rate (Greenland and Robins
1991; Louis 1991), which improve estimation performance by
“borrowing” information from other providers. Theoretical ar-
guments (e.g., James and Stein 1961) and empirical studies
(Efron and Morris 1975; Rubin 1980; Tomberlin 1988) have
both been used to demonstrate the improved average point pre-
dictive ability of shrinkage estimates over crude observed rates;
the automatic shrinkage of the estimates toward the overall av-
erage means the predictions can be thought of as “adjusting
for regression-to-the-mean” (Burgess et al. 2000). Some pre-
cision is also gained by the pooling of information, allowing
small counts to be dealt with more effectively. Use of a hier-
archical model can also be motivated by a desire to account
for observed overdispersion, allowing some variation in esti-
mated performance to be “normal” in recognition of imperfect
risk-adjustment (Spiegelhalter 2005b). It has been shown, fur-
ther, that the power of a test for individual recent changes can
be improved slightly by shrinkage of each baseline observation
(Jones and Spiegelhalter 2009).

Although the advantages of a hierarchical modeling struc-
ture may now seem clear, there remains confusion in the litera-
ture about how individual units of interest should be identified
based on such a model. We note with some concern that sev-
eral authors have based the identification of “unusual” perfor-
mance on the posterior probability of a measure being greater
(or less) than the population mean, or equivalent measures
(Simpson et al. 2003; Smits et al. 2003; Darlow et al. 2005;
Racz and Sedransk 2010). We argue that this is not gener-
ally appropriate: after making the assumption that some vari-
ation around the population mean is the norm, it does not
seem reasonable to then use “above or below the average”
as the criterion for highlighting providers of interest. In par-
ticular, we stress that this procedure does not identify sta-
tistical “outliers” as has been suggested (Smits et al. 2003;
Racz and Sedransk 2010).

In this article we examine in detail how health-care providers
with unusually high rates of some measure (potentially inferior
performance, in the context of our examples) might be identi-
fied, with reference to a simple and commonly used hierarchical
model for cross-sectional data. The strategies discussed are of
course easily generalized to identify potentially superior per-
formance, which might also be of interest. A careful distinction
is drawn between statistical outliers and extremes in Section 2.
While an “extreme” observation might well be accommodated
within the assumed model, for a provider to be deemed “out-
lying” it essentially must lie beyond the range allowed by the
model. Relevant literature in which authors have attempted to
identify unusual performance based on hierarchical models is
then briefly reviewed.
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A simple two-level normal model is described in Section 3.1.
With reference to this model, three alternative approaches to
identifying potentially poor providers are outlined in detail
in Sections 3.2–3.4. Throughout Section 3 we emphasize and
demonstrate that each of the three approaches outlined can
equally well be viewed as resulting from a Bayesian or classical
multilevel modeling framework. A more general discussion of
multilevel models from a classical perspective is provided by
Goldstein (2003).

These three approaches to identifying unusual performance
are each demonstrated using worked examples in Section 4. We
consider teenage conception rates in English Local Authorities,
rates of Clostridium difficile in NHS Trusts, and, finally, mortal-
ity rates following heart surgery in New York State hospitals. As
we will discuss, these examples differ with respect to a key pa-
rameter ρ, a form of intraclass correlation coefficient that mea-
sures the amount of “true” variability in underlying rates rel-
ative to total observed variability. Funnel plots (Spiegelhalter
2005a; Schulman, Spiegelhalter, and Parry 2008) are used to
illustrate the properties of each approach under the different
estimated values of ρ. Concluding remarks are then made in
Section 5.

2. APPROACHES TO IDENTIFYING
UNUSUAL PERFORMANCE

We distinguish between three approaches to identifying un-
usual performance using cross-sectional data, namely:

Approach 1: Identify outliers to the common mean model.
Approach 2: Identify outliers to the random effects distribu-

tion.
Approach 3: Identify extremes in the random effects distribu-

tion.

Approach 1 involves using a common mean (i.e., non-
hierarchical) model as the null hypothesis, and simply testing
for deviations from this. Further details are provided, for ex-
ample, by Jones, Ohlssen, and Spiegelhalter (2008), who used
this simple method to demonstrate how the false discovery rate
(FDR) (Benjamini and Hochberg 1995) can be controlled to
account for multiple testing in this context.

As discussed in the Introduction, there are strong arguments
in favor of assuming instead a random effects model, which fo-
cuses attention on approaches 2 and 3. Approach 2 takes the
random effects distribution as a null model and identifies devia-
tions from this, while approach 3 is based on posterior tail areas
of the individual random effects. We will argue that either ap-
proach is reasonable, but that analysts must be very clear about
which they are using and why. Essentially, the choice should
be based on the selected modeling strategy, as discussed by
Ohlssen, Sharples, and Spiegelhalter (2007):

Hypothesis Testing Strategy. The random effects distribution
is posited as a null model, allowing for some variation around
the population mean to be “normal,” due to unknown factors
beyond the providers’ control (i.e., imperfect risk-adjustment).
Some true outliers to this distribution may well still exist, so
that approach 2 is sensible. This approach is used, for example,
by the U.K. Care Quality Commission (2009) as part of the
“Annual Health Check.”

Estimation Strategy. The hierarchical model is constructed
to be encompassing, such that all providers (“unusual” or not)
are accommodated. It does not then make sense to try to identify
outliers except for model checking purposes, since by construc-
tion there should be none. Approach 3 is then appropriate.

When using approach 3 the crucial element is what is con-
sidered “extreme.” Some authors have used methods equiva-
lent to identifying a provider as unusual based on a large pos-
terior probability of its rate being greater (or less) than av-
erage (Simpson et al. 2003; Smits et al. 2003; Darlow et al.
2005; Racz and Sedransk 2010). The crucial point is that such
providers need not be “extremes”; in fact, if a provider is large
enough, then its posterior interval is unlikely to include the pop-
ulation mean.

In contrast, Morris and Christiansen (1996) worked within
the estimation framework but suggested that comparisons with
the population mean are inappropriate, arguing instead in fa-
vor of comparisons with an external target or interval standard
(Morris and Christiansen 1996; Christiansen and Morris 1997b;
Burgess et al. 2000). Normand, Glickman, and Gatsonis (1997)
made similar recommendations, although suggested that, in the
absence of an external target, indices such as the posterior prob-
ability of each rate being greater than 1.5 times the median
might be used. Similarly, in a multivariate setting in which in-
ferences are made about a latent performance variable based
on multiple observed measures, profiling has been based on the
posterior probability of this latent variable lying in, for exam-
ple, the top 10 or 20 percent (Landrum, Normand, and Rosen-
heck 2003; Teixeira-Pinto and Normand 2008). We concur with
such recommendations if an estimation modeling strategy is
employed, but suggest that the classical interpretation of these
posterior tail areas is also in need of consideration.

When random effects modeling has been adopted in the liter-
ature, it is sometimes not clear which approach has been used,
due to authors being nonspecific about which standard errors
were used to construct prediction limits or confidence intervals.
For example, Racz and Sedransk (2010) and Simpson et al.
(2003) each referred to the “standard errors” of their shrink-
age estimators, while in fact this is an ambiguous term in this
context. We will show later that the choice of standard error
corresponds to choosing between approach 2 and the particular
instance of approach 3 whereby “above or below the average”
is used to define extreme performance.

3. THEORY FOR A SIMPLE TWO-LEVEL
NORMAL MODEL

3.1 Notation

Before considering each of the three approaches in some de-
tail, we first introduce notation, and details of the simple two-
level normal model which is often used in this context.

Assume a performance measure Yi is observed on each of
i = 1, . . . ,m health-care providers, and that

Yi |θi

indep∼ Normal(θi, σ
2
i ), θi

indep∼ Normal(μ, τ 2), (1)

where the σi ’s are assumed known. This is often referred to as
an unbalanced one-way analysis of variance (ANOVA) model.
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From Bayes’s rule, it can easily be shown that

θi |yi,μ, τ ∼ Normal(θ̂i ,wiσ
2
i ), (2)

where

θ̂i = wiyi + (1 − wi)μ (3)

and

wi = τ 2

σ 2
i + τ 2

(4)

can be seen to be a classical intraclass correlation coefficient.
θ̂i is called a shrinkage estimate of θi , since the observed

yi is “shrunk” in toward the population mean, μ, with weight
0 ≤ wi ≤ 1 determining the degree of shrinkage. For τ = 0
(identical rates in all providers), wi = 0 so that θ̂i is appropri-
ately set to the population mean. As τ increases to infinity, wi

tends to 1 so that there is no pooling of information and θ̂i is
simply set to yi . The amount of shrinkage in each individual
provider is also dependent on its “size,” with greatest shrinkage
toward μ when σ 2

i is large (i.e., for a “small” provider).
Adopting an empirical Bayes (EB) approach, like many other

authors in the performance monitoring literature (Greenland
and Robins 1991; Howley and Gibberd 2003), the unknown μ

and τ 2 are estimated from the marginal distribution of the data

Yi

indep∼ Normal(μ,σ 2
i + τ 2)

and plugged into (2)–(4) as if known. In our experience, these
parameters can usually be estimated quite precisely in a per-
formance monitoring context (in contrast to the area of meta-
analysis, where the number of contributing data points is gen-
erally much smaller) so that ignoring uncertainty in their es-
timation will have little influence on the identification of un-
usual providers. However, in the case of only a small number of
providers m, adjustment of EB estimates to account for uncer-
tainty should be considered (Carlin and Louis 2000) or a fully
Bayesian approach used.

Denoting ai ≡ 1/σ 2
i , the well-known DerSimonian and Laird

estimate of τ 2 is

τ̂ 2 = max

{
0,

∑
ai(yi − ȳw)2 − (m − 1)∑

ai − ∑
a2
i /

∑
ai

}
, (5)

where

ȳw =
∑

aiyi∑
ai

,

while the population mean can be estimated by

μ̂ =
∑

wiyi∑
wi

,

a weighted average of the yi ’s.
If using approach 2, it is desirable in practice to estimate

τ using robust methods, so that truly divergent providers are
not accommodated by the null model (Spiegelhalter 2005b;
Ohlssen, Sharples, and Spiegelhalter 2007). However, for ease
of exposition in comparing different profiling strategies we will
simply use (5) in our worked examples.

3.2 Approach 1: Identify Outliers to the Common
Mean Model

The common mean model is assumed here, that is, τ is as-
sumed equal to 0.

3.2.1 Bayesian Perspective

We adopt the Bayesian approach to model checking outlined
by Gelman and Hill (2007), in which a Bayesian p-value is cal-
culated by comparing the observed statistic with its predictive
distribution obtained from integrating out unknown parameters.
If we assume μ is essentially known, the predictive distribution
of each Yi is simply Y

pred
i ∼ Normal(μ,σ 2

i ). The predictive p-
value assesses the plausibility under this distribution of seeing
a rate as high as that observed. It is equal to

p
(1)
i ≡ P(Y

pred
i > yi)

= 1 − �

(
yi − μ

σi

)

= �

(
μ − yi

σi

)
. (6)

3.2.2 Classical Perspective

We test whether the underlying performance θi in provider
i is equal to the population mean. Specifically, our model is
Yi ∼ Normal(θi, σ

2
i ) and we test H0 : θi = μ against the one-

sided alternative H1 : θi > μ for each provider, i = 1, . . . ,m.
The test statistic to be referred to the standard normal distri-

bution is simply

Z
(1)
i = yi − μ

σi

,

so that the p-value of interest = 1 − �(Z
(1)
i ) = p

(1)
i as in (6).

3.3 Approach 2: Identify Outliers to the Random
Effects Distribution

3.3.1 Bayesian Perspective

Under the random effects model, provider i’s predictive dis-
tribution is given by

Y
pred
i ∼ Normal(μ,σ 2

i + τ 2).

The predictive p-value used to identify rates higher than plau-
sible under this null distribution is therefore

p
(2)
i = �

(
μ − yi√
σ 2

i + τ 2

)

= �

(√
1 − wi

(
μ − yi

σi

))
. (7)

Note that the unit-specific θi plays no part here, as it has been
integrated out in order to obtain the predictive distribution.
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3.3.2 Classical Perspective

Consider the shrinkage estimate θ̂i as defined by (3). If θi

comes from the same distribution as the other providers, then,
unconditionally on θi , θ̂i is an unbiased estimator of the popu-
lation mean μ. Otherwise, the unconditional expectation of θ̂i

takes some other value, say E(θ̂i) ≡ μi .
We treat θ̂i as an estimate of μi (not of θi ). It is used to

test H0 :μi = μ against the alternative H1 :μi > μ, in each
provider. If H0 is rejected in favor of H1 for provider i, then it
is concluded that θi appears to be too large to have come from
the null random effects distribution.

The predictive distribution of θ̂i under H0 is

θ̂i ∼ Normal
(
μ,VYi,θi

(θ̂i )
)
,

where VYi,θi
(θ̂i ) is the variance of θ̂i over the joint distribution

of Yi and θi given H0, and is given by

VYi,θi
(θ̂i ) = w2

i VYi ,θi
(Yi)

= τ 4

σ 2
i + τ 2

= wiτ
2. (8)

The classical test statistic is therefore

Z
(2)
i = θ̂i − μ√

VYi,θi
(θ̂i )

= yi − μ√
σ 2

i + τ 2
,

resulting in the p-value 1 − �(Z
(2)
i ) = p

(2)
i , exactly as in the

Bayesian result (7).
Note that it is the case in general, regardless of the distribu-

tion of Yi , that

θ̂i − μ√
VYi,θi

(θ̂i )

= yi − μ√
VYi,θi

(Yi)
(9)

for any shrinkage estimator of the form θ̂i = κiYi + (1 − κi)μ

with weight κi , since VYi,θi
(θ̂i ) = κ2

i VYi ,θi
(Yi) and θ̂i − μ =

κi(Yi − μ). In particular, this holds for a two-level Poisson

model with Oi |ri indep∼ Poisson(riEi) for known Ei , where the
ri ’s are drawn from a common gamma distribution. In this con-
text, we define Yi ≡ Oi/Ei and θ̂i ≡ E(ri |Oi). Poisson–gamma
EB models have been used, for example, by Simpson et al.
(2003) in performance monitoring and are also popular in the
small area estimation literature (McPherson et al. 1982; Clayton
and Kaldor 1987; Coory and Gibberd 1998). Fully or approxi-
mate Bayesian versions of this model are also commonly fitted
in performance monitoring (Goldstein and Spiegelhalter 1996;
Christiansen and Morris 1997a; Normand, Glickman, and Gat-
sonis 1997).

3.4 Approach 3: Identify Extremes in the Random
Effects Distribution

3.4.1 Bayesian Perspective

It is natural to use the posterior distribution of θi , as given by
(2), to identify extremes of the distribution. A provider might
be considered “extreme” if its rate has a large posterior prob-
ability of being greater than some external target or specified
quantile of the random effects distribution, say t . This posterior
probability is

P(θi > t |yi) = 1 − �

(
t − E(θi |yi)√

V (θi |yi)

)

= 1 − �

(
t − θ̂i

σi
√

wi

)
. (10)

As discussed previously, some authors have (we believe in-
appropriately) essentially used this approach with t = μ, the
population mean. For this special case, the following holds:

P(θi > μ|yi) = 1 − �

(
μ − θ̂i

σi
√

wi

)

= 1 − �

(
μ − yi√

σ 2
i

τ 2 (σ 2
i + τ 2)

)

= 1 − �

(√
wi

(
μ − yi

σi

))

≡ 1 − p
(3)
i , (11)

say, although we note that p
(3)
i is not a p-value in this con-

text, but rather a Bayesian posterior tail area. Following this
approach, provider i is classified as potentially extreme if p

(3)
i

is small.

3.4.2 Classical Perspective

If θ̂i is treated as an estimate of θi rather than of the un-
conditional mean μi , when constructing a confidence interval
or using it as a basis for a hypothesis test we should take ac-
count of the fact that it is biased by using the appropriate error

measure. As we will discuss below, this is not
√

VYi,θi
(θ̂i ), but

rather
√

VYi,θi
(θ̂i − θi), or equivalently (since when averaging

over the distribution of the true parameters, a shrinkage estima-
tor of the population mean is unbiased) the root mean squared

error
√

EYi,θi
(θ̂i − θi)2. This error term appropriately measures

how far we expect θ̂i to be from what it is trying to estimate in
this case.

As such, if we wish to test H0 : θi < t versus the alternative
H1 : θi > t , then the appropriate test statistic is

Z
(3)
i = θ̂i − t√

VYi,θi
(θ̂i − θi)

.

Now, the conditional mean squared error for known Yi can
easily be shown to be

Eθi |Yi
(θ̂i − θi)

2 = V (θi |Yi).
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This result is in fact well known in decision theory: assuming
known hyperparameters, the posterior risk for a squared error
loss function is minimized by the posterior mean and this min-
imum risk is equal to the posterior variance (Lee 1997). It fol-
lows that, independently of the normal assumption,

VYi,θi
(θ̂i − θi) = EYi,θi

(θ̂i − θi)
2

= EYi

[
Eθi |Yi

(θ̂i − θi)
2]

= EYi
[V (θi |Yi)]. (12)

For the one-way ANOVA model, V (θi |Yi) does not depend
on the data Yi , so that VYi,θi

(θ̂i − θi) is equal to the posterior
variance itself, wiσ

2
i .

Given this result, the appropriate p-value for this test, 1 −
�(Z

(3)
i ), is equal to one minus the value defined by (10), or p

(3)
i

in the particular case of the commonly used threshold t = μ.
Thus under certain restrictions the Bayesian posterior tail area
can be shown to be a classical p-value for testing a specific null
hypothesis, θi < t . For the threshold t = μ this approach simply
tests whether the institution is in the top or bottom half of the
random effects distribution.

In more general circumstances these classical and Bayesian
approaches will not be exactly equivalent, because the posterior
variance may depend on the observed statistic. For example, for
the Poisson–gamma model,

V (ri |Oi) = Oi + μ2/τ 2

(Ei + μ/τ 2)2
,

clearly depending on the observed count, Oi . The error measure
used for the classical test is therefore not quite identical to that
which a Bayesian would use in this instance.

3.5 Standard Errors of Random Effects

From a classical perspective, Goldstein (2003) distinguished
between two alternative standard errors of random effects:

(1) the unconditional or diagnostic standard error,√
VYi,θi

(θ̂i − μ) =
√

VYi,θi
(θ̂i ),

equal to τ
√

wi for the two-level normal model, as shown in
(8).

(2) the conditional or comparative standard error,√
VYi,θi

(θ̂i − θi),

which, from (12), is equal to σi
√

wi or equivalently
τ
√

1 − wi here.

Goldstein suggested that diagnostic standard errors should be
used when examining the distributional properties of residuals,
while comparative standard errors are required for making in-
ferences about the true random effects. In agreement with this,
level-2 residuals from hierarchical models have commonly been
standardized by their diagnostic standard errors when checking
the assumption of normality of random effects and detecting
outliers (Lange and Ryan 1989; Hardy and Thompson 1998;
Langford and Lewis 1998). We reinforce Goldstein’s message,

by stressing that
√

VYi,θi
(θ̂i ) is the appropriate standard error

to use for the identification of outliers to the random effects

distribution.
√

VYi,θi
(θ̂i − θi) might, however, be of interest for

making inferences about θi , such as assessing whether it is “ex-
treme.”

From result (12) we see that VYi,θi
(θ̂i − θi) also has a

Bayesian interpretation as the expectation of the posterior vari-
ance. As such, use of the comparative standard error in the iden-
tification of “unusual” performance is roughly (or exactly, for
the normal model) equivalent to examining Bayesian posterior
tail areas. These tail areas can be used to make inferences about
the performance of individual providers and possibly to identify
extremes, but do not indicate whether a provider’s performance
is outlying.

3.6 The Effect of ρ

We have seen (Equations (6), (7), and (11)) that the three
different approaches involve the following p-values:

1. Identify outliers to the common mean model:

p
(1)
i = �

(
μ − yi

σi

)
.

2. Identify outliers to the random effects distribution:

p
(2)
i = �

(√
1 − wi

(
μ − yi

σi

))
.

3. Identify extremes in the random effects distribution (if inap-
propriately using “above or below average” as the definition
of extreme):

p
(3)
i = �

(√
wi

(
μ − yi

σi

))
.

Clearly, if wi is small, then p
(1)
i will be very similar to p

(2)
i ,

while if wi is large, then it will instead be similar to p
(3)
i .

Note that wi = Corr(Yi1, Yi2), the correlation between any
two measures made on the same provider, assuming constant
known sampling variance σ 2

i . We define a summary measure

ρ ≡ τ 2

τ 2 + σ̄ 2
, (13)

the correlation between two measures made on an “average
sized” provider, where σ̄ 2 is the sample mean of the σ 2

i ’s.
The parameter ρ provides a measure of the magnitude of the
between-provider variability relative to average total variabil-
ity. To obtain an estimate of ρ, we will simply plug the estimate
τ̂ 2 into (13).

Across the entire population of providers, if ρ is close to
0, then approaches 1 and 2 will highlight similar units as be-
ing of interest. This will be the case when the quality of risk-
adjustment applied before profiling is high. In contrast, since
the posterior distribution of each θi will be narrow and centered
close to μ, the p

(3)
i ’s in this case will tend to be close to 0.5, so

that very few units above or below average are identified.
If ρ is close to 1, that is, the amount of between-provider vari-

ability is large, then the converse is true. Following approach 2,
the null random effects distribution allows for this variability,
the p

(2)
i ’s therefore tending to be close to 0.5. However, we can
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be relatively sure about which half of the random effects distri-
bution each provider lies in. As a result, the p

(3)
i ’s will hardly

“correct” for the overdispersion at all: providers identified as
outlying to the common mean model will also tend to be iden-
tified as having rates above or below average.

4. EXAMPLES

We now consider three worked examples: rates of teenage
conceptions in England in 2004, rates of Clostridium difficile
in English National Health Service (NHS) Trusts in the period
October–December 2006, and mortality rates following coro-
nary artery bypass graft (CABG) surgery in New York State in
2003. In each case, data on multiple healthcare providers are
publicly available. It is of interest to identify “unusual” Local
Authorities, NHS Trusts, and hospitals, respectively.

In each case we transform observed (Oi ) and “expected”
(Ei ) counts to log relative risks yi = log(Oi/Ei), i = 1, . . . ,m,
which we assume are approximately normally distributed. The
σ 2

i ’s of (1) are assumed known and equal to 1/Ei . Standardiza-
tion by the expected count Ei is a standard approach to adjust-
ing for risk factors over which the healthcare providers cannot
reasonably be held accountable, such as patient risk at admis-
sion or demographics. An alternative “exact” Poisson model
might of course be fitted, and is theoretically more appealing
since the normal approximation will tend to be poor for small
counts. We will return to this briefly in Section 5.

Using particular risk-adjustment models, that is, formulas to
calculate the Ei ’s, these three datasets have quite different es-
timated ρ’s, allowing a demonstration of the effect of this pa-
rameter as discussed earlier. Some further information about
the three examples, including details of the risk-adjustment em-
ployed and a discussion of the effect of ρ on a related type of

analysis, can be found in the article by Jones and Spiegelhalter
(2009).

In each case, funnel plots (Spiegelhalter 2005a; Schulman,
Spiegelhalter, and Parry 2008) are used to illustrate the results
of each profiling technique graphically. In these plots, each ob-
served performance measure yi is plotted against a measure of
its precision, Ei . Prediction limits corresponding exactly to par-
ticular thresholds for the derived p-values are plotted, forming
a funnel shape in recognition of the increased sampling vari-
ability expected in smaller units. Using an appropriate p-value
threshold, providers lying outside of the funnel shape might be
considered interesting for further investigation.

In applying approach 3, we will assume that the threshold
t is set to the population mean μ, in order to demonstrate the
characteristics of this commonly used procedure. However, we
emphasize that we believe it is much more appropriate to use
some other value in practice.

4.1 Teenage Conceptions in Local Authorities

Figure 1 shows the results of applying each approach to
m = 352 observed teenage conception rates in 2004. Clearly
the points representing the providers do not move: the choice
of approach only determines where the control limits lie. Ignor-
ing the multiple testing issue for the moment, we use arbitrary
one-sided p-value thresholds of 0.025 and 0.005 to determine
the position of these limit lines. The estimate of ρ here is equal
to 0.60, although, as noted above, this value is dependent on the
particular risk-adjustment model used.

The first funnel plot highlights many providers as being po-
tentially unusual, since the null model ignores the observed
overdispersion around the mean. Use of the second approach
leads to a substantially wider funnel. A few Local Authorities
still lie beyond the limit lines in plot 2, suggesting that there

Figure 1. Teenage conception rates in Local Authorities, 2004: three possible approaches to identifying interesting providers. Results based on
a normal approximation to the distribution of the log relative risks and empirical Bayes estimation (μ̂ = −0.13, τ̂2 = 0.02, σ̄ 2 = 0.01, ρ̂ = 0.60).
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Figure 2. Clostridium difficile rates in NHS Trusts, October–December 2006: three possible approaches to identifying interesting
providers. Results based on a normal approximation to the distribution of the log relative risks and empirical Bayes estimation
(μ̂ = −0.22, τ̂2 = 0.23, σ̄ 2 = 0.04, ρ̂ = 0.87).

might be a few genuine outliers to the random effects distri-
bution. Of course in practice the p-value threshold should be
more carefully determined to account for the multiple testing
problem. Note further that this analysis is slightly conservative
since the parameters of the random effects distribution were not
estimated using robust methods.

The third funnel is seen to be similar to the first, with only
slightly fewer providers lying beyond the limit lines: with ρ̂ =
0.60, for some providers we can be fairly confident about which
half of the distribution they lie in.

4.2 Clostridium difficile in NHS Trusts

Next consider rates of the infection Clostridium difficile in
m = 163 NHS Trusts during the quarter October to December
2006. The between-Trust variability is large (τ̂ 2 = 0.23), and
ρ is estimated to be 0.87. This large ρ is not surprising given
the infectious nature of C. difficile and the severely limited risk
adjustment which we have employed here (Jones and Spiegel-
halter 2009).

Figure 2 demonstrates the large number of outliers relative to
the common mean model. In contrast, the second funnel is very
wide, as the vast majority of Trusts are accommodated by the
random effects model with large τ . The third funnel is almost
identical to the first, providing practically no adjustment for the
overdispersion, so that large providers will tend to signal using
this approach whether they are interesting or not.

4.3 Mortality Following Heart Surgery in New York
State Hospitals

Finally, we consider rates of mortality following CABG
surgery in m = 37 New York State hospitals in 2003. Un-

like the two previous examples, in which our own simple risk-
adjustment has been employed using limited available informa-
tion, the Ei ’s for these rates are provided by the New York State
Department of Health (2009) and have been calculated using a
sophisticated patient-level model. As a result, we would expect
the observed relative risks to be relatively homogeneous. In-
deed, since σ̄ 2 is 0.21, large relative to τ̂ 2 = 0.04, ρ is estimated
to be 0.17, much smaller than in the previous two examples.

Figure 3 shows that the second funnel for these data is not
much wider than the first, as seems reasonable since there is
little overdispersion. However, the third funnel is very wide:
since the providers’ rates are all similar to each other, we cannot
be at all sure about which half of the distribution each one lies
in. In particular, note that one hospital lies below the outer limit
lines in the first and second funnels but is accommodated by the
third.

We note that this is the same dataset as used by Racz and
Sedransk (2010), although the particular data they used were
from earlier years. It is the third funnel plot which is analogous
to Racz and Sedransk’s (2010) two random effects approaches.
Our first two worked examples have demonstrated that, when
substantial overdispersion to the common mean model exists,
this method will tend to identify too many providers as unusual.
However, Racz and Sedransk (2010) argued that their random
effects methods instead identified too few “outliers” and as such
that random effects models are inappropriate. Figure 3 clearly
demonstrates that, for such a thoroughly risk-adjusted dataset,
this is in fact the case: the authors would have identified more
units as unusual if they had used approach 2, which correctly
identifies outliers to the random effects distribution. We em-
phasize further that failing to detect truly unusual units should
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Figure 3. Mortality rates following CABG in New York State hospitals, 2003: three possible approaches to identifying interest-
ing providers. Results based on a normal approximation to the distribution of the log relative risks and empirical Bayes estimation
(μ̂ = −0.09, τ̂2 = 0.04, σ̄ 2 = 0.21, ρ̂ = 0.17).

not be the only concern when deciding upon a provider profil-
ing scheme: false positives must be considered, since wrongly
labeling a hospital as poor could have important consequences.

5. DISCUSSION

Hierarchical models have become widely used in perfor-
mance monitoring, and have many attractive properties. The
use of such models need not be computationally demanding:
using an EB approach, as in this article, shrinkage estimates
and associated error terms can be computed easily, even using a
spreadsheet. For large m, the hyperparameters can be estimated
quite precisely, so that the results will tend to be very similar to
those from a fully Bayesian analysis.

Despite such models now being used frequently, there clearly
remains some confusion about how to identify “unusual” per-
formance based upon them. Using a two-level normal model,
we have demonstrated an important distinction between iden-
tifying outliers and extremes. In practice, analysts must first
decide between a hypothesis testing or estimation strategy, as
discussed in Section 1, and be very clear upon this when sum-
marizing results.

If following a hypothesis testing strategy, a simple ran-
dom effects model such as the one-way ANOVA or Poisson–
gamma model should suffice, and approach 2 should be used
to identify outliers. As we have shown, this is in accordance
with Goldstein’s (2003) advice that “diagnostic” standard er-
rors should be used when examining residuals to check for
outliers. Care is necessary since statistical software may in-
stead report “comparative” standard errors by default: if treat-
ing these as if they were diagnostic, analysts will inadvertently
be identifying providers that are only “above or below aver-
age.” Further, to remove the influence of any truly outlying

providers on the null distribution, the hyperparameters should
ideally be estimated using robust methods such as Winsoriza-
tion (Spiegelhalter 2005b; Ohlssen, Sharples, and Spiegelhalter
2007). This method shrinks in more extreme values before in-
corporating them into the estimates of the hyperparameters.

If instead following an estimation strategy, then all providers
should be accommodated by the random effects model. As we
have discussed, it does not then make sense to check for out-
liers, other than to verify that the model fit is reasonable. More
sophisticated models might be required to achieve this accom-
modation. For example, funnel 2 of Figure 1 indicated that the
simple two-level normal model did not seem to accommodate
all of the LAs. A heavier tailed distribution for the random ef-
fects, such as a t -distribution, or a mixture of normals might fit
better (Ohlssen, Sharples, and Spiegelhalter 2007). Once a rea-
sonable model has been fitted, approach 3 can be used to iden-
tify extreme providers, although comparisons should be made
with an external target or an alternative quantile of the ran-
dom effects distribution t using (10), not the population aver-
age μ. Funnel plot control limits can easily be positioned based
on more appropriate posterior tail areas. Again, care should be
taken with the wording, since providers lying beyond such lines
are not necessarily statistical outliers.

For ease of exposition we have not discussed the related mul-
tiple testing problem in this article. Some authors have sug-
gested that shrinkage estimation makes adjustments for multi-
ple testing unnecessary (Thomas, Longford, and Rolph 1994;
Morris and Christiansen 1996). However, from a hypothesis
testing perspective, each of the approaches discussed requires
classical p-values, and appropriate error rates such as the FDR
should be controlled if using these p-values to identify “un-
usual” performance (Jones, Ohlssen, and Spiegelhalter 2008).
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In general, if working in an estimation setting and simply de-
scribing rates in each provider, multiple testing might be ig-
nored. But if making statements about the confidence with
which particular providers are unusual, the properties of the
identification process must be considered and the multiple test-
ing accounted for, if only informally.

We have focused here primarily on analysis based on the
one-way ANOVA model. However, given the general results
(9) and (12), clearly the entire discussion is also valid for other
models, including Poisson–gamma, if a normal approximation
to the marginal and posterior distributions is used. Simpson
et al. (2003) used such an approximation to place funnel plot
limit lines, which were centered around the population average.
They used an approximation to the posterior standard deviation
(equivalently, the comparative standard error) to determine the
exact locations of the limit lines, but we have argued in this
article that this is not appropriate for identifying outliers.

For the Poisson–gamma model, the predictive and poste-
rior distributions are in fact readily available and so the ex-
act versions can be used without much difficulty. The distinc-
tion between general approaches to identifying unusual perfor-
mance remains equally important: the marginal negative bino-
mial distribution corresponding to this model can be used to
identify outlying providers, while posterior tail areas based on
the gamma posterior distribution of ri |Oi can be used to iden-
tify extremes.

Finally, we have emphasized throughout this article that all
methods described are very general, rather than being tied ex-
clusively to either a Bayesian or a classical framework.

[Received September 2010. Revised July 2011.]
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