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Abstract

Population genetic statistics from multilocus genotype
data inform our understanding of the patterns of genetic
variation and their implications for evolutionary studies,
generally, and human disease studies in particular. In any
given population one can estimate haplotype frequencies,
identify deviation from Hardy-Weinberg equilibrium, test
for balancing or directional selection, and investigate pat-
terns of linkage disequilibrium. Existing software pack-
ages are oriented primarily toward the computation of such
statistics on a population-by-population basis, not on com-
parisons among populations and across different statistics.
We developed PyPop (Python for Population Genomics)
to facilitate the analyses of population genetic statistics
across populations and the relationships among different
statistics within and across populations. PyPop is an an
open-source framework for performing large-scale popula-
tion genetic analyses on multilocus genotype data. It com-
putes the statistics described above, among others. PyPop
deploys a standard Extensible Markup Language (XML)
output format and can integrate the results of multiple

analyses on various populations that were performed at dif-
ferent times into a common output format that can be read
into a spreadsheet. The XML output format allows PyPop
to be embedded as part of a larger analysis pipeline. Orig-
inally developed to analyze the highly polymorphic genetic
data of the human leukocyte antigen region of the human
genome, PyPop has applicability to any kind of multilocus
genetic data. It is the primary analysis platform for ana-
lyzing data collected for the Anthropological component of
the 13th and 14th International Histocompatibility Work-
shops. PyPop has also been successfully used in studies
by our group, with collaborators, and in publications by
several independent research teams.

Introduction

PyPop (Python for Population Genomics) is a framework
for performing large-scale population genetic analyses on
multilocus genotype data. It contains several programs
and an Application Programming Interface (API) imple-
mented in the programming language Python. Tests that
PyPop currently implements are summarized in Table 1.
The output of the population analyses is stored in the XML
format (the platform-independent, open standard for data
storage). Since the description of a prerelease alpha ver-
sion (1), PyPop has undergone substantial revision and
expansion in its functionality.

This paper focuses on new features of PyPop which in-
clude the prefiltering of the input genotype data, the abil-
ity to translate arbitrary allele names into full amino acid
or nucleotide sequences and a new implementation of a
Monte-Carlo version of the “exact” test for deviation from
Hardy-Weinberg proportions. PyPop was originally devel-
oped for the analysis of highly polymorphic human leuko-
cyte antigen (HLA) data for the 13th International Histo-
compatibility Workshop (IHW) in 2002 (2, 3) and is being
deployed in the analysis of the 14th IHW data. After the
initial development, we created new programs or modified
existing programs in order to handle highly polymorphic
data, large number of populations, and typing at various
levels of resolution. These programs are incorporated as
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modules in the latest version of PyPop.

Materials and methods

Overview

PyPop was designed to supplement and extend exist-
ing population genetic software and to incorporate such
software as modules rather than reimplement them from
scratch. Therefore, where possible, we based our imple-
mentations of population genetic tests on existing, well-
tested, open-source code such as Guo and Thompson’s
“exact” test for HWP (4) and Slatkin’s (5, 6) implementa-
tion of the Ewens-Watterson test. Some of these program
modules required some augmentation to process the highly
polymorphic data we were analyzing. PyPop has also been
designed in a modular object-oriented way to facilitate
multiple-access points. The framework can be called from
short Python scripts (pypop and popmeta, two scripts that
are currently distributed in PyPop, are described later). A
prototype of a graphical user interface is undergoing testing
in the development version, and the framework is designed
in such a way that writing an interface via a web server or
web service should be straightforward.

Regarding the input of data, PyPop accepts tab delim-
ited input files with a separate record for each individual,
consisting of the list of alleles for each locus. These files
can be generated easily from a spreadsheet. Individual
PyPop runs are configured with a simple configuration file
that uses the Windows .ini format and can be run in both
an interactive mode and a batch mode. The batch mode
allows multiple runs to be scripted as part of an analy-
sis pipeline. Alternatively, modules can be called directly
through custom Python code using the API.

PyPop can also handle allele count data for a popula-
tion (which consist of separate records with allele name,
followed by counts of alleles) rather than individuals with
full genotypes. The range of analyses possible for such
data, however, is restricted to statistics which only require
allele frequency information, such as the Ewens-Watterson
test of neutrality (7, 8). PyPop was also designed to handle
missing data in a flexible manner that is consistent across
all modules. This important aspect of data processing and
analysis is often implemented in a cumbersome and some-
times inconsistent manner, requiring reformatting of the
data.

To facilitate the reuse of as much existing code as pos-
sible, and to interface with other languages such as C,
we used the Simple Wrapper Interface Generator (SWIG)
(9) to enable access to third party programs as if they
were Python modules. We also used other open-source
projects such as Numeric Python (10) (providing efficient
data structures for holding large arrays of data), libxslt
(11) [for parsing Extensible Markup Language (XML) out-
put] and the GNU Scientific Library (GSL) (12) and R
(13) (for mathematical functions such as P-value calcula-
tion and randomization algorithm).

Preanalysis filters

PyPop allows the user to prefilter the input genotype or
allele count data before commencing data analysis. The
various data filters have a modular design, so they can be
used alone or in combinations. One way the filters can be
used is to allow the analysis of data at different levels. For
example, the Sequence filter has the most broad applica-
bility and enables the translation of allele names into full
sequence data. If this filter is enabled, then PyPop will
treat each sequence position as if it were another distinct
marker. The customization of prefiltering is performed in
the initialization file. In this section we focus on the use of
Sequence filter and the AnthonyNolan filter (which assists
in quality control of incoming data), both in the context
of analyzing HLA data.

Comparing intermediate and high-resolution sequences

High-resolution HLA typing identifies alleles with a unique
sequence at the amino acid level. In the nomenclature, alle-
les that are typed at high resolution are represented by four
digits. Alleles that are typed at an intermediate resolution
are generally represented by two digits and it is not always
possible to assign a unique amino acid sequence for a given
allele of intermediate resolution. To ensure that data of in-
termediate (two digit) resolution can be reliably compared
with high resolution (four digit) sequences, a consensus se-
quence must be generated. This consensus sequence takes
into account all the possible amino acid sequences the in-
termediate resolution could match. For example, in the
case of the HLA-A locus, the intermediate resolution “03”
allele could match any allele starting with the “03” digits
such which include alleles 0301 through to 0314.

The allele-to-sequence lookup converts allele calls into
sequence data. This lookup uses the Multiple Sequence
Format (MSF) (14) file format which includes the full align-
ment (including gaps and deletions). Because not all al-
leles have a unique sequence, we developed an algorithm
for generating “consensus” sequences. First, all alleles in
a population were identified and a search for a unique se-
quence was initiated for each allele. If a unique sequence
was found then that allele is completed and that sequence
continues through the pipeline. If a unique sequence is not
found, and the allele could match several different alleles
such as the 03 example, then the sequence for each possi-
ble match was generated. The sequences for each possible
allele match were aligned and compared, and all common
sites identified, and used in the resulting “consensus” se-
quence. Although, where the sequence differs for any of
the alleles, that site was flagged as “unknown” data (“*”)
to reflect the ambiguity in that site, because the original
allele could correspond to a number of different sequences.
Once consensus sequences for all alleles are generated, all
monomorphic sites are dropped and only the polymorphic
sites, as separated genetic markers, are passed to the main
PyPop pipeline. A schematic of this process for the exam-
ple of 03 is shown in Figure 1.

We developed two other filter modules, which al-
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03 (original allele)

0301 YYSVSG (possible match 1)

0302 ....G. (possible match 2)

0303 ....G. (possible match 3)

0304 ...... (possible match 4)

0305 ...... (possible match 5)

0306 ....Y. (possible match 6)

YYSV*G (final consensus)

Figure 1: Generating consensus sequences from HLA alle-
les. Dots (“.”) represent nucleotide or amino acid
residues that are the same as the top sequence
in each case. The sequences are only illustra-
tive and do not represent actual sequence data
and only represent a small portion of the aver-
age HLA sequence which is about 150 amino acid
or 450 nucleotides

low for different ways of grouping data. These filters
are DigitBinning and CustomBinning and allow high-
resolution allele data to be conveniently analyzed at a
broader level, without the need to make any changes to
the original data input files. The DigitBinning filter al-
lows all high-resolution (four digit) HLA alleles to be col-
lapsed (“binned”) down to serological-level resolution (two
digits), so that high-resolution data can be compared with
older serological-level data. CustomBinningallows the user
to define custom-rules to govern which alleles are grouped
(binned) together and allow a finer-level of control over the
binning process than DigitBinning.

Quality control The filters also serve an important data
quality control function. For example, the AnthonyNolan

filter is useful for HLA data. The Anthony Nolan Trust
maintains a database of known HLA allele names and can
be used to check that alleles specified in an input popu-
lation genotype file are valid. The filter also contains ad-
ditional heuristics for determining (and substituting) the
most likely match if a nonmatching allele is found. This
filter uses the MSF format. Data files of the HLA alleles
names can be obtained via the ftp site (15) at the immuno-
genetics (IMGT) database (16).

Functions and statistical tests

PyPop implements a number of population genetic tests
and statistics for both single locus and multiple loci. These
are summarized in Table 1. We designed PyPop to han-
dle large sample sizes (e.g., sample sizes of between 1000
and 2000 individuals per population), which can be prob-
lematic for methods using either resampling or iterative
procedures, or both, such as exact tests, haplotype fre-
quency estimation, and linkage disequilibrium (LD) signif-
icance testing.

New statistical methods, implemented since the alpha
version, include a modified version of the Guo and Thomp-
son (4) code to estimate the overall P -value for deviation

from Hardy-Weinberg proportions. This version adds an
option to use a plain Monte-Carlo algorithm in addition
to the existing Markov chain Monte-Carlo algorithm. The
module can now handle a larger number of alleles and will
soon allow estimation of P -values for each genotype in the
population under consideration. A feature of PyPop that
has proved very useful in the analysis of the IHW data
is the availability of tests for individual heterozygote and
genotypes tests for HWP that are not available in other
software. These tests identify the specific genotypes that
contribute most to any overall significant deviation from
HWP. A later release will include a permutation-based test
of individual genotypes for HWP.

Postanalysis processing

The XML output is transformed into a human-readable
text file by the default Extensible Stylesheet Language
Transformations (XSLT) stylesheet. The XML output can
be further transformed using standard tools into many
other data formats suitable for machine input. These
include PHYLIP (25) or statistical packages, such as R
(13), or other human-readable outputs such as HyperText
Markup Language (HTML). For example, PyPop provides
the popmeta script, which takes a number of output XML
files from individual populations and aggregates the re-
sults into a set of tab-separated (TSV) files containing the
statistics grouped by type (one-locus statistics appear in
one file, two-locus statistics in another file). These files
can be directly imported into a spreadsheet or statistical
software.

The current in-development version will allow multiple
population file names to be supplied to the pypop script
and the TSV files to be generated without requiring a sep-
arate run of the popmeta script. Another advantage of
storing the output in XML is that it allows the final view-
able output format to be redesigned at will (for example
by user-supplied XSLT stylesheets), without requiring the
analyses themselves to be rerun. Lastly, the XML out-
put allows PyPop itself to be embedded as part of a larger
pipeline, thus avoiding the inherent problem of reparsing
free-text output for input to another step in the process, a
limitation of some existing packages.

Results

In the context of the 14th IHW analyses (26, 27), PyPop
has allowed us to explore population genetic statistics at
several levels (within and between populations, within and
between geographic regions). For example, it is relatively
simple to search for the presence or absence of particu-
lar alleles or haplotypes across ethnic groups or geographic
regions once the data has been aggregated into a single
spreadsheet. Also, the availability of several measures of
overall LD (e.g., Wn, a multi-llelic extension of the corre-
lation measure; D

′

; and the standardized likelihood ratio
test statistic) has allowed us to investigate how these mea-
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Functions Notes References for

function

Population
summary

Sample size (n); allele frequencies; number of distinct alleles per locus
(k)

N/A

Genotype
summary

Lower triangular matrix with observed and expected genotype counts;
significant genotypes highlighted.

N/A

χ2test of HWP χ2-square statistic; degrees of freedom; associated P -value for several
classes of genotypes (e.g., all heterozygotes, all homozygotes, common
genotypes)

(17)

Exact test of
HWP

Three modules: Markov chain Monte Carlo version based on original
Guo & Thompson code (4); a modified Monte-Carlo version (no
Markov chain); a module that calls Arlequin (18).

(4)

Ewens-Watterson
test of neutrality

Observed and expected homozygosity (F ), its expected value,
variance, and normalised deviate (Fnd) under neutrality Slatkin’s
(5, 6) implementation

(7, 8)(19)

Haplotype
frequency
estimation

Haplotypes frequencies estimated using the expectation-maximization
(EM) algorithm.

(20, 21)

Linkage
disequilibrium
(LD) measures

Significance tested by the permutation distribution of the
likelihood-ratio statistic; Overall measures of multi-allelic LD: D

′

and
Wn

(22)D
′

(23); Wn

(24)

Table 1: Statistical functions, N/A: not applicable; HWP: Hardy-Weinberg proportions

sures differ in the information they convey about LD in
the highly polymorphic HLA data. As a final example, it
has been informative to look at the degree of LD and de-
viation from HWP for populations with different levels of
heterozygosity and admixture.

Although developed originally for the HLA system, Py-
Pop is general enough that it can be used on any genotype
data. As of the time of writing 13 peer reviewed publica-
tions have cited PyPop, some analyzing data for non-HLA
genetic systems. Research papers using PyPop for analysis
of HLA data include collaborations among members of our
research group with research groups in Ireland (28), Wash-
ington, DC (29), and Seattle (30). These collaborations
have addressed issues of natural selection on HLA genes,
population differentiation, and issues in unrelated donor
hematopoietic stem cell transplant, respectively.

Nine of the 13 publications were from independent re-
search teams which used PyPop to analyze data in both
HLA and non-HLA genetic systems. HLA genetic data an-
alyzed included class I haplotypes in a Han Chinese popu-
lation (31) and HLA associations with age-related macular
degeneration (32, 33) and multiple sclerosis (34). Non-
HLA genetic systems included rheumatoid arthritis (35),
interferon regulatory factor-1 (36), orofacial clefts (37), cy-
tokine polymorphisms (38) and mite allergen sensitization
(39). These papers demonstrate the usefulness of PyPop
to address scientific questions in a variety of genetic sys-
tems. PyPop has also been cited in a review of population
genomics (40) and a textbook chapter (41).

Discussion

PyPop is a software pipeline that is particularly well posi-
tioned to handle large-scale highly polymorphic datasets
typical in genomics studies (40). PyPop facilitates the
analysis of cross-population data and comparisons of var-
ious population genetic statistics. It has been designed to
synthesize and enhance the tools that are currently avail-
able rather than supplant them, while at the same time
adding new methodological options. The modularity and
ability to prototype and add new modules make this frame-
work an efficient tool for integrating the rapidly growing
array of population genetic analysis methods.

Availability and requirements

Project name: PyPop
Project home page: http://www.pypop.org/
Operating system: Unix-based systems including
Linux and MacOS X; Windows (binaries for Linux and
Windows available)
Programming language: Python, (Numeric Python
module required)
Other requirements: If building from source: libxslt,
SWIG, GNU Scientific Library (GSL)
License: GNU General Public License (GPL)
Any restrictions to use by nonacademics: None
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