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Abstract 1 

This paper introduces and summarizes a first-of-its-kind integration of a dynamic, 2 
second-by-second traffic router/micro-simulator (TRANSIMS) with the UrbanSim land 3 
use model, implemented in Chittenden County, VT. It first describes how and why these 4 
components were integrated. It next describes a preliminary comparison of the land use 5 

outputs of this highly complex and time-intensive model integration to a more standard 6 
integration of UrbanSim with a traditional four-step transportation demand model using 7 
TransCAD.  Statistical tests found only slight differences in the land use predictions 8 
between the two model integrations for 2030. Although these differences were slight, 9 
their spatial patterns shed light on how transportation models influence the outcome of 10 

land use models. In particular, differences in land use predictions appear to relate to 11 
TRANSIMS’ predictions of emergent traffic bottlenecks along routes that serve 12 
peripheral areas where there is poor redundancy in route choice . These results suggest 13 

that land use models are at least somewhat sensitive to the type of transportation model 14 
that is used to generate accessibility measures. Nonetheless it is impossible to say with 15 
the data at hand which is more accurate for long term predictions.  It is unlikely that the 16 
benefits of adding TRANSIMS or similar micro-simulators to a land use model 17 

outweigh the high costs of implementation.  However, this assessment may vary with 18 
context. Our study site is a small metropolitan area with only modest population 19 

pressures and limited traffic congestion. Our results indicate that differences  in 20 
predictions between model integrations grow as population forecasts are artificially 21 

increased, so integration of TRANSIMS may be of greater use in more congested areas.   22 

Introduction 23 

The linkages between land use and transportation and the need to incorporate those 24 

linkages in planning have been well established (1-4). Under the Intermodal Surface 25 
Transportation Efficiency Act (ISTEA) of 1991 and the Transportation Equity Act for 26 

the Twenty First Century (TEA-21) of 1997 (to a lesser extent), in order to receive 27 
certain types of federal transportation funds, state or regional transportation agencies 28 
are required to model the effect of transportation infrastructure development on land 29 

use patterns and to consider whether transportation plans and programs are consistent 30 
with land use plans.  Metropolitan Planning Organizations (MPOs), which already 31 
frequently use transportation models, are increasingly integrating dynamic land -use 32 
modeling into those efforts, to help evaluate transportation infrastructure performance, 33 

investment alternatives, and air quality impacts.  34 

Dynamic coupled models are distinct from stand-alone models in that they simulate the 35 
dynamic interactions between transportation and human activities. Because accessibility 36 

largely drives land use, dynamic land use models have long been integrated with 4 -step 37 
travel demand models (5).  However, as dynamic components are added, model 38 
integrations become increasingly complex and difficult to implement.  Moreover, these 39 
models are generally simplistic and spatially aggregated in their characterizations of 40 
traffic and accessibility.  Little guidance exists about what levels of complexity or 41 

disaggregation is needed or appropriate for modeling land use and transportation and 42 
how that changes for different planning applications. Tradeoffs between realism and 43 
cost are poorly understood.  The correct balance likely depends on the particular 44 



3 
 

application of the model. Many new approaches to comprehensive model -integration are 1 

being unveiled in the research community. However, as noted by Hunt et al. ( 6), few of 2 
these models have been conclusively shown to increase the accuracy of the model 3 

output.   4 

This paper presents one of the first known attempts to integrate a traffic router/micro-5 

simulator operations model with a highly disaggregated and dynamic land use model. 6 
Three components are used in this modeling effort: UrbanSim for land use (7-9), 7 
TransCAD (Caliper, Inc) for travel demand modeling and traffic routing and 8 
assignment, and TRANSIMS for traffic routing through microsimulation (10-11).  We 9 
compare the more commonly-used integration of the land use model with the static 10 

traffic assignment (TransCAD) to the novel integration of the land use model with the 11 
dynamic router/micro-simulator (TRANSIMS). The latter integration also requires use 12 
of TransCAD for trip generation, so we refer to the simpler integration as the “2-way 13 

model” and the more complex one as the “3-way model.” 14 

UrbanSim is a land-use allocation model that simulates urban growth for a region based 15 

on externally derived estimates of population and employment growth (control totals). 16 
Expected growth is spatially allocated across the landscape to simulate the pattern of 17 
future development and land use. Agents in UrbanSim include both households and 18 
employers. The landscape is divided into grid cells of a user-defined size (geographic 19 
units like parcels can also be used).  Each simulated development event is assigned to 20 
one of those cells based on factors like accessibility, site constraints, and zoning. While 21 

almost all other urban growth models rely on aggregate cross-sectional equilibrium 22 
predictive approaches, UrbanSim is an agent-based behavioral simulation model that 23 

operates under dynamic disequilibrium, which allows for more realistic modeling of 24 

economic behavior; supply-demand imbalances are addressed incrementally in each 25 

time period but are never fully satisfied. Because of its dynamic nature, UrbanSim can 26 
endogenize factors that other models take as exogenous, such as location of 27 

employment and the price of land and buildings.  Model features include the ability to 28 
simulate the mobility and location choices of households and businesses ;, developer 29 
choices for quantity, location and type of development; fluxes and short-term 30 

imbalances in supply and demand at explicit locations; and housing price adjustments 31 
as a function of those imbalances. Because accessibility is such a core determinant of 32 

land use, UrbanSim is generally integrated with some type of transportation model. The 33 
assumption is that accessibility changes over time so transportation must be made 34 
endogenous. The degree to which accessibility affects land use depends on the way that 35 
the various statistical models in UrbanSim are parameterized and the extent to which 36 
the data reveals a relationship. In our version of UrbanSim, we estimated a number of 37 

models, several of which include coefficients for accessibility.     38 

TransCAD is a traditional four-step travel demand model, including trip generation, trip 39 
distribution, mode split and traffic assignment. The trip generation step quantifies the 40 

number of incoming and outgoing trips for each zone based on land use and 41 
employment patterns, and classifies these trips according to their purpose (e.g., home to 42 
work, home to shopping). Trip distribution assigns the incoming and outgoing travel 43 

from the trip generation step to specific zones. The mode split step estimates the 44 
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number of trips by mode of transport. Finally, the traffic assignment identifies the route 1 

for each trip. Traffic assignment is based on an equilibrium model which employs an 2 

iterative procedure to reach convergence.  3 

TRANSIMS is a detailed, data-intensive operations model that is designed to simulate 4 
traffic behavior with great spatial and temporal disaggregation. It  consists of four 5 

modules: (1) synthetic population generator; (2) activity generator; (3) router; and (4) 6 
micro-simulator, although in this case we use only the third and fourth components . In 7 
standalone implementations, TRANSIMS starts by creating a synthetic population based 8 
on census and land use data, among other data sets.  The Activity Generator then 9 
creates an activity list for each synthetic traveler.  The activity generator and the router 10 

then compute combined route and mode trip plans to accomplish the desired activities.  11 
Finally, the micro-simulator simulates the resulting traffic dynamics based on a cel lular 12 
automata model, yielding detailed, second-by-second trajectories of every traveler in 13 

the system over a 24-hour period.  The micro-simulator allows for a highly detailed 14 
characterization of traffic flows and is able to take into account factors like cueing, car-15 
following, and lane changing behavior. As an operations model, it is designed to help 16 

optimize microscopic factors such as signal timing and actuation.   17 

While TRANSIMS allows for an activity-based approach to transportation demand 18 
modeling (using its population synthesizer and activity generator), the model’s router 19 
and micro-simulator modules can still be applied using standard Origin-Destination (O-20 
D) matrices.  This provides a cost-effective approach for regional planning 21 

organizations, which can take advantage of the increased resolution of the TRANSIMS 22 
micro-simulator, while continuing to depend upon familiar O-D matrices.  23 

Implementing only TRANSIMS’s router and micro-simulator is typically referred to as 24 

a “Track 1” TRANSIMS implementation.  “Track 1” TRANSIMS implementation has 25 

been the focus of the current work so far.  26 

The primary difference between TransCAD and TRANSIMS is the way each one 27 
characterizes traffic and resulting accessibilities (which are an input into UrbanSim). 28 
TransCAD uses a volume-delay function, where the congested travel time on the link is 29 

equal to the ratio of the number of vehicles on the link divided by the total capacity of 30 
the link. It assumes that inflow equals outflow for al l individual links in the network. 31 
TRANSIMS, on the other hand, calculates congested travel times based on a simulated 32 
interaction of vehicles on the roadway that takes into account factors like weaving, 33 

merging, queuing, traffic signals, and intersection spill-back. TRANSIMS is designed 34 
to replicate the real-world phenomenon that lead to increased travel time and congestion 35 
that cannot be explained by just a simple volume-to-capacity ratio. This means that 36 

failure can occur at some intersections where inflow no longer equals outflow. As a 37 

result, TRANSIMS is likely to predict more localized bottlenecks.  38 

 39 

  40 



5 
 

Objectives 1 

The first purpose of this paper is to introduce and describe the first -of-its-kind 2 
integration of the TRANSIMS router/micro-simulator with the UrbanSim land use 3 
model. The second purpose is to determine whether the two model integrations lead to 4 
different land use predictions. To the extent the land use predictions differ, we analyze 5 

the pattern of outputs to better understand how the two approaches to calculating 6 
accessibilities in each transportation model contributes to these differences .  By 7 
characterizing and analyzing these differences we hope to shed light on the role that 8 
transportation and accessibility modeling play in long-term land use predictions and the 9 

tradeoffs to added complexity in such modeling efforts .  10 

 11 

Methods  12 

Modeling Site 13 

Our models are run for Chittenden County, VT (Figure 1), the most populous county in 14 
the state and the home to its largest city, Burlington. Chittenden County is among the 15 

smallest metropolitan areas where UrbanSim has been implemented, with an estimated 16 
2009 population of 152,000. It is an excellent location for modeling for two reasons: 17 
first, its small size makes highly disaggregate and data-intensive modeling tractable; 18 
second, its isolation from other cities (the nearest metropolitan area is Montreal, more 19 
than 90 miles away), means it approximates “closed city” modeling conditions 20 
(although we do use 17 external TAZs to account for inter-county traffic, this is a small 21 

component of the county’s overall transportation) . Despite its small size, Chittenden 22 

County has its own Metropolitan Planning Organization, which conducts extensive 23 

modeling.  24 
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 1 

 2 

Description of the Models 3 

This analysis was conducted by integrating previously developed implementations of 4 

three models. We used the implementation of TRANSIMS developed by Resource 5 
Systems Group and Adel Sadek (12, 13). We use an implementation of UrbanSim 6 
developed for the same area by Austin Troy and Brian Voigt (6, 14, 15). We used the 7 
Chittenden County Metropolitan Planning Organization’s (CCMPO) implementation of 8 

TransCAD, which was developed for the MPO by Resource Systems Group, Inc. The 9 
model includes 335 internal traffic analysis zones (TAZs) to simulate traffic flow, and 10 

includes an additional 17 external zones to represent traffic entering (or passing 11 
through) the County from outside its borders (14). The travel model is based on 12 
household travel diaries collected for the CCMPO. Customized scripts were developed 13 

that automated the integrated models.   14 

The 2-way configuration consists of UrbanSim, which generates the socio-economic 15 
land use data like total number of households and employment in each traffic analysis 16 
zone, and TransCAD, which derives accessibilities using travel times from the static 17 
vehicle assignment. These travel times are then sent as input to UrbanSim. After every 18 

FIGURE 1  Map of Chittenden County. 
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five years of model time TransCAD is rerun using updated land use data from 1 

UrbanSim, and in turn updating UrbanSim’s accessibilities for that model component 2 

(6, 14, 15).    3 

The 3-way configuration adds a third component: the TRANSIMS router/micro -4 
simulator.  In this configuration (Figure 2), TransCAD performs trip generation, trip 5 

distribution, and mode choice, and exports a PM peak vehicle trip matrix to 6 
TRANSIMS. TransCAD’s static vehicle assignment is replaced by TRANSIMS’ 7 
regional vehicle micro-simulation.  The amount and distribution of regional auto travel 8 
demand is identical in the two models, but in the 3-way model the auto travel times are 9 
derived from the regional micro-simulation. Finally, accessibilities are derived using 10 

the simulation-based auto travel times and sent as input to UrbanSim. 11 

  12 

 13 

Conversion of PM Vehicle Trip Matrices 14 

To integrate the CCMPO PM-peak hour TransCAD model and the daily CCMPO 15 
TRANSIMS model we first needed to convert the PM peak hour vehicle trip matrices 16 

produced by TransCAD to daily vehicle trips.   17 

There are five post-mode-choice vehicle trip matrices for three trip purposes: (1) home-18 

based-other, leaving home; (2) home-based-work, coming home; (3) home-based-other, 19 
coming home;  (4) home-based-work, work to nonhome; and (5) non-home-based, 20 

nonwork to nonhome. There is also a single post-distribution trip table which includes 21 
commercial truck trips. Finally, there is a single post -distribution trip table which 22 

includes external-to-external trips. 23 

We had diurnal distribution data that was collected during the development of the daily 24 
CCMPO TRANSIMS model, and daily peak PM hour traffic volume (defined as 5:00 25 
pm to 6:00 pm in the TransCAD model). From this, we derived a PM peak hour to daily 26 

adjustment factor for each trip type using the diurnal distribution data. The diurnal 27 

FIGURE 2  Three-way model configuration. 
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distribution data is presented in Figure 3 below. The calculated PM peak hour to daily 1 

adjustment factors are set forth in Troy, et al. (14).   2 

 3 

A new macro was added to the PM-peak hour CCMPO TransCAD model that applies 4 
the adjustment factors to the PM vehicle trip matrices to generate daily vehicle 5 
matrices. The macro then exports the vehicle trip matrices for each trip type as comma-6 

delimited text files. A custom Visual Basic program then applies a bucket rounding so 7 
row totals are maintained since the number of trips for each origin -destination pair must 8 

be in integer form for input to TRANSIMS. The trip lists for each trip type are now 9 

ready for input into the ConvertTrips batch which is the first module of the TRANSIMS 10 

model. 11 

 12 

Updating the Accessibility File with TRANSIMS Times 13 

For the 2-way model, TransCAD generates a file that contains the auto, walk/bike, and 14 
transit utilities as well as the logsum (composite measure of accessibility across modes) 15 

for each zone-to-zone pair. This file is fed back to UrbanSim for the next iteration. By 16 
incorporating TRANSIMS into the model chain in the 3-way model, we replace the auto 17 
utilities in this file with auto utilities based on zone-to-zone travel times calculated by 18 

the TRANSIMS micro-simulator instead of the TransCAD model assignment module.  19 

TRANSIMS-based auto utilities are calculated using the following regression equation:  20 

Utility (Auto) = -1.09438 - 0.020795 * TRANSIMS Time 21 

Logsum value for each zone-to-zone pair are calculated based on the new auto utilities.   22 

Logsum = LN(EXP[Utility(Walk-Bike)] + EXP[Utility(Transit)] + EXP[Utility(Auto)]) 23 

FIGURE 3  CCMPO TRANSIMS model diurnal distributions. 
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TRANSIMS has built-in utilities that aggregate the temporally and spatially detailed 1 

travel time information produced by the vehicle microsimulation to produce zone -to-2 
zone congested travel time skim matrices for selected time periods and increments. A 3 
new module was added to the TRANSIMS model to produce and save these zone-to-4 

zone travel time skim matrices. The skim file output contains the zone-to-zone 5 
congested travel time for the 5:00pm to 6:00pm hour calculated by the micro-simulator, 6 
since the 2-way model also utilized PM peak hour travel times from the static vehicle 7 

assignment. 8 

A python script reads the existing logsum file generated by the TransCAD model as 9 
well as a TRANSIMS zone-to-zone travel time skim file. The program updates the 10 

UtilsLogsum.txt by calculating a new auto utility and then recalculating the logsum for 11 
each zone pair using the equations presented above. The revised logsum and utility file 12 

can then be used as input to UrbanSim to complete the feedback process.  13 

A new module was added to the CCMPO TRANSIMS model that writes out a zone-to-14 
zone travel time skim matrix. The skim file output contains the zone-to-zone congested 15 

travel time for the 5:00pm to 6:00pm hour calculated by the micro-simulator. 16 

Model Runs and Analysis 17 

We ran forty year simulations of both the 2-way and 3-way model integrations using the 18 
same data sets, starting in 1990 and ending in 2030. In both cases, UrbanSim iterated 19 

every year while the transportation model ran every five years. A fixed seed was used in 20 
choice-set delineation for UrbanSim to minimize stochasticity and maximize 21 
comparability between the model integrations. Each model integration uses the same 22 

UrbanSim model coefficients.  23 

Two versions of each model were run, one using population and employment forecasts 24 
obtained from the MPO as control totals, known as the “baseline scenario ,” and another 25 

using controls totals artificially increased by 50%, known as the “increased control total 26 
scenario.” This was done to help determine whether differences in the models may 27 

relate to population development pressures.  28 

Finally, we analyzed the outputs. While a large number of indicators are produced by 29 
these model integrations, we focus this analysis on three: residential units (at the town 30 
and TAZ level), commercial square footage (at the town and TAZ level) and 31 
accessibilities, characterized as logsum values (at the TAZ level only).  Because our 32 
model base year is 1990, we were able to conduct a preliminary validation of both 33 

model integrations against observed data from later years (2006 for household 34 

development and 2009 for commercial development). We found no statistically 35 

significant differences in prediction accuracies for the two model integrations .  For that 36 
reason, we do not present the results here. Nevertheless, we ran statistical analyses to 37 
look for differences in the 2030 outputs of the two models and analyzed geographic 38 

patterns in those differences.  39 

 40 

  41 
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Results 1 

Statistical differences in models 2 

Variance ratio tests for the whole population of TAZs revealed no significant difference 3 
in variance across the whole population of TAZs between models for both sets of 4 
indicators for 2030.Using paired t-tests, slight significant differences were found in 5 
predicted commercial square footage for 2030 at the TAZ level when grouped by town. 6 
For the baseline population scenario, significant differences in commercial square 7 

footage were found at the 95% confidence level for the town of Williston (t=2.654, 8 
p=0.011), which has the third largest number of TAZs in the county. Westford had 9 
significant differences at the 90% confidence level (t=-2.366, p=0.099). With the 10 
increased control total scenario, differences were fewer: there were no significant 11 
differences in commercial square footage at the 95% confidence level, although 12 

Burlington (t=-1.825, p=0.072) and Shelburne (t=-1.867, p= 0.92) were different at the 13 

90% level. A significant difference in residential units was found for Milton at the 95% 14 
confidence level in the baseline scenario (t=-2.487, p=.03). In the increased control 15 

total scenario, significant differences at the 95% level were found in residential units 16 
for Jericho (t=-3.61, p=.037) and at the 90% level for Milton (t= -2.12, p=.058). A 17 
spatial statistical analysis was also conducted using Moran’s I (Moran (1950) to see if 18 
measures of spatial autocorrelation differed between the outputs of the two models, but 19 

no difference was found. 20 

 21 

Preliminary Comparison of Travel Times 22 

Figure 4 shows the difference in predicted logsum accessibilities between TRANSIMS 23 
and TransCAD for the year 2030 under a scenario with baseline population forecast 24 
control totals. Because accessibility is one of the core driving factors in the land use 25 

predictions, the fact that there are clear differences in the spatial pattern of accessibility 26 
served as an indication that differences in land use outputs were a d istinct possibility 27 

and that further analysis was warranted.   28 
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 1 

Long-term trends  2 

We looked at graphs of key indicators to see when large discrepancies emerge between 3 

the models, if at all. Figure 5 shows the percent difference in predicted housing units 4 
between the two models for a sample of eight towns from 1990 to 2030. It indicates a 5 

continuously growing difference for the outlying towns of Milton and Underhill. Milton 6 
has higher predictions for the 2-way model, while Underhill has the opposite. Other 7 
towns, like Bolton, show divergence between the models in early years and then return 8 
to smaller differences later.  Several towns start to show patterns of divergence between 9 

models and then return to small differences in later years, such as South Burlington, 10 
Richmond and Colchester. Others are in close agreement throughout all forty years of 11 
model time, such as Charlotte and Burlington.  Commercial square footage prediction 12 

graphs (not shown here) show a somewhat similar pattern with Milton also having 13 
increasingly positive 2-way prediction differences over time, several outlying towns 14 
with the opposite pattern and a number of towns in the middle, with relatively little 15 

difference.  16 

FIGURE 4 Comparison of accessibilities characterized as logsums by TAZ for 2-

way (a) and 3-way (b) models. Logsums are unitless measures of relative 

accessibility.  Yellow indicates TAZs with better accessibility, blue indicates worse.    
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 1 

FIGURE 4  Percent difference in predicted residential units between models (2-way 2 

minus 3-way divided by total units) for a sample of 6 towns.   3 

Side by side maps in Figure 6 and 7 show percentage differences in predicted 4 

residential units (a) and commercial square footage (b) for 2030 at the town level  and 5 
the TAZ level, respectively, under the increased control total scenario. Baseline control 6 
total maps are not shown in the interests of space and because the patterns are similar 7 

but much weaker. 8 
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FIGURE 5  Town-level comparison under increased control totals:  (a) Percent 

difference in residential development forecasts from the two way and three-way models 

for 2030 using baseline control totals.  (b) Percent difference in commercial 

development forecasts from the two way and three-way models for 2030 using baseline 

control totals.  Blue indicates more development predicted by the three-way model; red 

indicates more development predicted by the two-way model.  
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 5 

 6 

Discussion 7 

This project was the first of its kind to successfully integrate the TRANSIMS 8 
router/micro-simulator with a highly disaggregated and dynamic land use model like 9 
UrbanSim. This project is significant in showing that such an integration of highly 10 
complex models is feasible. However, questions remain about whether using this type 11 
of transportation model has significant implications for land use modeling or not  and, if 12 

so, whether its benefits are worth the effort .  With hundreds of gigabytes of outputs, far 13 
more analysis of the results of these models remains to be done before an answer to 14 
these questions can be made definitely. However, this analysis represents a preliminary 15 

attempt to address it.  16 

The fact that accessibilities are far more spatially heterogeneous in the 3 -way model 17 

(Figure 4), would lead us to believe that, theoretically, there could be sys tematic 18 
differences in the land use outputs. Our UrbanSim implementation consists of ten 19 
statistical models that drive activities like household and employment moves, land 20 

FIGURE 6   Same as Figure 6 but at the TAZ level.   
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price, and development events. While many include spatial parameters such as location 1 

within the “urban core,” or the amount of commercial or residential development within 2 
walking distance, only the residential and commercial development models include 3 
parameters on accessibility from the travel model.  Because TRANSIMS predicted more 4 

localized areas of reduced accessibility within the interior of the county, we expected to 5 
find that some more centrally located areas might develop slightly less in the 3 -way 6 

model than in the 2-way model.  7 

While the results of our two models are different, it is not clear that these differences 8 
are important enough to matter for the purposes of land use change prediction. Our 9 
validation results (not presented here) show minimal differences between the two in 10 

predicting intermediate-year data. Statistical pairwise comparisons of TAZ-level results 11 
grouped by town suggest that differences in predicted indicators for 2030 are present 12 
for only a few towns. Tests of the whole population of TAZs found no significant 13 

difference in variance for both land use indicators.  14 

Nonetheless, our maps of 2030 prediction differences in commercial development under 15 

increased control totals (which was use because it emphasizes the differences between 16 
models more) show some interesting patterns that suggest potential systematic spatial 17 
differences in predictions. As Figure 6 shows, all the peripheral towns along the 18 
northern and eastern boundaries of the county have more commercial development 19 
under the 2-way model than under the 3-way. The same pattern is evident at the TAZ 20 
level, although heterogeneity is slightly greater along the periphery. This result is 21 

intuitive given what we know of the models. As population grows, TRANSIMS predicts 22 
more congestion and delay and hence lesser accessibility in the outer TAZs than 23 

TransCAD. This pattern is particularly evident for TAZs that do not adjoin the 24 

Interstate (where the Interstate runs through, there are fewer red TAZs). Redundancy of 25 

routes is very poor the further out one travels in the county, so just a few high -delay 26 
links can make a big impact on accessibility in areas that require a long drive on non -27 

Interstate routes. Our preliminary analysis of TRANSIMS’s link level outputs (not 28 
presented here) shows a number of predicted traffic bottlenecks along such key arterials 29 
that connect outer suburbs to the urban core that TransCAD does not  capture. Not all of 30 

these “red TAZs” are on the outer periphery. Some are more central, but require 31 
significant driving on bottleneck-prone arterials. Interestingly, as is reflected in Figure 32 

8, most of the TAZs containing an Interstate exit appear to have higher employment 33 

predictions in the 2-way model, which is consistent with this explanation.   34 
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 1 

FIGURE 8  Blow-up of Figure 7(b) showing Interstate Exits.   2 

 3 

No clear spatial pattern is evident for differences in residential predictions.  Figure 6 4 
suggests that only one of the towns included in the graph experience steadily increasing 5 
differences over time between models. Otherwise, differences oscillated within a small 6 

range over time. This difference between residential and commercial indicators is likely 7 
due to the model coefficients that relate to output from the transportation models. The 8 

residential developer model includes a parameter for home accessibility to employment 9 
while the commercial developer model includes a parameter for work accessibility to 10 
employment. Further, the commercial development coefficient is almost twice the 11 

magnitude of the residential coefficient.  12 

  13 

Conclusion 14 

TRANSIMS is designed as an operations model for assessing and optimizing 15 

microscopic factors in the traffic network. Some believe that models like this are 16 
inappropriate for coupling with long-term land use change models. Our land use results 17 
from the 2030 simulation look generally reasonable, but our preliminary analysis of link 18 
level data from TRANSIMS indicates that after forty years of simulation, a number of 19 
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unrealistic bottlenecks and congestion points develop. This is probably because, as an 1 

operations model, TRANSIMS runs with an assumption that factors like signal timing 2 
and lane rules are to be changed over time. When they remain static over long periods 3 
like forty years, this may lead to unrealistic characterizations of accessibility. 4 

Nonetheless, these bottlenecks only had a very minor impact on development 5 
predictions. This may be because of our model coefficients, which were estimated in an 6 
area where traffic congestion is relatively minimal. Had we estimated these coefficients 7 
in a larger urban area with extensive congestions, it is possible that the impacts of these 8 
accessibility differences on development would have been greater. Hence, the impact of 9 

transportation model type on land use results is extremely sensitive to model coefficient 10 
specification.  It is also possible that had we run the TRANSIMS Track 2 11 
implementation which includes the activity model with disaggregated activity locations, 12 

differences would have been more pronounced. 13 

Given our current results, there appears to be little justification for expending the large 14 
amount of time and money required to implement TRANSIMS for the purposes of long -15 
term land use modeling in a context like Chittenden County. However, this approach 16 
might be more valuable in large metropolitan areas where population pressures and 17 

traffic delays are much greater. In such cases, we would expect to find delay-related (as 18 
opposed to distance-related) accessibility having a greater impact on land use. It is 19 

possible that in such cases a land use model integrated with TRANSIMS would yield a 20 
more accurate characterization of accessibility, leading to better land use predictions. 21 
However, such a model should probably only be run for short-term predictions in highly 22 

congested areas, as long-term simulations could result in unrealistic localized stoppages 23 
of traffic flow which, in real life, could be addressed through minor interventions, like 24 

re-timing signals. Further research is warranted to determine the usefulness of including 25 

a micro-simulator in land use modeling for more populous and congested regions and to 26 

determine the appropriate time frame of modeling in this context.  27 

The integration of TRANSIMS with a land use model may also be valuable in assessing 28 
how hypothetical changes to the transportation network might influence the spatial 29 
pattern of development, potentially even in smaller metropolitan areas. We are currently 30 

in the process of running the 2-way and 3-way models on an alternative scenario 31 
involving the construction of a large number of new roads to determine if the 3-way 32 

model’s land use predictions are more spatially sensitive to the new infrastructure.   33 
This and other future research will help us better understand the usefulness and cost 34 

effectiveness of complex integrated modeling tools for the planning process . 35 
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