

Learning Objectives

Class 12: Greenhouse to Icehouse, the last 50 million years

- What has climate done over the past 50 million years?
- What mechanisms explain the observed climate change?

- 1. Be able to describe the global temperature trend over the last ~50 million years
- 2. Describe the tools used to reconstruct this record and how each works
- 3. Identify and explain one hypothesis about the causes of global temperature change over the last 50 million years
- 4. Explain why information about climate over the last 50 million years is relevant to climate change today

GEOLOGY 095, 195. Climate: past, present, future

Climate in the News

Scientists endorse mass civil disobedience to force climate action

Climate in the News

Stephen Leslie: A farmer on the frontline of climate action

By **Commentary** Oct 15 2019 | 7 reader footnotes

Holocene = 11,700 years ago to present

Holocene = 11,700 years ago to present

Pleistocene = ~2.6 million to 11,700 years ago

Last Glacial Maximum (~29-20 kyr)

• Big ice sheets

- Sea level ~130 m lower than today
- Global temp ~3.5°C lower than today

Last Glacial Maximum (~29-20 kyr)

- Melting Northern Hemisphere ice sheets suppress AMOC
- Less downwelling and CO₂ sequestration in ocean
- Warms southern hemisphere, causing more CO₂ release

The Last Interglacial (~125 kyr)

West Antarctica

- Slightly warmer than today
- Sea level ~5 m higher than today
- Atmospheric CO₂ around 300 ppm

The Last Interglacial (~125 kyr)

Last Interglacial (~125 kyr) – Present

Last Interglacial (~125 kyr) – Present

- Slow, bumpy build-up of glaciers and ice sheets (~100 thousand years)
- Fast melting (~15 thousand years for biggest ice sheets)

Last Interglacial (~125 kyr) – Present

- As ice sheets build up around North Atlantic, water becomes saltier
- Downwelling and CO₂
 sequestration increase

Sawtooth Pattern

- As ice sheets build up around North Atlantic, water becomes saltier
- Downwelling and CO₂
 sequestration increase

What causes the sawtooth pattern?

Partly due to orbital cycles

What causes the sawtooth pattern?

What causes the sawtooth pattern?

Partly due to ice sheets having a LOT of internal positive feedback loops!

Holocene = 11,700 years ago to present

Pleistocene = ~2.6 million to 11,700 years ago

Learning Objectives

- 1. Be able to describe the global temperature trend over the last ~50 million years
- 2. Describe the tools used to reconstruct this record and how each works
- 3. Identify and explain one hypothesis about the causes of global temperature change over the last 50 million years
- 4. Explain why information about climate over the last 50 million years is relevant to climate change today

Learning Objectives

- 1. Be able to describe the global temperature trend over the last ~50 million years
- 2. Describe the tools used to reconstruct this record and how each works
- 3. Identify and explain one hypothesis about the causes of global temperature change over the last 50 million years
- 4. Explain why information about climate over the last 50 million years is relevant to climate change today

Tiny creatures build their skeletons using oxygen from ocean water

They inherit the oxygen isotope signature of the water

I know... oxygen isotopes are confusing. Here's what you need to know:

- Larger $\delta^{18}O = Colder$ water *and* more ice volume
- Smaller δ^{18} O = Warmer water *and* less ice volume
- Note: δ¹⁸O is usually plotted upside down (the numbers increase as you go down) so that up means warm

Learning Objectives

- 1. Be able to describe the global temperature trend over the last ~50 million years
- 2. Describe the tools used to reconstruct this record and how each works
- 3. Identify and explain one hypothesis about the causes of global temperature change over the last 50 million years
- 4. Explain why information about climate over the last 50 million years is relevant to climate change today

Learning Objectives

- 1. Be able to describe the global temperature trend over the last ~50 million years
- 2. Describe the tools used to reconstruct this record and how each works
- 3. Identify and explain one hypothesis about the causes of global temperature change over the last 50 million years
- 4. Explain why information about climate over the last 50 million years is relevant to climate change today

Big Picture Observations: The last 50 million years

Big Picture Observations: The last 50 million years

Learning Objectives

- 1. Be able to describe the global temperature trend over the last ~50 million years
- 2. Describe the tools used to reconstruct this record and how each works
- 3. Identify and explain one hypothesis about the causes of global temperature change over the last 50 million years
- 4. Explain why information about climate over the last 50 million years is relevant to climate change today

Learning Objectives

- 1. Be able to describe the global temperature trend over the last ~50 million years
- 2. Describe the tools used to reconstruct this record and how each works
- 3. Identify and explain one hypothesis about the causes of global temperature change over the last 50 million years
- 4. Explain why information about climate over the last 50 million years is relevant to climate change today

Multiple Hypotheses:

- Gateway Hypothesis
- Changes in CO₂
- Increased Volcanism
- Uplift Weathering Hypothesis

Gateway Hypothesis:

• Continents moved in last 50 million years

Gateway Hypothesis:

- Continents moved in last 50 million years
- This changed ocean currents!

Gateway Hypothesis:

- Continents moved in last 50 million years
- This changed ocean currents!
- Hypothesis states that these changes (1) isolated and cooled Antarctica, and (2) started the AMOC

Gateway Hypothesis:

However, data and models don't support these changes alone causing the cooling

Changes in CO₂:

- Did CO₂ lower?
- Harder to test!
- Ice cores only go back 800,000 years
- No direct measurements of CO₂ concentrations past that

Changes in CO₂:

- Some proxies exist to *estimate* CO₂ concentrations from ocean sediment cores
- Larger uncertainty in estimations the further back you go
- Overall, though, looks valid!

Spreading Rate Hypothesis:

Ok, so why did CO₂ levels drop?

Spreading Rate Hypothesis:

- Ok, so why did CO₂ levels drop?
- Increased volcanism?

Spreading Rate Hypothesis:

- Ok, so why did CO₂ levels drop?
- Increased volcanism?
- Can explain some of the reduction, but not after ~15 million years ago

Uplift Weathering Hypothesis:

- Ok, so why did CO₂ levels drop until the Pleistocene?
- Building the Himalayan Mountain, caused a global increase in chemical weathering
- Started around 55 million years ago

It was most likely due to a combination of **reduced volcanism** and **increased weathering** that led to a **reduction in atmospheric CO**₂

Scientist Profile: Dr. Maureen Raymo

Dr. Maureen Raymo is the Director of the Lamont-Doherty Core Repository at Columbia University. The work she has done over her career has vastly improved our understanding of ice ages, rapid climate change, the uplift-weathering hypothesis, and the long-term oxygen-isotope record. In 2014, she became the first woman to win the Wollaston Medal for geology in its 183-year history

Learning Objectives

- 1. Be able to describe the global temperature trend over the last ~50 million years
- 2. Describe the tools used to reconstruct this record and how each works
- 3. Identify and explain one hypothesis about the causes of global temperature change over the last 50 million years
- 4. Explain why information about climate over the last 50 million years is relevant to climate change today

Why is this relevant?

- Gives us time periods to observe with higher CO₂ levels
- Gives us a better
 understanding of how CO₂
 and temperature are
 linked
- Shows us how the climate system is different in a warmer world

