1999 Exam \#2 - Chem 36 Exam Questions w/ Answers

1. The autoionization constant of water $\left(\mathrm{K}_{\mathrm{w}}\right)$ is 1.139×10^{-15} at $0.00{ }^{\circ} \mathrm{C}$ and 9.614×10^{-14} at $60.00^{\circ} \mathrm{C}$.

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

a. Calculate the enthalpy change $(\Delta \mathrm{H})$ for the autoionization of water.

$$
\Delta \mathcal{H}=55.95 \mathrm{~kg} / \mathrm{mol}
$$

b. $K_{w}=1.0 \times 10^{-14}$ at $25 .{ }^{\circ} \mathrm{C}$. Calculate the standard molar free energy change $\left(\Delta \mathrm{G}^{\circ}\right)$ for the autoionization of water at $25 .{ }^{\circ} \mathrm{C}$.
$\Delta \mathcal{G}^{0}=80 . \mathrm{kJ} / \mathrm{mol}$
c. What is the pH of pure water at $0^{\circ} \mathrm{C}$ and at $60^{\circ} \mathrm{C}$?

At $0^{\circ} \mathrm{C}: p \mathcal{H}=7.47$
At $60^{\circ} \mathrm{C}: p \mathcal{H}=6.51$
2. At $\mathrm{T}=1200^{\circ} \mathrm{C}$, the reaction

$$
\mathrm{P}_{4}(\mathrm{~g}) \leftrightarrows 2 \mathrm{P}_{2}(\mathrm{~g})
$$

has an equilibrium constant $\mathrm{K}=0.612$.
a. Suppose the initial partial pressures of P_{4} and P_{2} are both 2.00 atm . Will the reaction proceed to the right or to the left as equilibrium is approached? (Note: you must show your work to receive full credit!)

Reaction will proceed to the left (making more P_{4})
b. Calculate the partial pressure of P_{2} at equilibrium.

$$
\mathcal{P}_{P_{2}}=1.21 \mathrm{~atm}
$$

c. If the volume of the system is then increased, will the partial pressure of P_{2} increase or decrease? Explain, briefly.
$\mathcal{P}_{P 2}$ will increase (shift to side with more moles of gas)
3. The strongest acid that can exist in a solvent is the conjugate acid formed from the autoionization of that solvent. So, for example, the strongest acid that can exist in water is the hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$.
a. Write the acid dissociation equilibrium reaction for $\mathrm{H}_{3} \mathrm{O}^{+}$, the equilibrium constant (K_{a}) expression, and calculate the numerical value of K_{a}.

$$
\begin{aligned}
& \mathcal{H}_{3} \mathrm{O}^{+}(a q)+\mathcal{H}_{2} O \text { (l) } \leftrightarrows \mathcal{H}_{3} \mathrm{O}^{+}(a q)+\mathcal{H}_{2} O \quad \text { (l) } \\
& \mathcal{K}_{a}=\frac{\left[\mathcal{H}_{3} O^{+}\right]}{\left[\mathcal{H}_{3} O^{+}\right]}=1
\end{aligned}
$$

b. The approximate K_{a} values for HCl and HNO_{3} are given on the table attached to this exam. In water, which of these acids is stronger? Explain.

Both acids are leveled to the strength of $\mathcal{H}_{3} \mathrm{O}^{+}$
c. What is the strongest acid that can exist in a solution of liquid ammonia?
$\mathcal{N} \mathcal{H}_{4}{ }^{+}$
d. What fraction of Acetic Acid will be undissociated in a liquid ammonia solution? (DO NOT do a calculation for this!)

Acetic Acid will be 100% dissociated in liquid ammonia
4. As you all recall from lab, Aspirin is a weak acid (acetylsalicylic acid). When a 0.150 M solution of this acid is prepared, it has a pH of 4.69.
a. Calculate the K_{a} for acetylsalicylic acid.

$$
\mathcal{K}_{a}=2.8 \times 10^{-9}
$$

b. Calculate K_{b} for the acetylsalicylate ion.

$$
\mathcal{K}_{6}=3.6 \times 10^{-6}
$$

c. Calculate the pH of a 0.150 M solution of sodium acetylsalicylate.

$$
p \mathcal{H}=10.87
$$

5. Predict the direction favored in each of the following acid-base reactions. That is, for each reaction, indicate the direction (forward or reverse) that the reaction will tend towards. You may wish to make use of the K_{a} and K_{b} values tabulated for you on the formula page handed out with this exam.
a. $\mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-} \leftrightarrows \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3}$

Forward
b. $\mathrm{HSO}_{4}^{-}+\mathrm{NO}_{3}^{-} \leftrightarrows \mathrm{HNO}_{3}+\mathrm{SO}_{4}{ }^{2-}$

Reverse
c. $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{3}{ }^{2-} \leftrightarrows \mathrm{HCO}_{3}^{-}+\mathrm{HCO}_{3}^{-}$

Forward
6. Circle the member of each of the following pairs that is the stronger acid and briefly explain your choice (based on molecular structure/bonding considerations).
a. HF or HCl
$\mathcal{H C l}(\mathcal{F} f u o r i n e ~ i s ~ s o ~ m u c h ~ s m a l l e r ~ t h a n ~ C l, ~ t h a t ~ \mathcal{H}-\mathcal{F}$ bond strength is greater than \mathcal{H} - Cl Gond strength)
b. HClO_{2} or HClO_{4}
$\mathcal{H C l O}_{4}$ (more electron-withdrawing oxygens to we aken $\mathcal{H}-\mathrm{Cl}$ 6ond)
c. $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ or $\mathrm{CH}_{3} \mathrm{CHClCOOH}$
$\mathrm{CH}_{3} \mathrm{CHClCOOH}(e l e c t r o n-$ withdrawing Cl is closer to $\mathcal{H}-\mathrm{O}$ Gond)
d. $\mathrm{H}_{3} \mathrm{PO}_{4}$ or $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
$\mathcal{H}_{3} \mathrm{PO}_{4}$ (farder for a negatively charged species to give up a positive (y charged species)

Extra Credit!!!

At $40^{\circ} \mathrm{C}$ and 1.00 atm pressure, a gaseous monoprotic acid has a density of 1.05 g / L. After 1.85 g of this gas is dissolved in water and diluted to 450.0 mL , the pH is measured to be 5.01. Determine the K_{a} of this acid and use the provided table of K_{a}-values to identify it.

The mystery acid is: $\mathcal{H C N}$ (fydrocyanic acid)

