Thermodynamics

> Chem 36 Spring 2002

Thermodynamics

- The study of energy changes which accompany physical and chemical processes

Why do we care?

- will a reaction proceed spontane ously?
-if so, to what extent?
It won't tellus:
- how fast the reaction will occur
-the mechanism 6y which the reaction will occur

What is Energy? (review!)

Energy is the capacity to do work or to transfer heat

- Kinetic Energy: energy associated with mass in motion (recall: $\mathcal{E}_{k}=1 / 2 m v^{2}$)
-Potential Energy: energy associated with the position of an object relative to other objects (energy that is stored - can be converted to Kinetic energy)

The System (review)

■ We must define what we are studying:

System: portion of the universe under study
Surroundings: everything else

First Law of
 Thermodynamics (review)

- " Iffy totalenergy of the universe is constant."
- "Energy is neither created or destroyed in a process, only converted to another form."
- Conservation of Energy

■ "You cant win . . you can only breakeven."

of the system
(state function)
$+i s$ into system

- is out of system (path function)

Enthalpy (review)

- Chemistry is commonly performed at constant pressure, so:
- it is easy to measure fie at flow $\left(q_{p}\right)$ - work $(\mathcal{P} \Delta \mathcal{V})$ is small (but finite) and hard to measure

Define a new term: Enthalpy (H)

$$
\mathcal{H}=\mathcal{E}+P V
$$

Relating Enthalpy and $\mathcal{H e}$ at (review)

- Re call:

$$
\begin{aligned}
\boldsymbol{\Delta E} & =q+w \\
\boldsymbol{\Delta E} & =q_{p}-\mathcal{P} \boldsymbol{\Delta} \mathcal{V} \\
q_{p} & =\boldsymbol{\Delta} \mathcal{E}+\boldsymbol{\Delta} \mathcal{P V} \\
q_{p} & =\Delta(\mathcal{E}+\mathcal{P V})
\end{aligned}
$$

■ At constant pressure: $\boldsymbol{\Delta E}=q_{p} \cdot \mathcal{P} \boldsymbol{\Delta} \mathcal{V}$

- Rearranging:
- Substituting:

$$
\underline{q}_{p}=\Delta \mathcal{H}
$$

So, if we measure q_{p}, then we can obtain the enthalpy change ($\Delta \mathcal{H}$) directly (Calorimetry!)

$\mathcal{H o w}$ are Δ E and
 $\Delta \mathcal{H}$ related? (review)

- From the definition of Enthalpy:

$$
\boldsymbol{\Delta} \mathcal{H}=\boldsymbol{\Delta} \mathcal{E}+\mathcal{P} \boldsymbol{\Delta} \mathcal{V}
$$

-for an idealgas: $\mathcal{P} \boldsymbol{\Delta} \mathcal{V}=\mathcal{R} \mathcal{I} \boldsymbol{\Delta} n$

So:

$\Delta \mathcal{H}$ and S pontine it

- Shouldn't $\Delta \mathcal{H}$ be a good indicator of reaction spontaneity?
\checkmark If $\Delta \mathcal{H}<0$, products at a lower energy than reactants

Examples:
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathcal{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta \mathcal{H}=-802 \mathrm{~kJ}$
$4 \mathcal{F e}(s)+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathcal{F e}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad \Delta \mathcal{H}=-1648 \mathrm{~kJ}$

But what about . . .

These are spontaneous processes too:

$$
\begin{array}{ll}
\mathcal{N a C l}(s) \rightarrow \mathcal{N a} a^{+}(a q)+\mathcal{C l}(a q) & \Delta \mathcal{H}=+ \\
\mathcal{H}_{2} \mathrm{O}(s) \rightarrow \mathcal{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathcal{H}=+
\end{array}
$$

- Both are nearly enthalpy neutral
- Both result in increased disorder
-We need another LAW of thermodynamics!

The 2nd Law of Thermodynamics

$>$ "Spontaneous processes are accompanied by an increase in Entropy."
$>$ "Ife Entropy of the Universe is constantly increasing."

So, what is Entropy?

- Entropy (S): A measure of the degree of dis order or randomness of a system
- Processes will tend towards conditions with the highest probability of occuring

A Little Experiment

Consider the following:

- I wo bulbs of equal volume
- Equal number of molecules in each бицб
- What is the probability of finding $\mathcal{A L L}$ of the molecules in $\mathcal{B u} \boldsymbol{\mathcal { L }} \boldsymbol{A}$?
\# molecules relative probability
1

2

5
1/(2) $(=1 / 4)$
$1 /(2)^{5}(=1 / 32)$
$1 /(2)^{10}(=1 / 1024)$

For 1 molgas, changing orientations 100 times/sec:
-Event would occur once every 10^{14} years
$1 / 2$
$1 /(2)^{2}(=1 / 4)$

$$
2
$$

Entropy of Physical States

$$
\xrightarrow[\text { increasing number of possible orientations }]{\mathcal{S}_{\text {solid }}<\mathcal{S}_{\text {liquid }}<\mathcal{S}_{\text {gas }}}
$$

So, for a phase change:
Solid \rightarrow Liquid (spontaneous at $\mathcal{T}>\mathcal{T}_{f}$)

$$
\Delta \mathcal{S}>0
$$

Liquid \rightarrow Gas (spontaneous at $\mathcal{T}>\mathcal{T}_{6}$)
But, also:

How is Entropy Quantified?

On the microscopic level:

$$
\begin{aligned}
& \mathcal{S}=\mathcal{K}_{\mathcal{B}} \ln \mathcal{W} \\
& \begin{array}{l}
\text { Boltzmann's } \\
\text { constant }\left(=\mathcal{R} / \mathcal{N}_{0}\right) \quad \text { of microstates }
\end{array}
\end{aligned}
$$

- Entropy increases with an increasing number of microstates (increased "disorder")
- Units: $\kappa_{6}=1.38 \times 10^{-23} \mathrm{~g} / \mathcal{K}($ so units of \mathcal{S} are: $\mathrm{g} / \mathcal{K})$

Macroscopic Entropy

- For a reversible process at constant pressure:

$$
\Delta \mathcal{S}_{s y s}=\frac{q_{p, r e v}}{\mathcal{T}}=\frac{\Delta \mathcal{H}}{\mathcal{T}_{s y s}}
$$

- And don't forget:

$$
\Delta \mathcal{S}_{\text {surr }}=-\frac{\Delta \mathcal{H}}{\mathcal{T}_{\text {surr }}}
$$

\mathcal{N} ow, let's revisit the freezing process for water...

Freezing Water: Revisited

$$
\mathcal{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathcal{H}_{2} \mathrm{O} \quad(\mathrm{~s}) \quad \Delta \mathcal{H}=-6.0 \mathrm{~kJ} / \mathrm{mol}
$$

- Freezing is an exotfermic process
- Energy flows from the system to the surroundings:
- Entropy of the surroundings increases
-Entropy of the system decreases
- Suppose: $\mathcal{T}_{\text {surr }}<\mathcal{T}_{\text {sys }}$ such that $\mathcal{T}_{\text {surr }}$ is less than $\mathcal{F P}$ - $\Delta \mathcal{S}_{\text {sur }}$ is more positive than $\Delta \mathcal{S}_{\text {sys }}$ is negative
$\bullet \Delta S_{\text {univ }}=\Delta S_{s y s}+\Delta S_{\text {surr }}=$ positive (freezing is spontaneous)

Quantifying S montane it

Making some substitutions, we find:

$$
\Delta \mathcal{S}_{\text {univ }}=\Delta \mathcal{S}_{s y s}-\Delta \mathcal{H} / \mathcal{T}
$$

Re-arranging gives:

$$
\mathcal{T} \Delta \mathcal{S}_{u n i v}=\mathcal{T} \Delta \mathcal{S}_{s y s}-\Delta \mathcal{H}
$$

Reversing signs:

$$
-\mathcal{T} \Delta S_{\text {univ }}=\Delta \mathcal{H}-\mathcal{T} \Delta S_{s y s}
$$

$\Delta \mathcal{G}($ Gins $\mathcal{F r e e}$ Energy)

The Gibbs-Hemfoltz Equation

So, at constant temperature and pressure:

$\mathcal{H a s}$ units of Joules
(energy): Free Energy
All values are for the system

- Tells us how much energy is available to do work

What happens at $\mathcal{T}=0$?
We "breakeven"; all energy is available to do work. ${ }_{18}$

$\mathcal{B a l a n c}$ ing $\Delta \mathcal{H}$ and ΔS

$$
\text { Remember: } \Delta \mathcal{G}=\Delta \mathcal{H}-\mathcal{T} \Delta \mathcal{S}
$$

Two considerations:

1. Reactions seek minimum in Enthalpy ($\Delta \mathcal{H}$)
2. Reactions seek maximum in Entropy (ΔS)
$+\quad$ - nonspontaneous

+ spontaneous
- spontaneous at low temps
$+\quad+$ spontaneous at fight te mp ${ }^{9}$

Calculating $\Delta \mathcal{G}$ for a reaction

ΔG is a state function

- Treat like we do $\Delta \mathcal{H}$:

At 1 atm for 1 mol of compound formed from elemental and $25^{\circ} \mathrm{C}$ constituents in their standard states

The 3 rd Law of
 Thermodynamics

We can obtain absolute values for Entropy because we have a set reference point:
$>$ If $\mathcal{W}=1$ (only 1 microstate possible), then $S=0$
$>$ So, the ard Law says:
"At the absolute zero of temperature, the entropy of a perfect crystalline solid is zero."

So, we can tabulate \mathcal{S}° (standard molar entropy) values $\left(\mathcal{N}\left(O \mathcal{T} \Delta S^{\circ}\right)\right.$ - unlike \mathcal{H} and \mathcal{E} and \mathcal{G}

Calculating ΔS for a reaction

Entropy is also a state function:
$\Delta \mathcal{S}^{o}=\boldsymbol{\Sigma} \mathcal{S}^{o}($ products $)-\sum \mathcal{S}^{o} \quad($ reactants $)$

$\underline{\mathcal{N O} \mathcal{T}:}$

- Iffier are no $\Delta S^{o}{ }_{f}$ values
- $S^{o} \neq 0$ for pure elements in the ir standard states

Let's Get Quantitative!

Consider the following process:

$$
\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l}) \leftrightarrows \mathrm{CH}_{3} \mathrm{OH}(g)
$$

We know:

$$
\Delta \mathcal{H}^{o}{ }_{\text {pap }}=38.00 \mathrm{~kJ} / \mathrm{mol}
$$

For most liquids:

$$
\Delta S^{o}{ }_{\text {vip }} \approx s \mathcal{I} / \mathcal{K}
$$

$$
\Delta S^{o_{\text {pap }}}=112.9 \mathrm{~J} / \mathcal{K}
$$

(Trouten's Rule)

At what temperature does methanol boil?

The $\mathcal{B P}$ of Methanol

$$
\Delta \mathcal{G}^{o}=\Delta \mathcal{H}^{o}-\mathcal{T} \Delta \mathcal{S}^{o}
$$

\mathcal{A} tits $\mathcal{B} P\left(\mathcal{T}_{6}\right)$, system is at equilibrium so $\Delta \mathcal{G}^{\circ}=0$, and we can write:

$$
0=\Delta \mathcal{H}_{\text {pap }}^{o}-\mathcal{T}_{6} \Delta \mathcal{S}^{o}{ }_{\text {pap }}
$$

Re arranging:

$$
\mathcal{T}_{b}=\Delta \mathcal{H}^{o}{ }_{\text {rap }} / \Delta \mathcal{S}^{o_{\text {vat }}}
$$

Substituting:

$$
\mathcal{T}_{6}=38.00 \times 10^{3} \mathrm{~g}=336.58 \mathrm{~K}=63.4{ }^{\circ} \mathrm{C}
$$

$$
112.9 \mathrm{~g} / \mathrm{K}
$$

$$
\text { Actual } \mathcal{B P} \text { of Me ethanol is . . } 64.96{ }^{\circ} \mathrm{C}
$$

There are many paths to $\Delta \mathcal{G}^{o}{ }_{r \chi n}$

> If $\Delta \mathcal{G}^{o}{ }_{f}$ values are available for products and reactants:
$\boldsymbol{\Delta} \mathcal{G}^{o}=\boldsymbol{\Sigma} \boldsymbol{\Delta} \mathcal{G}_{f}^{o}($ products $)-\boldsymbol{\Sigma} \boldsymbol{\Delta} \mathcal{G}_{f}^{o}($ reactants $)$
> If $\Delta \mathscr{H}^{\circ}{ }_{f}$ and S° values are available for products and reactants:

- Calculate $\Delta \mathcal{H}^{o}{ }_{\text {run }}$ and $\Delta S^{o^{o}}{ }_{\text {rx }}$ value s
- $\Delta \mathcal{G}^{o}{ }_{r \chi n}=\Delta \mathcal{H}^{o}{ }_{r \chi n}-\mathcal{T} \Delta S^{o}{ }_{r \chi n}$
$>$ Or, use a combination of both methods!

Limits to the utility of $\Delta \mathcal{G}^{o}{ }_{r \chi n}$

$\Delta \mathcal{G}^{o}{ }_{r \chi n}$ predicts reaction spontaneity only when products and reactants are in their standard states

How does $\Delta \mathcal{G}$ vary with:

- Pressure (for gases)
- Concentration (for solutions)
- Temperature

Effect of Pressure Change

 What happens to free energy of gas when we change its pressure?

$\mathcal{N o w , ~ A p p l y ~ t o ~ a ~ R e a c t i o n ~}$

Let's make some ammonia:

$$
\mathcal{N}_{2}(g)+3 \mathcal{H}_{2}(g) \rightarrow 2 \mathcal{N} \mathcal{H}_{3}(g)
$$

For 1 mol of each compound, we can write:

$$
\begin{aligned}
& \mathcal{G}_{\mathfrak{N H} 3}=\mathcal{G}^{o}{ }_{\mathfrak{N H 3}}+\operatorname{RILn}\left(\mathcal{P}_{\mathfrak{N H} 3} / P^{0}\right) \\
& \mathcal{G}_{\mathfrak{N} 2}=\mathcal{G}^{o}{ }_{\mathfrak{N}(2}+\mathcal{R T} \operatorname{Ln}\left(P_{\mathcal{N} 2} / \mathbb{P}^{0}\right) \\
& \mathcal{G}_{\mathcal{H} 2}=\mathcal{G}^{o}{ }_{H 2}+\mathcal{R I} \operatorname{Ln}\left(\mathcal{P}_{\mathcal{H} 2} / \mathbb{P}^{0}\right)
\end{aligned}
$$

So, $\Delta \mathcal{G}$ for the Reaction

Since we know:

$$
\Delta \mathcal{G}_{r \chi n}=\Sigma \Delta \mathcal{G}_{\text {products }}-\Sigma \Delta \mathcal{G}_{\text {reactants }}
$$

Substituting:

$$
\Delta \mathcal{G}=2 \mathcal{G}_{\mathfrak{N H} 3}-\left(\mathcal{G}_{\mathfrak{N} 2}+3 \mathcal{G}_{\mathcal{H} 2}\right)
$$

Finally giving:
$\Delta \mathcal{G}=\Delta \mathcal{G}^{o}+\mathcal{R} \mathcal{I} \mathcal{L n}\left[\frac{\left(\mathcal{P}_{\mathcal{N} \mathcal{H} 3} / P^{o}\right)^{2}}{\left(\mathcal{P}_{\mathcal{N} 2} / \mathbb{P}^{o}\right)\left(\mathcal{P}_{\mathcal{H} 2} / \mathbb{P}^{o}\right)^{3}}\right]$

Some Tweaking

\Rightarrow What is Po?

- $P^{o}=1$ atm (pressure of gas in its standard state)
- Numerically:

So, now we can write:

Where:

The Reaction
 Quotient: In General

- For any reaction:

$$
a \mathcal{A}+b \mathcal{B} \leftrightarrows c \mathcal{C}
$$

We can write:

$$
Q=\frac{\left(a_{C}\right)^{c}}{\left(a_{\mathcal{A}}\right)^{a}\left(a_{\mathcal{B}}\right)^{b}}
$$

Where, $a_{X}=$ activity of species X
For gases: $\quad a_{x}=P_{x} \operatorname{pos}^{p}=1$ atm
For solutions: $\quad a_{X}=[X][X]$
For pure cmpds: $\quad a_{x}=1$

An Example

Calculate $\Delta \mathcal{G}$ for the following reaction:

$$
\mathrm{CO}(g)+2 \mathcal{H}_{2}(g) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathcal{H})
$$

Reaction Conditions:

$$
\mathcal{T}=25 .{ }^{\circ} \mathrm{C} \quad \mathcal{P}_{\mathrm{CO}}=5.0 \mathrm{~atm} \quad \mathcal{P}_{\mathscr{H} 2}=3.0 \mathrm{~atm}
$$

First: Find $\boldsymbol{\Delta} \mathcal{G}^{o}$
$\Delta \mathcal{G}^{o}{ }_{r \chi n}=\Delta \mathcal{G}^{o}{ }_{f}\left(\mathrm{CH}_{3} O \mathcal{H}\right)-\left[\Delta \mathcal{G}^{o}{ }_{f}(\mathrm{CO})+2 \Delta \mathcal{G}^{o}{ }_{f}\left(\mathcal{H}_{2}\right)\right]$
$\Delta \mathcal{G}^{0}{ }_{r \chi n}=(-166.35 \mathrm{~kJ})-[(-137.15 \mathrm{~kJ})+2(0)]$
$\Delta \mathcal{G}^{o}{ }_{r \chi n}=-29.20 \mathrm{~kg} \quad\left(=-2.920 \times 10^{4} \mathrm{~g}\right)$

Onto $\Delta G!$

Next: Find Q

$$
Q=\frac{a_{C H 3 O H}}{\left(a_{C O}\right)\left(a_{\mathcal{H} 2}\right)^{2}}=\frac{1}{(5.0)(3.0)^{2}}=2.222 \times 10^{.2}
$$

Finally: Calculate $\Delta \mathcal{G}$
$\Delta \mathcal{G}=\Delta \mathcal{G}^{o}+\mathcal{R} \mathcal{I} \mathcal{L n} Q$
$\Delta \mathcal{G}=-2.920 \times 10^{4} \mathrm{~g}+(8.3145 \mathrm{~g} / \mathrm{mol}$ 㱜 $)\left(298.15\right.$ 天) $\operatorname{Ln}\left(2.222 \times 10^{-2}\right)$
$\Delta \mathcal{G}=-2.920 \times 10^{4} \mathrm{~g}+\left(-9.4366 \times 10^{3} \mathrm{~g}\right)$
$\Delta \mathcal{G}=-3.864 \times 10^{4} \mathrm{~g}=39 . \mathrm{kJ}-$ Spontaneous!

How Does $\Delta \mathcal{G}$ Change as the Reaction Proceeds?

Let's make it simple:

$$
\mathcal{A}(\mathcal{g}) \rightarrow \mathcal{B}(\mathcal{g}) \quad \Delta \mathcal{G}<\boldsymbol{O}_{\text {(spontaneous) }}
$$

So, we can write:

$$
\begin{aligned}
& \mathcal{G}_{\mathcal{A}}=\mathcal{G}_{\mathcal{A}}^{o}+\mathcal{R} \mathcal{I} \operatorname{Ln}\left(a_{\mathcal{A}}\right) \\
& \mathcal{G}_{\mathcal{B}}=\mathcal{G}_{\mathcal{B}}^{o}+\mathcal{R} \mathcal{I} \operatorname{Ln}\left(a_{\mathcal{B}}\right)
\end{aligned}
$$

As the reaction proceeds:

$$
\begin{aligned}
& a_{\mathcal{A}} \text { decreases } \rightarrow \mathcal{G}_{\mathcal{A}} \mathcal{D E C R E A S E S} \\
& a_{\mathcal{B}} \text { increases } \rightarrow \mathcal{G}_{\mathcal{B}} \text { INCREASES } \quad \Delta \mathcal{G} \rightarrow 0
\end{aligned}
$$

Equilibrium

$>$ Reaction will proceed until $\Delta \mathcal{G}=0$
System is then at Equilibrium:

$$
\mathcal{A}(g) \leftrightarrows \mathcal{B}(g)
$$

- Equilibrium is dynamic:
-Rate of forward $r \not x n=$ rate of reverse $r \not x n$
- Re lationship with ΔG :

$$
\Delta \mathcal{G}=\Delta \mathcal{G}^{o}+\mathcal{R I} \mathcal{L n} Q=0
$$

$$
\Delta \mathcal{G}^{o}=-\mathcal{R I} \operatorname{Ln} \mathcal{K}^{\circ}
$$

$\Delta \mathcal{G}$ and \mathcal{K}

$$
\Delta \mathcal{G}^{o}=-\mathcal{R I} \mathcal{L n K}
$$

$\Delta \mathcal{G}^{0}=0$ then $\mathcal{K}=1$ (rxnat equilibrium when all in std states)
$\Delta \mathcal{G}^{o}<0$ then $\mathcal{K}>1$ (fwd rxn spontaneous from std states)
$\Delta \mathcal{G}^{o}>0$ then $\mathcal{K}<1$ (revrxn spontaneous from std states)

Kquantifies the relative balance between products and reactants at equilibrium.

Calculating Kfrom $\Delta \mathcal{G}^{o}$

Rearrange equation to solve for \mathcal{K}

$$
\operatorname{LnK}=\frac{\Delta G^{o}}{-R \mathcal{T}}
$$

For our $\mathrm{CH}_{3} \mathrm{OH}$ formation example:

$$
\begin{gathered}
\operatorname{LnK}=\frac{-2.92 \times 10^{4} \mathrm{~g}}{-(8.3145)(298.15 \mathrm{~K})}=11.7791 \\
\mathcal{K}=e^{11.7791}=1.30496 \times 10^{5}=1 . \ldots \times 10^{5}
\end{gathered}
$$

So: at equilibrium, product $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ should predominate:

$$
\mathcal{K}=1 . \chi 10^{5}=1 /\left[\left(a_{C O}\right)\left(a_{\mathcal{H} 2}\right)^{2}\right]
$$

How about an example?

What is the vapor pressure of benzene at $25^{\circ} \mathrm{C}$, if $\boldsymbol{\Delta} \mathcal{G}^{\circ}=$ $5.16 \mathrm{~kJ} /$ molfor:

$$
\mathcal{C}_{6} \mathcal{H}_{6}(l) \leftrightarrows \mathcal{C}_{6} \mathcal{H}_{6}(\mathrm{~g})
$$

What is K?

$$
\mathcal{K}=a_{\text {gas }} / a_{\text {liquid }}=\mathcal{P}_{\text {gas }} \quad \text { (vapor pressure of benzene!) }
$$

Knowing that: $\quad \Delta \mathcal{G}^{o}=-\mathcal{R} \mathcal{T} \mathcal{L n K}$

$$
\begin{aligned}
& \operatorname{LnK}=\left(5.16 \times 10^{3} \mathrm{~g} / \mathrm{mol}\right) /[(-8.3145 \mathrm{~g} / \mathrm{mol}-\mathcal{K})(298.15 \mathrm{~K})] \\
& \quad \operatorname{LnK}=-2.08151 \Rightarrow \mathcal{K}=0.12474=\mathcal{P}_{\text {gas }} \\
& \mathcal{P}_{\text {benzene }}=0.12474 \mathrm{~atm}=95 . \text { torr }
\end{aligned}
$$

Effect of Temperature on \mathcal{K}

$\square \Delta \mathcal{G}$ is temperature dependent, so:
$\underline{\mathcal{A} t \mathcal{I}_{1}}: \quad \Delta \mathcal{G}^{0}{ }_{1}=\Delta \mathcal{H}^{0}-\mathcal{I}_{1} \Delta S^{0}=-\mathcal{R I} \mathcal{I}_{1} \mathfrak{L n} \mathcal{K}_{1}$
Solve for $\Delta S^{\circ}: \quad \Delta S^{o}=\mathcal{R} \ln \mathcal{K}_{1}+\Delta \mathcal{H}^{\circ} / \mathcal{T}_{1}$
${\mathcal{A L} t \mathcal{I}_{2}}: \quad \quad \Delta S^{0}=\mathcal{R L n} \mathcal{K}_{2}+\Delta \mathcal{H}^{0} / \mathcal{T}_{2}$
Combine, collect terms, rearrange:

$$
\mathcal{L n}\left(\mathcal{K}_{2} / \mathcal{K}_{1}\right)=-\left(\Delta \mathcal{H}^{0} / \mathcal{R}\right)\left(1 / \mathcal{T}_{2}-1 / \mathcal{T}_{1}\right)
$$

Van't Hoff
Endothermic: Kincreases with increasing temp
Equation
Exothermic: Kdecreases with increasing temp

Clausius-Clape yron Revisited

Recall, at any temperature \mathcal{T} :

$$
\Delta \mathcal{H}^{o}-\mathcal{T} \Delta S^{o}=-\mathcal{R} \mathcal{T} \mathcal{L n K}
$$

Now, solve for Ln K

$$
\mathcal{L n} \mathcal{K}=\left(-\Delta \mathcal{H}^{o} / \mathcal{R}\right)(1 / \mathcal{T})+\Delta \mathcal{S}^{o}
$$

For the vaporization of a liquid:

$$
\mathcal{A}(l) \leftrightarrows \mathcal{A}(g) \quad \mathcal{K}=a_{\mathfrak{A}(\mathcal{g})} / a_{\mathfrak{A}(l)}=\mathcal{P}_{\mathfrak{A}} / 1=\mathcal{P}_{\mathfrak{A}}
$$

I us substitute and, voila, we fave C-C:

$$
\mathcal{L} \mathcal{P}_{\mathcal{A}}=\left(-\Delta \mathcal{H}^{o}{ }_{v a p} / \mathcal{R}(1 / \mathcal{T})+\Delta S^{o}\right.
$$

Fun with Van't $\mathcal{H o f f}$

$>\underline{\text { Ulse to measure } \Delta \mathcal{H}^{o}}$
\checkmark Measure Kat different temperatures \checkmark Plot LnKversus $1 / \mathcal{T}$
\checkmark Straight line plot with slope $=-\Delta \mathcal{H}^{\circ} / \mathcal{R}$
Can calculate ΔG° from K
$>$ Can calculate $\Delta S^{\circ}\left(\right.$ from $\Delta \mathcal{H}^{\circ}$ \& $\left.\Delta \mathcal{G}^{\circ}\right)$

Big Example Problem

Let's lookat this process to make ammonia:

$$
1 / 2 \mathcal{N}_{2}(\mathcal{g})+3 / 2 \mathcal{H}_{2}(\mathcal{g}) \leftrightarrows \mathcal{N} \mathcal{H}_{3}(\mathcal{g})
$$

Some thermodynamic constants:

$\boldsymbol{\Delta} \mathcal{G}^{o}{ }_{f}:$	0	0	$-16.48 \mathrm{~kJ} / \mathrm{mol}$
$\boldsymbol{\Delta} \mathcal{H}^{o}{ }_{f}:$	0	0	$-46.11 \mathrm{~kJ} / \mathrm{mol}$

Spontaneous at $25^{\circ} \mathrm{C}$?

- Calculate $\boldsymbol{\Delta G}^{o}$ rx :

$$
\begin{aligned}
\Delta \mathcal{G}^{o} & =\Sigma \Delta \mathcal{G}_{f}^{o}(\text { products })-\Sigma \Delta \mathcal{G}_{f}^{o}(\text { reactants }) \\
& =\Delta \mathcal{G}_{f}^{o}{ }_{\left(\mathcal{N} \mathcal{H}_{3}\right)-\left[1_{2} \Delta \mathcal{G}_{f}^{o}\left(\mathcal{N}_{2}\right)+3 / 2 \Delta \mathcal{G}_{f}^{o}\left(\mathcal{H}_{2}\right)\right]} \\
& =-16.48 \mathrm{~kJ} \cdot 0
\end{aligned}
$$

$\Delta \mathcal{G}^{o}=-16.48 \mathrm{~kJ}$ Yes, reaction is spontaneous

What is the value of K?

■ from: $\boldsymbol{\Delta} \mathcal{G}^{o}=-\mathcal{R I} \mathcal{L n} \mathcal{K}$

$$
\mathcal{L n K}=\frac{\Delta \mathcal{G}^{o}}{-\mathcal{R I}-(8.3145 \mathrm{~g} / \mathrm{mol} \mathcal{X})(298.15 \mathrm{Xl}}=\frac{-16.48 \times 10^{3} \mathrm{~g}}{6.6479}
$$

Solving for \mathcal{X} :

$$
\mathcal{K}=e^{6.6479}=7.7118 \times 10^{2}=\underline{7.71 \times 10^{2}}
$$

What is $\Delta \mathcal{S}^{\circ}$?

We need $\Delta \mathcal{H}^{o}$ first:

$$
\begin{aligned}
\Delta \mathcal{H}^{o} & =\sum \Delta \mathcal{H}^{o}{ }_{f}(\text { products })-\sum \Delta \mathcal{H}^{o}{ }_{f} \text { (reactants) } \\
& =\Delta \mathcal{H}^{o}{ }_{f}\left(\mathcal{N H}_{3}\right)-\left[1_{2} \Delta \mathcal{H}^{o}{ }_{f}\left(\mathcal{N}_{2}\right)+3 / 2 \Delta \mathcal{H}^{o}{ }_{f}\left(\mathcal{H}_{2}\right)\right] \\
& =-46.11 \mathrm{~kJ}-0
\end{aligned}
$$

$$
\Delta \mathcal{H}^{o}=-46.11 \mathrm{~kJ}
$$

\mathcal{N} ow, on to ΔS° !

Rearranging Gibbs Helmholtz:

$$
\Delta \mathcal{S}^{o}=\left(\Delta \mathcal{H}^{o}-\Delta \mathcal{G}^{o}\right) / \mathcal{T}
$$

Substituting:
$\Delta S^{\circ}=[(-46,110 \mathrm{~g} \cdot(-16,480 \mathrm{~g}))] / 298.15 \mathcal{K}$
$\Delta S^{\circ}=-99.37951 \mathrm{~g} / \mathrm{K}$
$\Delta S^{0}=\frac{-99.38 \mathrm{~g} / \mathcal{K}}{\ddots_{\text {Why negative? }}}$

\mathcal{A} t What \mathcal{T} emperature $\mathcal{W i l l}$

 $\mathcal{N} \mathcal{H}_{3}$ Decompose?$$
\Delta \mathcal{G}^{o}=\underset{\text { negation }}{\Delta \mathcal{H}^{\circ}} \underset{\text { negation }}{\mathcal{T} \Delta \mathcal{S}^{o}}
$$

$>\mathcal{A t}$ a high enough temperature, $\Delta \mathcal{G}^{0}$ will be positive and the reverse rxn will be spontaneous:

$$
\begin{gathered}
\mathcal{T}>\Delta \mathcal{H}^{0} / \Delta \mathcal{S}^{o}=-46,110 \mathrm{~g} /-99.38 \mathrm{~g} / \mathcal{K} \\
\mathcal{T}>\underline{464.0 \mathcal{K}}
\end{gathered}
$$

What is Kat 1000 K?

Here's what we know:

$$
\begin{array}{ll}
\mathcal{K}_{1}=7.71 \times 10^{2} & \mathcal{K}_{2}=? \\
\mathcal{T}_{1}=298.15 \mathcal{K} & \mathcal{T}_{2}=1000 . \mathcal{K}
\end{array}
$$

Invoking van't $\mathcal{H o f f}$:

$$
\begin{gathered}
\mathcal{L n}\left(\mathcal{K}_{2} / \mathcal{K}_{1}\right)=-\left(\Delta \mathcal{H}^{0} / \mathcal{R}\right)\left(1 / \mathcal{T}_{2}-1 / \mathcal{T}_{1}\right) \\
\mathcal{L n}\left(\mathcal{K}_{2} / \mathcal{K}_{1}\right)=-(-46,110 \mathrm{~g} / 8.3145 \mathrm{~g} / \operatorname{mol} \cdot \mathcal{K})[1 / 1000-1 / 298.15] \\
\mathcal{L n}\left(\mathcal{K}_{2} / \mathcal{K}_{1}\right)=\left(5.5457 \times 10^{3}\right)\left[-2.354 \times 10^{-3}\right]=-13.0547 \\
\mathcal{K}_{2} / \mathcal{K}_{1}=e^{-13.0547}=2.1399 \times 10^{-6} \\
\mathcal{K}_{2}=\left(2.1399 \times 10^{-6}\right)\left(7.71 \times 10^{2}\right)=1.6502 \times 10^{-3}=\frac{1.7 \times 10^{-3}}{48}
\end{gathered}
$$

