

What is a Solution?

➤ Definition:

"A <u>homogeneous</u> mixture of a *solute* distributed through a *solvent*."

Examples:

- •Air (gas/gas)
- •Ocean Water (solid/liquid)
- •**Soft Drink** (gas/liquid)
- •Metal Alloy (solid/solid)
- •Vodka (liquid/liquid)
- •Hg Amalgam (liquid/solid)

Is Oil *Miscible* in Water?

Oil: Nonpolar (London Forces) **Water:** Polar (Hydrogen Bonding) **Oil/Water:** Nonpolar/Polar (Dipole-Induced Dipole) So: $\Delta H_1 + \Delta H_2 = large (+)$

 $\Delta H_3 = very small (-)$

$$\Delta H_{sol'n} = Large (+) (> 0)$$

✓Thus: oil and water are NOT miscible

 $\begin{array}{ll} \underline{\text{NaCl(s):}} & Strong \ I \ onic \ Bond \\ & \text{NaCl(s)} \rightarrow \text{Na}^+(g) + \text{Cl}^-(g) \ \Delta H_1 = 786 \ \text{kJ/mol} \\ \\ \underline{\text{H}_2\text{O} \ and \ \text{NaCl/H}_2\text{O:}} & I \ on-Dipole/H-Bonding \\ & \text{H}_2\text{O}(I) + \text{Na}^+(g) + \text{Cl}^-(g) \rightarrow \text{Na}^+(aq) + \text{Cl}^-(aq) \\ & \Delta H_{\text{hyd}} = \Delta H_2 + \Delta H_3 = -783 \ \text{kJ/mol} \\ \\ & \text{So:} \quad \Delta H_{\text{sol'n}} = 786 + (-783) = \underline{+3 \ \text{kJ/mol}} \end{array}$

? So why does NaCl dissolve in water?

Henry's Law Example

"The Bends"

- Pressure 90 ft underwater: ~3.7 atm
- <u>Henry's Law says:</u>
 3.7x as much N₂ and O₂ dissolved in blood
- > Problem: surfacing too quickly

Solutions:

- 1. Surface slowly
- 2. Breathe O_2 /He mixture

Effects of *Temperature* on Solubility

For gases:

Solubililty decreases with increasing temperature

Example: Thermal Pollution

•Hot water dumped into lake kills fish

•Why?

•Decreased dissolved O_2 in hot water

•Layer of less dense hot water on top hinders O_2 dissolution

16

Effects of Solute on Physical Properties of Solvent

- Presence of dissolved solute can change the solvent's:
 - 1. Vapor Pressure
 - 2. Boiling Point
 - 3. Freezing Point
 - 4. Osmotic Pressure
- Collectively known as:

Colligative Properties

How Depressed?

> K_f is usually *larger* than K_b :

- $\Delta T_f \approx 2 \text{ °C for } 1 \text{ m sol'n in water}$
- $\Delta T_{b} \approx 32 \text{ °C for } 1 \text{ } m \text{ sol'n in } \text{CCl}_{4}$

> Uses for FP Depression:

- Melting I ce
- Auto Antifreeze
- Solvent Purification
- Molecular Weight Determination

MW Determination via FP Depression

- ✓ Add a known amount of <u>compound</u> to known amount of <u>solvent</u>
 - Weigh compound and solvent accurately
 - + Use solvent with a large $\rm K_{\rm f}$

✓ Measure **DT**_f

- ✓ Determine *molality*: $DT_f = K_f m$
- \checkmark Use *m* to solve for n_{cmpd} : *m* = n_{cmpd}/kg solvent
- ✓ Finally, calculate MW: MW = g cmpd/n_{cmpd}

28

