Solutions

> Chem 36
> Spring 2002

What is a Solution?

Definition:
"A homogeneous mixture of a solute distributed through a solvent."

Examples:

- Air (gas/gas) -Ocean Water (solid/liquid)
-S oft $\operatorname{Drink}\left(g a s /\right.$ liquid) ${ }^{-M}$ Metal Alloy (solid/solid)
- Vodka (liquid/liquid) • Hg Amalgam (liquid/solid)

Liquid Solvent
 Solution Concentrations

Focus on \# moles solute (n):

1) Mole Fraction (χ)

$\chi=$ mol solute
 composition
$\mathcal{N O T E}: \quad n_{\text {total }}=n_{1}+n_{2}+\ldots n_{i}$
and $\quad 1=\chi_{1}+\chi_{2}+\ldots \chi_{i}$

More Concentrations

2) Molarity (M)

$$
\mathcal{M}=\frac{\text { mol solute }}{\text { liters solin}}
$$ solution

- Most commonly used concentration unit

Yet another
concentration definition ...
3) Molality (m)

$$
m=\frac{\text { mol solute }}{\mathrm{kg} \text { solvent }}
$$

$>$ Why/when use molality instead of molarity?
\checkmark Volume is temperature dependent
\checkmark Mass is temperature independent

Molality versus Molarity

$>$ For a dilute, aqueous solution:

$$
\begin{aligned}
& 1 \text { liter soln } \approx 1 \mathrm{~kg} \text { solve } n t \\
& \quad(\text { so, molarity } \approx \text { molality })
\end{aligned}
$$

-What happens at higher solute levels?

$\frac{\text { mol solute }}{\text { Lsol'n }}$	versus mol solute	
Molarity	$<$	Molality

Characterizing Solubility

- How muck solute can be dissolved in a liquid solvent?

Three Cases:

1) Unsaturated S olution (all solute dissolved)
2) Saturated Solution (some undissolved solute) (equilibrium between solid and dissolved solid)
3) Supersaturated Solution (all solute dissolved... unstable!)

Dis solution Energetics

Three Steps:

1) Overcome $\mathcal{S O L U I} \mathcal{E}$ intermolecular forces $\left(\Delta \mathcal{H}_{1}\right)$
2) Overcome $S O L \mathcal{L} E \mathcal{N} \mathcal{N}$ intermolecular forces $\left(\Delta \mathcal{H}_{2}\right)$
3) Allow solute and solvent to interact $\left(\Delta \mathcal{H}_{3}\right)$

$$
\Delta \mathcal{H}_{\text {soln }}=\Delta \mathcal{H}_{1}+\Delta \mathcal{H}_{2}+\Delta \mathcal{H}_{3}
$$

Hupothesis: If $\Delta \mathcal{H}_{\text {soln }}>0$, then solute is not soluble
If $\Delta \mathcal{H}_{\text {soln }}<0$, then solute is soluble

Is Oil Miscible in Water?

Oil: Nonpolar (London Forces)
Water: Polar (Hydrogen Bonding)
Oil/Water: Nonpolar/Polar (Dipole-Induced Dipole)
So: $\quad \Delta \mathcal{H}_{1}+\Delta \mathcal{H}_{2}=\operatorname{Carge}(+)$

$$
\frac{\Delta \mathcal{H}_{3}=\text { very small }(-)}{\Delta \mathcal{H}_{\text {sol }}=\operatorname{Large}(+) \quad(>0)}
$$

\checkmark Thus: oil and water are $\mathcal{N} O \mathcal{T}$ miscible

Is Methyl Alc oho
 Miscible in Water?

Methyl Alcohol: Polar (Hydrogen Bonding)
Water: Polar (Hydrogen Bonding)
Afc ofiol/Water: Polar/Polar (Hydrogen Bonding)
So: $\quad \Delta \mathcal{H}_{1}+\Delta \mathcal{H}_{2}=\operatorname{large} \quad(+)$

$$
\Delta \mathcal{H}_{3}=\operatorname{large}(-)
$$

$\Delta \mathcal{H}_{\text {solid }}=\operatorname{small}(+/-)$
? Why is methylalcofolmiscible in water?

$\mathcal{W i l l} \mathcal{N a C l}$ Dissolve In Water?

$\mathcal{N a C l}(s)$: Strong Ionic Bond

$$
\begin{aligned}
& \mathcal{N a C l}(s) \rightarrow \mathcal{N} a^{+}(g)+\mathcal{C l}(g) \Delta \mathcal{H}_{1}=786 \mathrm{~kg} / m o l \\
& \underline{\mathcal{H}}_{2} \underline{O} \text { and } \mathfrak{N a C l} / \mathcal{H}_{2} \mathrm{O}: \text { Ion-Dipole } / \mathcal{H} \text {-Bonding } \\
& \mathcal{H}_{2} O(l)+\mathcal{N} a^{+}(g)+\mathcal{C l}(g) \rightarrow \mathcal{N} a^{+}(a q)+\mathcal{C l}(a q) \\
& \Delta \mathcal{H}_{\text {hod }}=\Delta \mathcal{H}_{2}+\Delta \mathcal{H}_{3}=-783 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

So: $\quad \Delta \mathcal{H}_{\text {sorn }}=786+(-783)=+3 \mathrm{KI} / \mathrm{mol}$
? So why does $\mathfrak{N a C l}$ dis solve in water?

Enter: Entropy

- "Nature favors disorder"
- Processes which increase disorder tend to be favored (spontaneous)
$\mathcal{N a C l}(s) \rightarrow \mathcal{N} a^{+}(a q)+\mathcal{C l}(a q)$ increased disorder
- Since $\Delta \mathcal{H}_{\text {sol }}$ is very small, process is said to be:

> Entropically - Driven

Structure and

Solubility

$>$ If solute and solvent IS Forces are very different: not soluble
$>$ If solute and
solvent IM Forces
are similar: soluble
"Like dis solves like"

Vitamin \mathcal{A}

Vitamin C

Gas Solubifity: Henry's Law

It can be sfown that:

Example: $\quad P_{\mathrm{CO}_{2}}($ air $) \approx 3 \times 10^{-4}$ atm - v. little dissolved CO_{2}

$$
\mathcal{P}_{\mathrm{CO} 2}(\operatorname{sod} a \operatorname{bottle}) \approx 5 \mathrm{~atm} \cdot \sim 0.16 \mathrm{MCO}_{2}
$$

Henry's Law Example

"The Bends"
$>$ Pressure 90 ft underwater: ~3.7 atm
$>$ Henry's Law says:
$3.7 x$ as much \mathcal{N}_{2} and O_{2} dissolved in blood
$>$ Problem: surfacing too quickly
$>$ Solutions:

1. Surface slowly
2. Breathe $\mathrm{O}_{2} / \mathcal{H e}$ mixture

Effects of Temperature on Solubility

$\frac{\text { For gases: }}{\text { Solubility decreases with increasing temperature }}$
Example: Thermal Pollution

- Hot water dumped into lake kills fish
- Why?
- Decreased dissolved O_{2} in hot water
- Layer of less dense hot water on top finders
O_{2} dissolution

What about Boiler Scale?!

$>\mathrm{CO}_{2}$ in water can form bicarbonate:
$\mathrm{CO}_{3}{ }^{2-}(a q)+\mathrm{CO}_{2}(a q)+\mathcal{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows 2 \mathcal{H C O}_{3}^{-}(a q)$
$>$ If there's Ca^{2+} in the water:
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ or CaCO_{3} will form (soluble) (insoluble)
$>$ In foot water, CO_{2} is less soluble:

$$
\begin{align*}
\mathrm{HCO}_{3}- & \rightarrow \mathrm{CO}_{3}^{2} \\
& +\mathrm{Ca}^{2+} \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s}) \tag{17}
\end{align*}
$$

Temperature Effects on Solubility of Solids

Casually:

Solubility increases with increasing temperature
Why?
$\Delta \mathcal{H}_{\text {sorn }}>0$: adding heat facilitates endothermic process.
$\boldsymbol{\Delta} \mathcal{H}_{\text {sol }}<0$:adding heat finders exothermic process

Effects of Solute on Physical Properties of Solvent

$>$ Presence of dissolved solute can change the solvent's:

1. Vapor Pressure
2. Boiling Point
3. Freezing Point
4. Osmotic Pressure
$>$ Collectively Known as:
Colligative Properties

Effect on Vapor Pressure

- What happens to the vapor pressure of solvent $\mathcal{A}\left(\mathcal{P}_{\mathfrak{A}}\right)$ as solute concentration increases?

Raoult's Law

For an Ideal Solution:

In an ide al solution: all IM forces are of a similar magnitude - Negative Deviations: solute-sotvent IM forces too strong -Positive De viations: solute -solvent IM forces too we ak

What if botfly solute and

 solvent are volatile liquids?Raoult's Law applies to both:

$$
\begin{aligned}
& \left.\mathcal{P}_{\mathcal{B}}=\chi_{\mathcal{B}} \mathcal{P}_{\mathcal{B}} \quad \text { (for volatile solute } \mathcal{B}\right) \\
& \chi_{\mathcal{A}}+\chi_{\mathcal{B}}=1 \text { (for a } 2 \text {-component mix) }
\end{aligned}
$$

\mathcal{N} ow it gets interesting!
Suppose we fave a solution with a composition such that: $\quad \boldsymbol{\chi}_{\mathcal{A}}=\boldsymbol{\chi}_{\mathcal{B}}=0.5$

Question: What are $\chi_{\mathcal{A}}$ and $\chi_{\mathcal{B}}$ in the vapor if \mathcal{A} is 2χ as volatile as $\mathcal{B}\left(\mathbb{P}_{\mathcal{A}}^{o}=2 \mathcal{P}_{\mathcal{B}}^{o}\right)$?

The Solution (or is it the vapor?!)

Why so interesting?

$>$ Notice: the vapor is enriched in the more volatile component (A)

So, to separate a mixture of \mathcal{A} and \mathcal{B} :
\checkmark Collect and condense vapor above liquid
\checkmark Repeat process with condensed vapor
\checkmark The new vapor phase will be: $\chi_{\mathcal{A}}=0.80$
\checkmark Repeat, repeat, repeat!

- Perform at or ne ar boiling point to maximize amounts of compounds in vapor phase (distillation)

Boiling Point Ele vation

Freezing Point Depression

How Depressed?

$>\mathcal{K}_{f}$ is us ually larger than \mathcal{K}_{6} :

- $\Delta \mathcal{T}_{f} \approx 2{ }^{\circ} \mathrm{C}$ for 1 m soln in water
- $\Delta \mathcal{T}_{6} \approx 32{ }^{\circ} \mathrm{C}$ for 1 m soln in CCl_{4}

Ulses for $\mathcal{F P}$ Depression:

- Melting Ice
- Auto Antifreeze
- Solvent Purification
- Molecular Weight Determination

$\mathcal{M W}$ Determination via FP De pression

\checkmark Add a known amount of compound to known amount of solvent

- Weigh compound and solvent accurately
- Ulse solvent with a large \mathcal{K}_{f}
\checkmark Me asure $\Delta \mathcal{T}_{f}$
\checkmark Determine molality: $\Delta \mathcal{T}_{f}=\mathcal{K}_{f} m$
\checkmark Ulse m to solve for $n_{c m p d}: m=n_{c m p d} / k g$ solve $n t$
\checkmark Finally, calculate $\mathfrak{M W}: \mathcal{M W}=\operatorname{g}$ cmpd/ $n_{\text {cmpd }}$

Solvent Purification

Freezing process often involves solvent freezing first
$>$ Solid, initially, is pure
(zone refining, water purification)
$>$ Solute concentration in remaining
solution increases as solvent freezes
($\mathcal{F} P$ is lowered even more)

Automobile Antifreeze

■ Add Etfylene Glycol $\left(\mathcal{C}_{2} \mathcal{H}_{6} \mathrm{O}_{2}\right)$ to water in

$\mathcal{H o w} \operatorname{Muc} \mathfrak{f} \mathcal{E} G$ to $\mathcal{A d} d ?$

$>$ Calculate the $\mathcal{F} P$ of a solution made by mixing 50.0 mL of $\mathcal{E G}$ with 50.0 g of $\mathcal{H}_{2} \mathrm{O}$.

1) Calculate molality of resulting solution.
$50.0 \mathrm{~mL} \mathcal{E} \mathcal{G} \frac{1.12 \mathrm{gE} \mathcal{E}}{m \mathcal{E} \mathcal{E} G} \times \frac{1 \mathrm{~mol} \mathcal{E} G}{62.0 \mathrm{~g} \mathrm{E} \mathcal{G}}=0.90323 \mathrm{~mol} \mathcal{E G}$
So: m= $\frac{0.90323 \mathrm{~mol} \mathcal{E G}}{0.0500 \mathrm{~kg} \mathcal{H}_{2} \mathrm{O}}=\begin{aligned} & 18.06 \mathrm{~mol} \mathcal{E G} / \mathrm{kg} \mathcal{H}_{2} \mathrm{O} \\ & \begin{array}{l}\text { How does this compare } \\ \text { with solution molarity? }\end{array}\end{aligned}$

On to the solution!

2) Substitute and solve:

$$
\begin{aligned}
\Delta \mathcal{T}_{f} & =m \mathcal{K}_{f}=(18.06 \mathrm{~mol} / \mathrm{kg})(1.86 \mathrm{~K} \cdot \mathrm{~kg} / \mathrm{mol}) \\
\Delta \mathcal{T}_{f} & =33.6 \mathcal{K} \approx 34{ }^{\circ} \mathrm{C}
\end{aligned}
$$

So:

$$
\begin{aligned}
& \mathcal{T}_{f}=\mathcal{T}_{f}^{o}{ }_{f}-\Delta \mathcal{T}_{f}=0{ }^{\circ} \mathrm{C}-34{ }^{\circ} \mathrm{C}=\frac{-34{ }^{\circ} \mathrm{C}}{4} \\
& \text { City Check! Why is the actual } \mathcal{F P} \\
& \text { ween }-35^{\circ} \mathrm{C} \text { and }-37^{\circ} \mathrm{C} \text { ? }
\end{aligned}
$$

Melting the Ice

$>$ "Salt" is added to icey roads to melt the ice

- $\mathcal{F P}$ of $\mathcal{H}_{2} \mathrm{O}$ lowered, so ice melts
- CaCl_{2} more effective than $\mathfrak{N a C l} \ldots$....Why?

How many ions released per mol of compound? $\mathfrak{N a C l}(s) \rightarrow \mathcal{N a}^{+}(a q)+\mathrm{Cl}(a q) \quad 2$ ions $/ m o l$ $\mathrm{CaCl}_{2}(\mathrm{~s}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{Cl}(\mathrm{aq}) 3$ ions $/ \mathrm{mol}$

Need to consider dissociation of ionic compounds and the total number of species dissolved in solution.

Osmosis

Consider the following experiment:

Pure
Solution
Solvent
Recall that: $\quad \mathcal{P}_{\mathcal{A}}>\mathcal{P}_{\mathcal{B}}$
So: net transfer of solvent from \mathcal{A} to \mathcal{B}

Osmosis . . Really!

\mathcal{N} ow, consider the following:

-S solvent "pressure" is
Semi-permeable membrane greatest for pure solvent, (solvent only can pass through) so solvent flows into solution.

Osmosis: What is it good for?

Biological Systems

- Cell membranes

Water Desalinization

- Reverse Osmosis
$\rightarrow \mathcal{M W}$ Determination
- No solvent dependence of effect
- Easier to measure:
e.g., 30 g of a $10,000 \mathrm{~g} / \mathrm{mol}$ protein in $1.00 \mathcal{L} \mathcal{H}_{2} \mathrm{O}$ $\Delta V \mathcal{V}=10^{-7} \mathrm{~atm}$
$\Delta \mathcal{T}_{6}=10^{-4}{ }^{\circ} \mathrm{C} \quad \Delta \mathcal{T}_{f}=10^{-3}{ }^{\circ} \mathrm{C}$ $\Pi=10^{-2} \mathrm{~atm}(\sim 10 \mathrm{torr})$

