Acid/Base Chemistry

Chem 36
Spring 2002

Definitions

$\frac{\checkmark \text { Bronsted-Lowry Model }}{>\text { Acid: Proton Donor }}$
Base: Proton Acceptor

In aqueous solution:

Water

$>$ Water can act both as an acid and as a base amphoteric
Water can react with itself
> Auto-ionization or self-dissociation:

$$
\begin{aligned}
& \mathcal{H}_{2} \mathrm{O}(\mathrm{l})+\mathcal{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathcal{H}_{3} \mathrm{O}^{+}(a q)+O \mathcal{H}^{-}(a q) \\
& \mathcal{K}=\left[\mathcal{H}_{3} \frac{\left.\mathrm{O}^{+}\right]\left[O \mathcal{H}^{-}\right]}{1}=\left[\mathcal{H}_{3} \mathrm{O}^{+}\right]\left[O \mathcal{H}^{-}\right]=\mathcal{K}_{v v}\right. \\
& 1.0 \times 10^{-14} \text { at } 25^{\circ} \mathrm{C}
\end{aligned}
$$

Water Equilibria

In pure water at $25^{\circ} \mathrm{C}$:

$$
\left[\mathcal{H}_{3} O^{+}\right]=\left[O \mathcal{H}^{-}\right]=\chi
$$

Substituting:

$$
\begin{gathered}
\mathcal{K}_{\varepsilon \nu}=\chi^{2}=1.0 \times 10^{-14} \\
\chi=\underline{1.0 \times 10^{-7} \mathcal{M}}=\left[\mathcal{H}_{3} \mathrm{O}^{+}\right]=\left[0 \mathcal{H}^{-}\right]
\end{gathered}
$$

Express small numbers as logs:

$$
p \mathcal{H}=-\log \left[\mathcal{H}_{3} O^{+}\right]
$$

So, for pure water at $25^{\circ} \mathrm{C}$:

$$
p \mathcal{H}=-\log \left(1.0 \times 10^{-7}\right)=700
$$

Water Logged

We can define other log functions:

$$
\begin{gathered}
p O \mathcal{H}=-\log \left[O \mathcal{H}^{-}\right] \\
p \mathcal{K}_{v}=-\log \mathcal{K}_{v}=14.00
\end{gathered}
$$

We can quantify the autoionization of water entirely in logs:

$$
p \mathcal{K}_{v}=p \mathcal{H}+p O \mathcal{H}
$$

So, at $25^{\circ} \mathrm{C}$:

$$
p \mathcal{H}+p O \mathcal{H}=14.00
$$

Example

What is the $p \mathcal{H}$ of an aqueous solution in which $[O \mathcal{H}-]=1.0 \times 10^{-10} \mathcal{M}$?

$$
\mathcal{K}_{w}=\left[\mathcal{H}^{+}\right]\left[O \mathcal{H}^{\cdot}\right] \Rightarrow\left[\mathcal{H}^{+}\right]=\frac{\mathcal{K}_{w-}}{[O \mathcal{H}-]}=\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-10}}=1.0 \times 10^{-4} \mathcal{M}
$$

So: $\quad \quad \quad \mathcal{H}=-\log \left(1.0 \times 10^{-4}\right)=\underline{4.00}$
It's easier with logs!

$$
\begin{array}{ll}
& p O \mathcal{H}=-\log \left(1.0 \times 10^{-10}\right)=10.00 \\
\text { So: } & p \mathcal{H}=14.00-p O \mathcal{H}=14.00-10.00=\underline{4.00}
\end{array}
$$

\mathcal{K}_{a} and \mathcal{K}_{6}

For acid dissociation:
$\mathcal{H A}(a q)+\mathcal{H}_{2} O \quad(l) \leftrightarrows \mathcal{H}_{3} O^{+}(a q)+\mathcal{A}^{-}(a q)$
We define an acid dissociation constant:

$$
\mathcal{K}_{a}=\mathscr{H}_{3} \frac{\left.O^{+}\right]\left[\mathcal{A}^{-}\right]}{[\mathcal{H} \mathcal{A}]}
$$

Similarly, for a base:
$\mathcal{B}(a q)+\mathcal{H}_{2} O \quad(\mathcal{l}) \leftrightarrows \mathcal{B H}^{+}(a q)+O \mathcal{H}^{-} \quad(a q)$
Where:

$$
\mathcal{K}_{6}=\left[O \mathcal{H}^{-}\right]\left[\mathcal{B H}^{+}\right]
$$

Acid (Base) Strength

Magnitude of \mathcal{K}_{a} (or \mathcal{K}_{6}) indicates degree of dissociation

As \mathcal{K}_{a} increases, the degree of dissociation increases
$>$ Increased dissociation $=$ more \mathcal{H}^{+}
SO: as \mathcal{K}_{a} increases, acid strength increases
Example:
Acetic Acid $-\mathrm{CH}_{3} \operatorname{COOH}\left(\mathcal{K}_{\mathrm{a}} \approx 10^{-5}\right)$
is stronger than
\mathcal{H} ydrocyanic $\mathfrak{A c i d}-\mathcal{H C N}\left(\mathcal{K}_{a} \approx 10^{-9}\right)$

Conjugate Acid/Base Pairs

$$
\begin{aligned}
& \mathscr{H}(a q)+\mathscr{H}_{2} O(f) \leftrightarrows \mathscr{H}_{3} \mathrm{O}^{+}(a q)+\mathfrak{A}(a q) \\
& \mathfrak{A}(a q)+\mathcal{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathscr{H A}(a q)+O \mathscr{H}(a q) \\
& \mathscr{H}_{2} \mathrm{O}(\mathrm{l})+\mathcal{H}_{2} \mathrm{O} \text { (l) } \leftrightarrows \mathscr{H}_{3} \mathrm{O}^{+}(a q)+O \mathcal{H}^{(a q)}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{K}_{\varepsilon} \mathcal{K}_{\varepsilon}=\mathcal{K}_{w} O \mathcal{R} \quad p \mathcal{K}_{w}=p \mathcal{K}_{a}+p \mathcal{K}_{\varepsilon}
\end{aligned}
$$

Conjugate $\mathcal{A} / \mathcal{B}$ Strengths

$>$ Sum of $p K_{a}$ and $p \mathcal{K}_{\varepsilon}$ always $=14.00\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$
$>$ If an acid ($\mathcal{H} \mathscr{A}$) has a small $p \mathcal{K}_{\mathfrak{a}}$, its conjugate base (\mathcal{A}) will fave a large $p \mathcal{K}_{6}$
$>$ Conjugate acid/ base strengths are complementary

Example: Acetic Acid

$$
\begin{aligned}
& \mathcal{K}_{a}=1.76 \times 10^{-5} \\
& \mathcal{K}_{\varphi}=\mathcal{K}_{a} / \mathcal{K}_{a}=1.0 \times 10^{-14} / 1.76 \times 10^{-5}=5.7 \times 10^{-10}\left(\text { for } \mathcal{A c} c^{-}\right)
\end{aligned}
$$

Strong versus Weak

■ If $\mathcal{K}_{a} \gg 1$, acid is "completely "dissociated in water: Strong Acid

$$
\mathcal{H C l}(a q)+\mathcal{H}_{2} O(l) \rightarrow \mathcal{H}_{3} O^{+}(a q)+\mathcal{C l}(a q)
$$

Similarly for a base,

$\mathbf{m}_{\text {If }} \mathcal{K}_{6} \gg 1$, base dissociation is "complete":

$$
\mathcal{N a O \mathcal { H } (a q) \rightarrow \mathcal { N } a ^ { + } (a q) + O \mathcal { H } (a q))}
$$

Is the Conjugate Base of a Strong Acid, Strong or Weak?

$$
\begin{array}{r}
\mathcal{H C l}(a q)+\mathcal{H}_{2} O(l) \rightarrow \mathcal{H}_{3} O^{+}(a q)+\mathcal{C}(a q) \\
\text { conjugate base }
\end{array}
$$

What is \mathcal{K}_{6} for CE?
$\mathcal{K}_{\varepsilon}(\mathrm{Cl})=\mathcal{K}_{z t} / \mathcal{K}_{\varepsilon}(\mathcal{H C l})$
Substituting $\mathcal{K}_{a} \approx 10^{7}$:

CF is a we aker base than $\mathcal{H}_{2} \mathrm{O}$! ($\mathcal{K}_{6}=\mathcal{K}_{w \nu}=10^{-14}$)

Acid/Base Strength Depends on the Solvent

In water, $\mathcal{H C l}$ is a strong acid:
$\mathcal{H C l}(a q)+\mathcal{H}_{2} O(l) \rightarrow \mathcal{H}_{3} \mathrm{O}^{+}(a q)+\mathcal{C L}(a q) \quad \mathcal{K}_{a} \approx 10^{7}$
So: $\quad \mathrm{CF}$ is a we aker base than $\mathcal{H}_{2} \mathrm{O}$ $\mathcal{H C l}$ is a stronger acid than $\mathcal{H}_{3} \mathrm{O}^{+}$
$\mathcal{B u t}$, in ether, $\mathcal{H C l}$ is a weak acid:
$\mathcal{H C l}(a q)+\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{OH}^{+}(\mathrm{aq})+\mathrm{Cl}(\mathrm{aq})$
So: Cl is a stronger base thanether $\mathcal{K}_{a} \ll 1$
$\mathcal{H C l}$ is a weaker acid than $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} O \mathcal{H}^{+}$

The Leveling Effect

The strongest acid in any solvent is the conjugate acid of the solvent
$>$ In water, the strongest acid is $\mathcal{H}_{3} O^{+}$
$>\operatorname{All}$ acids that dissociate completely in water are leveled to the strength of $\mathcal{H}_{3} \mathrm{O}^{+}$

- All strong acids will seem equally strong

Can apply similar reasoning to base strengths

Example: $\mathcal{N X}_{3}(\mathbb{C})$ as solvent

What is the strongest acid in an $\mathcal{N} \mathcal{H}_{3}$ (l) solvent?

$$
\begin{aligned}
\mathcal{N} \mathcal{H}_{3}(l)+\mathcal{N} \mathcal{H}_{3}(l) \underset{\rightarrow}{\leftrightarrows} & \mathcal{N} \mathcal{H}_{4}+(a q)+\mathcal{N} \mathcal{H}_{2} \cdot(a q) \\
& \text { strongest acid strongest base }
\end{aligned}
$$

In water, \mathcal{K}_{a} of $\mathcal{N} \mathcal{H}_{4}{ }^{+}=\mathcal{K}_{\varepsilon u} / \mathcal{K}_{6} \approx 10^{-14} / 10^{-5}=10^{-9}$ of $\mathfrak{N} \mathcal{H}_{3}$
$>S_{0}$, any acids with a \mathcal{K}_{a} in water $>10^{-9}$ will be equally strong ("leveled") in liquid ammonia

Effect of Structure on Acid/Base Strength

Consider the following two compounds in an aque ous solution:

Hypothesis: Bond polarity can be related to acidity

\checkmark Nonpolar bond \checkmark Not acidic

Bond Polarity versus Acidity

- Bond polarity for hydrogen halides:
(most polar) $\mathcal{H}-\mathcal{F}>\mathcal{H}-\mathcal{C l}>\mathcal{H}-\mathcal{B r}>\mathcal{H}-I$ (le as polar)

$$
\mathcal{K}_{a}=\begin{array}{cccc}
565 & 427 & 363 & 295 \mathrm{KJ} / \mathrm{mol} \\
10^{-3} & 10^{7} & 10^{9} & 10^{11}
\end{array}
$$

$>$ But, bond energies increase with increasing polarity
$>$ So acidity decreases with increasing polarity

In General

For compounds like:

$$
\mathcal{H}-O-X
$$

- Increasing electronegativity of X we akene the $\mathcal{H}-O$ bond
- Increases compound acidity
$>$ What if ED of X is small?
-O-X bond will be ionic and will dissociate in water:

$$
\mathcal{H}-O-\mathcal{N} a \rightarrow \mathcal{N} a^{+}+O \mathcal{H} \quad \mathcal{B a s e}!
$$

Oxides

- Acidic Oxides (covalent oxides)

$$
\begin{aligned}
& \mathrm{SO}_{3}(\mathrm{~g})+\mathcal{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathcal{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \\
& \mathrm{SO}_{2}(\mathrm{~g})+\mathcal{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathcal{H}_{2} \mathrm{SO}_{3}(\mathrm{aq}) \\
& \mathrm{CO}_{2}(\mathrm{~g})+\mathcal{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathcal{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})
\end{aligned}
$$

Basic Oxides (ionic oxides)

$$
\begin{aligned}
& \mathrm{CaO}(s)+\mathcal{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(a q) \\
& \mathrm{K}_{2} \mathrm{O}(\mathrm{~s})+\mathcal{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathcal{K O H}(a q) \\
& \mathrm{O}^{2 \cdot}(a q)+\mathcal{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{OH}(a q)
\end{aligned}
$$

pH of Strong $\mathcal{A c i d}$ solutions

Simple - Strong acids dissociate completely:

$$
\mathcal{H C l}(a q) \rightarrow \mathcal{H}^{+}(a q)+\mathcal{C l}(a q)
$$

So, what's the pH of a $0.10 \mathcal{M} \mathcal{H C l}$ solution?

$\mathcal{H o w}$ about $1.0 \times 10^{-10} \mathcal{M} \mathcal{H C l}$?

As before:

$$
\begin{aligned}
{\left[\mathcal{H}^{+}\right]=\mathcal{C}_{\mathcal{H C l}}=} & 1.0 \times 10^{-10} \mathfrak{M} \\
& p \mathcal{H}=\underline{10.00}
\end{aligned}
$$

Oops! There are $\mathcal{T W O}$ sources of \mathcal{H}^{+}:

$$
\begin{gathered}
\mathcal{H C l}^{(a q) \rightarrow} \begin{array}{c}
\mathcal{H}^{+}(a q)+\mathrm{Cl}(a q) \\
\text { and }
\end{array} \\
\mathcal{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathcal{H}^{+}(a q)+O \mathcal{H}^{-}(a q)
\end{gathered}
$$

$\left[\mathcal{H}^{+}\right]$from two reactions

So:

$$
\begin{aligned}
& {\left[\mathcal{H}^{+}\right]=\left[\mathcal{H}^{+}\right]_{\mathcal{H C l}}+\left[\mathcal{H}^{+}\right]_{\mathcal{H} 2 \mathrm{O}}} \\
& {\left[\mathcal{H}^{+}\right]=\mathcal{C}_{\mathcal{H C l}}+\left[O \mathcal{H}^{-}\right]} \\
& {\left[\mathcal{H}^{+}\right]=\mathcal{C}_{\mathcal{H C l}}+\mathcal{K}_{\varepsilon u} /\left[\mathcal{H}^{+}\right]}
\end{aligned}
$$

It's a quadratic! Rearranging:

$$
\left[\mathcal{H}^{+}\right]^{2}-\mathcal{C}_{\mathcal{H C l}}\left[\mathcal{H}^{+}\right]-\mathcal{K}_{\varepsilon v}=0
$$

On to the solution!

Solving for $\left[\mathcal{H}^{+}\right]$, give s:

$$
\begin{aligned}
& {\left[\mathcal{H}^{+}\right]=1.00050 \text { Х } 10^{-7} \mathcal{M}\left[\begin{array}{l}
\checkmark \mathcal{A u t o i o n i z a t i o n ~ o f ~} \\
\text { water is the major } \\
\text { source of } \mathcal{H}^{+} \text {in this } \\
\text { solution }
\end{array}\right.} \\
& p \mathcal{H}=6.99978=\underline{7.00} \quad
\end{aligned}
$$

Weak Acids - pH Calculation

$>$ If we have \mathcal{K}_{a} and solution concentration, this is just a straightforward equilibrium problem

Example: Calculate the pH of a 1.0 х $10^{-1} \mathcal{M} \mathcal{H F}$ solution $\left(\mathcal{K}_{a}=7.2 . X 10^{-4}\right)$.

First, identify the major sources of \mathcal{H}^{+}:

Apply ICE

$\mathscr{H F F}(a q) \leftrightarrows \mathcal{H}^{+}(a q)+\mathcal{F}(a q)$
$\begin{array}{ll}I & 1.0 \\ \text { Х } 10^{-1} \mathcal{M}\end{array}$
C \qquad
E $1.0 x 10^{-1} x \quad x$ x
Recall: $\quad \mathcal{K}_{a}=\left[\mathcal{H}^{+}\right][\mathcal{F}]=7.2 \times 10^{-4}$ [$\mathcal{H F}$]

Substituting:

$$
\frac{x^{2}}{1.0 \times 10^{-1}-x}=7.2 \times 10^{-4}
$$

Quadratic Formula?

Rearranging:

$$
x^{2}+7.2 \times 10^{-4} x-7.2 \times 10^{-5}=0
$$

Substituting:

$$
x=-7.2 \times 10^{-4} \pm 1.6986 \times 10^{-2}
$$

$$
2
$$

Finally: $\quad x=8.1329 \times 10^{-3}=\left[\mathcal{H}^{+}\right]$

$$
p \mathcal{H}=2.0897=\underline{2.09}
$$

Successive Approximations?

$$
\begin{aligned}
& \frac{\left(x^{\prime}\right)^{2}}{1.0 \times 10^{-1}}=7.2 \times 10^{-4} \\
& x^{\prime}=8.4853 \times 10^{-3}
\end{aligned}
$$

$$
p \mathcal{H}=2.09
$$

SuccessfulSuccessive Approximations?

> Assess Assumptions:

1. $\left[\mathcal{H}^{+}\right] \ll 1.0 \times 10^{-1} \mathcal{M}$
close ... But should be 100 x difference
2. $\frac{\text { We can ignore }\left[\mathcal{H}^{+}\right]_{\mathcal{H} 2 \mathrm{O}}}{\left.\sqrt{\left[\mathcal{H}^{+}\right]>}>\mathcal{H}^{+}\right]_{\mathscr{H} 2 \mathrm{O}}}$
$>\frac{\text { When do we include }\left[\mathcal{H}^{+}\right]_{\mathcal{H} 2 \mathrm{O}} \text { ? } \text { ? } \text { Dilute solutions }}{\checkmark \text { ? }}$?
\checkmark Very weak $\left(\mathcal{K}_{a}<10^{-8}\right)$ acids

What about Bases?

$>$ Treat Bases just like acids except:
\checkmark Use \mathcal{K}_{6} instead of \mathcal{K}_{a}
\checkmark Calculate [$O \mathcal{H}{ }^{-}$] first, cone rt to $p O \mathcal{H}$
\checkmark Calculate $p \mathcal{H}$ from $p O \mathcal{H}$
\checkmark Examples
\checkmark pH of $0.10 \mathcal{M} \mathcal{N a O H}$ (strong base)
$\checkmark p \mathcal{H}$ of $0.10 \mathcal{M} \operatorname{Me} t$ fylamine (weak base) $\left(\mathcal{H}_{3} \mathcal{N H}_{2}-\mathcal{K}_{6}=4.38 \times 10^{-4}\right)$

Here's Another One!

$>$ Calculate the $p \mathcal{H}$ of a $0.10 \mathcal{M} \mathscr{K C N}$ solution $\left(\mathcal{K}_{a}(\mathcal{H C N})=6.2 \times 10^{-10}\right)$.

What happens to $\mathcal{K C N}$ in water?

$$
\mathcal{K C N} \rightarrow \mathcal{K}^{4}+\mathcal{C N}
$$

conjugate base of $\mathcal{H C N}$
So, the pH-determining species is a base: $\mathcal{C N}$ Find \mathcal{K}_{θ} for $\mathcal{C N}: \mathcal{K}_{Q} \mathcal{K}_{6}=\mathcal{K}_{w v} \quad \mathcal{K}_{6}=\mathcal{K}_{w w} / \mathcal{K}_{a}$

$$
\begin{equation*}
\mathcal{K}_{6}=\frac{1.0 \times 10^{-14}}{6.2 \times 10^{-10}}=1.613 \times 10^{-5} \tag{31}
\end{equation*}
$$

ICE Table

| | $\mathcal{C N}(a q)+\mathcal{H}_{2} O(l) \leftrightarrows$ | $\mathcal{H C N}(a q)+O \mathcal{H}^{-}$ | $(a q)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| I | 0.10 | 0 | 0 |
| \mathcal{C} | $-\chi$ | $+\chi$ | $+\chi$ |
| \mathcal{E} | $0.10-\chi$ | χ | χ |

$$
\text { Substituting: } \quad \mathcal{K}_{6}=\frac{[\mathcal{H C N}][O \mathcal{H}]}{[C \mathcal{N} \cdot]}=1.613 \times 10^{.5}
$$

Successive Approximations

pH Please!

$\left[O \mathcal{H}^{-}\right]=\chi=1.26 \times 10^{-3} \mathcal{M}$
$p O \mathcal{H}=-\log \left(1.26 \times 10^{-3}\right)=2.899$
$p \mathcal{H}=14.00-p O \mathcal{H}=\underline{11.10}$
$>\mathcal{A n i o n s}$ of Weak $\mathfrak{A c i d}$ are $\mathcal{W e} a K \mathcal{B a s e s}$ \checkmark KCX in water will be basic
$>$ Cations of Weak Bases are Weak Acids $\checkmark \mathcal{N H}_{4} \mathcal{N O}_{3}$ in water will be acidic

Common Ion Effect

\rightarrow Suppose we add a common ion to a weak acid system at equilibrium?
Example: add Sodium Ace tate to a solution of Acetic Acid

$$
\mathcal{N} \mathrm{aCH}_{3} \mathrm{COO} \rightarrow \mathcal{N} a^{+}(a q)+\mathrm{CH}_{3} \mathrm{COO} \mathrm{O}^{-}(\mathrm{aq})
$$

$\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathcal{H}_{2} \mathrm{O}(\Omega) \leftrightarrows \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathcal{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
$>\mathcal{A d d i n g}$ ace tate ion (a product) will shift equilibrium to the $\underline{\underline{L E F T}}$
$\checkmark\left[\mathcal{H}_{3} \mathrm{O}^{+}\right]$will decrease
$\checkmark p \mathcal{H}$ will increase

Quantitative ly

- Example: What happens to the pH when we add 10.00 mL of $0.100 \mathrm{M}^{\mathrm{NaCH}} \mathrm{S}_{3} \mathrm{COO}$ to 10.00 mL of $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$?
First: Find intial $p \mathcal{H}$ (of the $\mathrm{CH}_{3} \mathrm{COOH}$ alone)

$$
\begin{array}{lccc}
& \mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathcal{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{CH}_{3} \mathrm{COO}(a q)+\mathcal{H}_{3} \mathrm{O}^{+}(a q) \\
I & 0.100 \mathfrak{M} & 0 & 0 \\
\mathcal{C} & -\chi & +\chi & +\chi \\
& 0.100-\chi & x & \chi
\end{array}
$$

\mathcal{E}

pH of $\mathrm{CH}_{3} \mathrm{COOH}$ alone

- Plug into \mathcal{K}_{a} expression:

$$
\begin{aligned}
\mathcal{K}_{a} & =\left[\mathcal{H}_{3} \frac{\left.O^{+}\right]\left[\mathrm{CH}_{3}\right.}{\left[\mathrm{CH}_{3} \mathrm{COO}\right]} \frac{\mathrm{OH}]}{}=1.76 \times 10^{.5}\right. \\
\mathcal{K}_{a} & =\frac{(x)(x)}{0.100-x}=1.76 \times 10^{.5}
\end{aligned}
$$

■By successive approximations (or quadratic formula):

$$
\begin{aligned}
& \chi=\left[\mathcal{H}_{3} O^{+}\right]=1.318 \times 10^{-3} \mathcal{M} \\
& p \mathcal{H}=-\log \left(1.318 \times 10^{-3}\right)=\underline{2.88}
\end{aligned}
$$

$\mathcal{N o w}$, add the $\mathfrak{N a C H}_{3} \mathrm{COO}$

- We need to re-calculate concentrations when we change the volume of the solution

Trick: use mmolinstead of mol

$$
m \mathcal{L} \quad \mathcal{M}=m m o l
$$

$10.00 \mathrm{~mL} x 0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}=\underline{1.00 \mathrm{mmol} \mathrm{CH}_{3} \mathrm{COOH}}$ $10.00 \mathrm{~mL} \chi 0.100 \mathcal{M ~}^{\mathfrak{N}} \mathrm{NaCH}_{3} \mathrm{COO}=\underline{1.00 \mathrm{mmol}} \mathfrak{N a C \mathcal { H } _ { 3 } \mathrm { COO }}$
\checkmark Divide by new solution volume to get initial concentrations: $\underline{1.00 \mathrm{mmol}}=5.00 \times 10^{-2} \mathcal{M} \quad\left(\right.$ for 6 oth $\mathcal{C H}_{3} \operatorname{COO} \mathcal{H}$ and $\left.\mathcal{N a C H}_{3} \mathrm{COO}\right)$ 20.00 mL

ICE Time

$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathcal{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{CH}_{3} \mathrm{COO}{ }^{-}(\mathrm{aq})+\mathcal{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$			
I	0.0500 М	0.0500 M	0
C	- x	+ χ	+x
\mathcal{E}	$0.0500-\chi$	$0.0500+\chi$	χ
$\mathcal{K}_{a}=\underline{H \mathcal{H}}_{3} \frac{\left.\mathrm{O}^{+}\right]\left[\mathrm{CH}_{3}\right.}{\left[\mathrm{CH}_{3} \mathrm{COO} \mathrm{OH}\right]}=\frac{(x)(0.0500+\chi)}{0.0500-\chi}=1.76 \times 10^{.5}$			

Ulsing Successive Approximations: $x^{\prime}=1.76 \times 10^{-5}$
So: $\left[\mathcal{H}_{3} \mathrm{O}^{+}\right]=1.76 \times 10^{-5} \mathcal{M}$ and $p \mathcal{H}=\underline{4.75}$

Let's Add Some $\mathcal{N a O \mathcal { H }}$

- What would happen to the $p \mathcal{H}$ if we added 10.00 mL of $0.0100 \mathfrak{M} \mathfrak{N a O \mathcal { H }}$ to this soln?

Two possible species to react with $O \mathcal{H}^{-}$:

What's K?

- Combine two reactions with known values of \mathcal{K} to get \mathcal{K} for the unknown reaction:

$$
\begin{array}{cc}
\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathcal{H}_{2} \mathrm{O}(l) & \leftrightarrows \mathcal{C H}_{3} \mathrm{COO}(a q)+\mathcal{H}_{3} \mathrm{O}^{+}(a q) \\
O \mathcal{H}^{-}(a q)+\mathcal{H}_{3} \mathrm{O}^{+}(a q) \leftrightarrows \mathcal{H}_{2} & (l)+\mathcal{H}_{2} O(l)
\end{array}
$$

$\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{COO}(a q)+\mathcal{H}_{2} \mathrm{O}$ (l) $\quad \mathcal{K}$

$$
\mathcal{K}=\frac{\mathcal{K}_{a}}{\mathcal{K}_{w}}=\frac{1.76 \times 10^{-5}}{1.0 \times 10^{-14}}=\frac{1.76 \times 10^{9}}{1}
$$

General result for reaction of a
Huge! we ak acid with a strong base

Reaction is quantitative.

Assume Complete Reaction

\square Since Xis so large, assume reaction with $O \mathcal{H}$ - is quantitative:
$\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathcal{C H}_{3} \mathrm{COO}^{-}(a q)+\mathcal{H}_{2} O \quad$ (l)
$I \quad 1.00 \mathrm{mmol} \quad 0.100 \mathrm{mmol} \quad 1.00 \mathrm{mmol}$
C $-0.100 \mathrm{mmol} \quad-0.100 \mathrm{mmol} \quad+0.100 \mathrm{mmol}$
$\mathcal{F} 0.90 \mathrm{mmol} \quad 0 \quad 1.10 \mathrm{mmol}$

Note: These are not equilibrium amounts!

Back to Equilibrium

Effect on $p \mathcal{H}$?

$$
\begin{aligned}
& >p \mathcal{H}=-\log \left[\mathcal{H}_{3} O^{+}\right]=\underline{4.84} \\
& >\mathcal{S} o: \Delta p \mathcal{H}=4.75-4.84=-0.09
\end{aligned}
$$

Compare with adding $\mathcal{N a O \mathcal { H } \text { to water: }}$

Very little
Change in $p \mathscr{H}$!
Add: $10.00 \mathrm{~mL} 0.0100 \mathcal{M} \mathfrak{N a O H}$ to $20.00 \mathrm{~mL} \mathcal{H}_{2} \mathrm{O}$

$\left[O \mathcal{H}^{-}\right]=\underline{0.100 \mathrm{mmol} O \mathcal{H}^{-}}=3.33 \times \widehat{10^{-3} \mathcal{M}} p \mathcal{H}=14.00-2.48$ 30.00 mL
$p \mathcal{H}=11.52$
So: $\Delta p \mathcal{H}=7.00-11.52=-4.52$ (Huge!)

Buffers

\mathcal{A} mixture of a we ak acid and its conjugate base buffers $p \mathcal{H}:$

$\mathrm{CH}_{3} \mathrm{COOH}+\mathcal{H}_{2} \mathrm{O} \leftrightarrows \mathrm{CH}_{3} \mathrm{COO}+\mathcal{H}_{3} \mathrm{O}^{+}$

The Henderson-Hasselbalch Equation
\log formulation of the \mathcal{K}_{a} expression:

$$
\mathcal{K}_{a}=\frac{\left[\mathcal{H}_{3}\right.}{[\mathcal{H} \mathcal{A}]}
$$

Solve for $\left[\mathcal{H}_{3} \mathrm{O}^{+}\right]$:

$$
\left[\mathcal{H}_{3} O^{+}\right]=\frac{\mathcal{K}_{a}[\mathcal{H A}]}{[\mathcal{A}]}
$$

$$
p \mathcal{H}=p \mathcal{K}_{a}+\log \left(\left[\mathcal{A}^{-}\right] /[\mathcal{H} \mathcal{A}]\right)
$$

Titrations

If $\mathcal{K}_{x_{n}}$ is large, then it is usefulfor titrime tric determinations
\rightarrow We can predict the pH्H of the solution resulting from eacf addition of titrant in an acid/base titration, if we know:
\checkmark Initial concentrations

The Process:
-convert to mmol - complete reaction - convert to concentrations -ICE to get $\left[\mathcal{H}_{3} \mathrm{O}^{+}\right]$ -convert to $p \mathcal{H}$

Example Titration

Let's titrate!
Analyte:

$$
50.00 \mathrm{~mL} 0.100 \mathcal{M} \text { Acetic Acid }(\mathcal{H A} c)
$$

$$
\mathcal{K}_{a}=1.76 \times 10^{-5}
$$

Titrant: $0.100 \mathcal{M} \mathcal{N} a O \mathcal{H}$

The Chemistry:

$$
\mathcal{H} \mathcal{A c}+O \mathcal{H}^{-} \rightarrow \mathcal{A} c^{-}+\mathcal{H}_{2} O \text { (titration reaction) }
$$

Initial $p \mathcal{H}(0.00 m \mathcal{L} \mathcal{N a O H})$

I us $\mathcal{H A c}$ (we kacid) alone in solution:

$$
\mathcal{H A c}+\mathcal{H}_{2} O \leftrightarrows \mathcal{A c}^{-}+\mathcal{H}_{3} O^{+}
$$

$I \quad 0.100 \mathcal{M}$

\mathcal{C}	$-x$	$+\chi$	$+\chi$
	$0.100-\chi$	χ	χ

$5.00 \mathrm{~mL} \mathcal{N a O} \mathcal{H}$ added

Convert to
mol:

- $5.00 \mathrm{~mL}(0.100 \mathrm{~mol} O \mathcal{H} / \mathcal{L})=0.500 \mathrm{mmol} O \mathcal{H}$
- $50.00 \mathrm{~mL}(0.100 \mathrm{~mol} \mathcal{H A c} / \mathcal{L})=5.00 \mathrm{mmol} \mathcal{H A c}$

$$
\mathcal{H} \mathcal{A c}+O \mathcal{H}^{-} \rightarrow \mathcal{A c}^{-}+\mathcal{H}_{2} O
$$

I $\quad 5.00 \mathrm{mmol} \quad 0.500 \mathrm{mmol}$

Convert to concentrations:

$$
\begin{aligned}
& C_{\mathcal{H A c}}=\frac{4.50 \mathrm{mmol}}{55.00 \mathrm{~mL}}=\underline{8.182 \times 10^{-2} \mathrm{M}} \\
& C_{\mathfrak{A c}}=\frac{0.50 \mathrm{mmol}}{55.00 \mathrm{~mL}}=\underline{9.091 \times 10^{-3} \mathrm{M}}
\end{aligned}
$$

50

On to Equilibrium!

$$
\begin{aligned}
& \mathcal{H A c}+\mathcal{H}_{2} \mathrm{O} \leftrightarrows \mathscr{A c}+\mathcal{H}_{3} \mathrm{O}^{+} \\
& I \quad 8.182 \times 10^{-2} \mathcal{M} \quad 9.091 \times 10^{-3} \mathcal{M} \\
& \begin{array}{cccc}
C & -\chi & +\chi & +\chi \\
\cline { 2 - 4 } \mathcal{E} & 8.182 \times 10^{-2}-\chi & 9.091 \times 10^{3.3}+\chi & \chi
\end{array} \\
& p \mathcal{H}=p \mathcal{K}_{a}+\log \left(\left[\mathcal{A} c^{-}\right] /[\mathcal{H} \mathcal{A} c]\right) \\
& p \mathcal{H}=4.754+\log \left[\left(9.091 \times 10^{-3}+\chi\right) /\left(8.182 \times 10^{-2}-\chi\right)\right] \\
& \text { Assume: } x \ll 10^{-2} \\
& p \mathcal{H}=4.754+\log \left(9.091 \times 10^{-3} / 8.182 \times 10^{-2}\right)=3.7998=\underline{3.80}
\end{aligned}
$$

$25.00 \mathrm{~mL} \mathcal{N} a O \mathcal{H}$ added

- $25.00 \mathrm{~mL}(0.100 \mathrm{~mol} O \mathcal{H} / \mathcal{L})=2.50 \mathrm{mmol} O \mathcal{H}$.
- $50.00 \mathrm{~mL}(0.100 \mathrm{~mol} \mathcal{H A c} / \mathcal{L})=5.00 \mathrm{mmol} \mathcal{H A c}$


```
Convert to - 50.00 mL (0.100 mol OH
mmol:
- \(50.00 \mathrm{~mL}(0.100 \mathrm{~mol} \mathcal{H A c} / \mathcal{L})=5.00 \mathrm{mmol} \mathcal{H A c}\)
```

$$
\mathcal{H A} \mathcal{A}+O \mathcal{H}^{-} \rightarrow \mathcal{A c}^{-}+\mathcal{H}_{2} O
$$

Complete
I $\quad 5.00 \mathrm{mmol} \quad 5.00 \mathrm{mmol}$
reaction:

\mathcal{C}	$-5.00 \mathrm{mmol}-5.00 \mathrm{mmol}$	+5.00 mmol
\mathcal{F}	-	5.00 mmol

Convert to concentrations:

$$
C_{\mathscr{A c}}=\frac{5.00 \mathrm{mmol}}{100.00 \mathrm{~mL}}=\underline{5.00 \times 10^{-2} \mathrm{M}}
$$

Equilibrium: Weak Base

$\mathcal{A c}^{-}+\mathcal{H}_{2} \mathrm{O} \leftrightarrows \mathcal{H} \mathcal{A c}+O \mathcal{H}$
I $\quad 5.00 \times 10^{-2} \mathcal{M}$
$\begin{array}{ccc}-x & +x & +x\end{array}$
E $5.00 \times 10^{-2} \mathcal{M}-\chi \quad \chi \quad$ x

$$
\mathcal{K}_{\varepsilon}=\mathcal{K}_{a} / \mathcal{K}_{w v}=5.68 \times 10^{-10}
$$

$$
\begin{aligned}
& \chi=5.33 \times 10^{-6}=[O \mathcal{H}] \\
& p O \mathcal{H}=5.27 \\
& p \mathcal{H}=14.00-5.27=8.73 \\
& 54
\end{aligned}
$$

$60.00 \mathrm{~mL} \mathcal{N a O} \mathcal{H}$ added

Excess OH: Rules!

$\left[O \mathcal{H}^{-}\right]=\left[O \mathcal{H}^{-}\right]_{\mathcal{N}(a O \mathcal{H}}+\left[O \mathcal{H}^{-}\right]_{\mathcal{A c} .}+\left[O \mathcal{H}^{-}\right]_{\mathcal{H} 2 O}$
$\left[O \mathcal{H}^{-}\right]=\frac{1.00 \mathrm{mmol}}{110.00 \mathrm{~mL}}+\left(<10^{-6}\right)+\left(<10^{-7}\right)$
$\left[O \mathcal{H}^{-}\right]=9.091 \times 10^{-3} \mathfrak{M}$
$p O \mathcal{H}=2.04$
$p \mathcal{H}=14.00-2.04=\underline{11.96}$

Equivalence Point Detection

 $>\frac{\text { Inflection Point of titration curve }}{\cdot \operatorname{Plot} \text { pH versus mLs titrant }}$$>$ Indicator

$$
\underset{\text { acid form }}{\mathcal{H I n}} \leftrightarrows \mathcal{H}^{+}+\underset{\text { base form }}{\operatorname{In}}
$$

- Color change observed when: $[\mathcal{H I n}]=[I n]$ (when $p \mathcal{H}=p \mathcal{K}_{q}$ of indicator)
- Choose indicator so that:

Indic ator $p \mathcal{K}_{a} \approx$ Equiv $\mathcal{P t} p \mathcal{H}$

Polyprotic Acids

What if an acid has more than one acidic proton?

Example: $\mathcal{H}_{2} \mathrm{CO}_{3}$

$$
\begin{array}{lll}
\mathcal{H}_{2} \mathrm{CO}_{3} \leftrightarrows \mathcal{H}^{+}+\mathcal{H C O}_{3}{ }^{-} & \mathcal{K}_{1}=4.3 \times 10^{-7} \\
\mathcal{H C O}_{3}{ }^{-} \leftrightarrows \mathcal{H}^{+}+\mathrm{CO}_{3}{ }^{2 .} & \mathcal{K}_{2}=4.8 \times 10^{-11}
\end{array}
$$

If $\mathcal{K}_{1} \gg \mathcal{K}_{2}:$ Treat as separate acids

Titration of $\mathcal{H}_{2} \mathrm{CO}_{3}$

Reaction with $O \mathcal{H}$ occurs stepwise:
$\mathcal{H}_{2} \mathrm{CO}_{3}$ reacts first:

$$
\mathcal{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-} \rightarrow \mathcal{H C O}_{3}^{-}+\mathcal{H}_{2} \mathrm{O}
$$

$\mathcal{H C O}_{3}$ reacts only once all $\mathcal{H}_{2} \mathrm{CO}_{3}$ is gone:

$$
\mathcal{H C O}_{3}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{CO}_{3}{ }^{2 \cdot}+\mathcal{H}_{2} \mathrm{O}
$$

$\mathcal{H}_{2} \mathrm{CO}_{3}:$ Weak Acid $\quad \mathcal{H}_{2} \mathrm{CO}_{3} / \mathcal{H C O}_{3}:$ Buffer $\mathrm{CO}_{3}{ }^{2 \cdot}$: Weak Base $\mathcal{H C O}_{3} \cdot / \mathrm{CO}_{3}{ }^{2 \cdot}$: Buffer
$\mathcal{H C O}_{3}: \mathcal{A m p f o t e r i c ~ (a c t s ~ a s ~ b o t h ~ a c i d ~ a n d ~ a ~ b a s e) ~}$

Dealing with $\mathcal{H C O}_{3}$.

Will a solution of $\mathcal{H C O}_{3}$ be acidic or basic? Two equilibria:

$$
\begin{array}{cl}
\mathcal{H C O}_{3} \leftrightarrows \mathcal{H}^{+}+\mathrm{CO}_{3}{ }^{2 .} & \mathcal{K}_{2}=4.8 \times 10^{-11} \\
\mathcal{H C O}_{3}+\mathcal{H}_{2} \mathrm{O} \leftrightarrows \mathcal{H}_{2} \mathrm{CO}_{3}+O \mathcal{H}^{-} \quad & \mathcal{K}_{6}=\mathcal{K}_{w d} / \mathcal{K}_{1}=2.3 \times 10^{-8} \\
\mathcal{K}_{6}>\mathcal{K}_{2}, \text { so } \mathcal{H C O}_{3} \text { is a stronger } 6 \text { ase than acid } \\
& \text { (solution will be basic) }
\end{array}
$$

Quantitative by?
It can be shown that:

$$
\left[\mathcal{H}^{+}\right]=\left[\frac{\mathcal{K}_{1} \mathcal{K}_{2}[\mathcal{H} \mathscr{A}]+\mathcal{K}_{1} \mathcal{K}_{w v}}{\mathcal{K}_{1}+[\mathcal{H} \mathcal{A}]}\right]^{1 / 2}
$$

\checkmark But $\mathcal{H C O}_{3}$ is such a weakacid/base that it dissociates very little: $\left[\mathcal{H C O}_{3}^{-}\right] \approx \mathcal{C H C O}$.

$$
\checkmark \mathcal{A l s o} \text {, if: } \mathcal{C}_{\mathcal{H C O} 3} \gg \mathcal{K}_{1} \text { and } \mathcal{K}_{2} \gg \mathcal{K}_{v}
$$

$\underline{\mathcal{T H E N}}: \quad\left[\mathcal{H}^{+}\right]=\left(\mathcal{K}_{1} \mathcal{K}_{2}\right)^{1 / 2} \quad\left(p \mathcal{H}=1 / 2\left[p \mathcal{K}_{1}+p \mathcal{K}_{2}\right]\right)$

