Intermolecular Forces and Phase Equilibria

Chemistry 36 Spring 2002

Hydrogen is unusual: its only electron is its valence electron

-if bound to a *very electronegative* element, the unshielded hydrogen nucleus has a significant positive charge

-the hydrogen is, thus, attracted to the *lone pair electrons* on the *very electronegative* atom <u>of an</u> <u>adjacent molecule</u>

7

Boiling Point Trends

- The enthalpy change associated with vaporization is due to the *disruption* of these intermolecular forces
- The magnitude of △H^o_{vap} is reflected in the *boiling* point temperature (T_b) for a compound
- For *polar* molecules:

Substance	Molecular Weight (amu)	Dipole Moment, M (D)	Boiling Point (K)
Propane, CH ₃ CH ₂ CH ₂	44	0.1	231
Dimethyl ether, CH2OCH2	46	1.3	248
Methyl chloride, CH ₂ Cl	50	1.9	249
Acetaldehyde, CH2CHO	44	2.7	294
Acetonitrile, CH3CN	41	3.9	355

More BP Trends

■ For **NONPOLAR** species:

Halogen	Molecular Weight (amu)	Boiling Point (K)	Noble Gas	Molecular Weight (amu)	Boiling Point (K)
F ₂	38.0	85.1	He	4.0	4.6
Cla	71.0	238.6	Ne	20.2	27.3
Br ₂	159.8	332.0	Ar	39.9	87.5
I2	253.8	457.6	Kr	83.8	120.9
			Xe	131.3	166.1

increased molar mass = greater polarizability

