April 22, 2002

>Exam \# 3
\checkmark Solution Key is now online
\checkmark Graded exams will be returned later this week

Kine tics

\checkmark Assigned problems now online
$\checkmark \underline{L a b s}$
$\mathcal{A L L} \mathcal{A B S}$ DUE $\mathfrak{N O}$ LATER $\mathcal{T H A N}$:
$\mathcal{M I D \mathcal { N }} \operatorname{IG\mathcal {H}}, \mathcal{M A \mathcal { A }} 1 s t$

The Method of Initial Rates

One way to determine values for m and k
Example: Decomposition of ace aldehyde

$$
\begin{array}{cl}
\mathrm{CH}_{3} \mathrm{CHO} & (\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \\
\text { Rate Law: } & \text { Rate }=\mathrm{K}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{m}
\end{array}
$$

Method:
\rightarrow Measure initial rate for reactions having different [$\mathrm{CH}_{3} \mathrm{CHO}$]

Dat a and Data Crunching

$\left[\mathrm{CH}_{3} \mathrm{CHO}\right]$	0.10	0.20	0.30	0.40	$\mathrm{~mol} / \mathrm{L}$
Initial Rate	0.18	0.72	1.6	2.9	$\mathrm{~mol} / \mathrm{L}-\mathrm{s}$

$\underline{\text { Find } \operatorname{Order}(m)}$

For any two data points:

$$
\begin{aligned}
& \frac{0.18}{0.72}=(0.10 / 0.20)^{m} \quad \Rightarrow 1 / 4=(1 / 2)^{m} m=2
\end{aligned}
$$

What about K?

Solve for k :
For any data point:

$$
\begin{aligned}
& \text { Rate } \left.=\kappa / \mathrm{CH}_{3} \mathrm{CHO}\right]^{2} \\
& \kappa=\frac{\text { Rate }}{\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{2}}=\frac{0.18 \mathrm{~mol} / \mathrm{L}-\mathrm{s}}{(0.10 \mathrm{~mol} / \mathrm{L})^{2}}=18 . \mathrm{L} / \mathrm{mol}-\mathrm{s}
\end{aligned}
$$

\checkmark Knowing m and K Rate at any concentration can be predicted

How does Reactant

Concentration vary with Time?

Depends on the reaction order:
Integrated Rate Laws
$>$ Zeroth Order Reactions

- Rate is independent of concentration:

$$
\text { Rate }=K[\mathcal{A}]^{0}=\mathcal{K}
$$

First-Order Reactions

For the reaction: $\mathcal{A} \rightarrow$ products

$$
\text { Rate }=K[\mathcal{A}]^{1}
$$

Using a bit of calculus:

$$
\log [\mathcal{A}]_{t}=-(\mathbb{K} / 2.303) t+\log [\mathcal{A}]_{0}
$$

1st-Order Reaction Example

Decomposition of hydrogen peroxide:

$$
\begin{gathered}
2 \mathcal{H}_{2} O_{2}(\mathcal{l}) \rightarrow 2 \mathcal{H}_{2} O \quad(\mathcal{O})+O_{2}(g) \\
m=1 \quad k=0.0410 \mathrm{~min}^{-1}
\end{gathered}
$$

If we start with $0.500 \mathrm{~mol} / \mathcal{L} \mathcal{H}_{2} \mathrm{O}_{2}$, what will $\left[\mathcal{H}_{2} \mathrm{O}_{2}\right]$ be after 10.0 min?
$\mathcal{P l u g}$ into $1 s t$-order integrated rate equation:
$\log \left[\mathcal{H}_{2} \mathrm{O}_{2}\right]_{10 \text { min }}=-\left(0.0410 \mathrm{~min}^{-1} / 2.303\right)(10.0 \mathrm{~min})+\log (0.500 \mathcal{M})$
$\log \left[\mathcal{H}_{2} \mathrm{O}_{2}\right]_{10 \text { min }}=-0.479$

$$
\left[\mathcal{H}_{2} \mathrm{O}_{2}\right]_{10 \mathrm{~min}}=0.332 \mathrm{~mol} / \mathcal{L}
$$

More 1st-Order

\mathcal{H} w long will it take for $\left[\mathcal{H}_{2} \mathrm{O}_{2}\right]$ to drop to $0.100 \mathfrak{M}$?
Solve integrated rate law for t :

$$
t=(2.303 / K) \log \left([\mathcal{A}]_{0} /[\mathcal{A}]_{t}\right)
$$

Substituting and solving:
$t=\left(2.303 / 0.0410 \mathrm{~min}^{-1}\right) \log (0.500 / 0.100)$

$$
t=39.3 \text { minutes }
$$

Special Case

$\mathcal{H o w l o n g}$ will it take for half of the $\mathcal{H}_{2} \mathrm{O}_{2}$ to react?

$$
t=(2.303 / k) \log (2.00)=16.9 \mathrm{~min}
$$

For any 1st-order reaction:

$$
t_{1 / 2}=0.693 / \mathrm{K}
$$

2nd-Order Reactions

For the reaction: $\mathcal{A} \rightarrow$ products

$$
\text { Rate }=K[\mathcal{A}]^{2}
$$

Again, with the help of a bit of calculus:

$$
1 /[\mathcal{A}]_{t}=\mathcal{K} t+1 /[\mathcal{A}]_{0}
$$

Determining mind K

$>$ Finding m
Which plot is line ar?

$$
\begin{array}{lll}
{[\mathcal{A}] v s . t ?} & \rightarrow & m=0 \\
\mathcal{L o g}[\mathcal{A}] v s . t ? & \rightarrow & m=1 \\
1 /[\mathcal{A}] \text { vs.t? } & \rightarrow & m=2
\end{array}
$$

Finding K
$m=0 \rightarrow \mathcal{K}=-$ slope $([\mathfrak{A}] v s . t$ plot)
$m=1 \rightarrow K=-2.303 x$ slope $(\log [\mathcal{A}]$ vs.t plot)
$m=2 \rightarrow K=$ slope $(1 /[\mathcal{A}] v s . t$ plot)

How do reactions happen?

Collision The orly
Reactions take place as a result of collisions between reactants

Example:

$$
\begin{gathered}
\mathrm{CO}(\mathrm{~g})+\mathfrak{N O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathfrak{N O}(\mathrm{g}) \\
\text { Rate }=\mathrm{K} / \mathrm{CO}]\left[\mathfrak{N} \mathrm{NO}_{2}\right]
\end{gathered}
$$

\checkmark Doubling [CO] or [$\mathfrak{N} \mathrm{NO}_{2}$] will double reaction rate \checkmark WHy?

Doubling number of reactant species will double collision frequency

