

- First Quiz: Today!
- Labs start ne xt we ek!
- Solutions to $P S$ \# 2 will be online early next week
- Reminder: questions for Tuesday problem session?

The Same or \mathcal{N} ot the Same?

- Are all Cl $_{2}$ molecules the same?
- 3 possible combos (isotopomers):

$$
{ }_{(56.5 \%)}^{35} \mathrm{Cl}^{35} \mathrm{Cl} \text { or }{ }_{(37.35)}^{35} \mathrm{Cl}^{37} \mathrm{Cl}^{3} \text { or }{ }_{(6,2 \%)}^{37} \mathrm{Cl}^{37} \mathrm{Cl}
$$

OK, what about Hemoglobin?
$\mathcal{C}_{2954} \mathcal{H}_{4516} \mathcal{N}_{780} \mathrm{O}_{806} \mathcal{S}_{12} \mathcal{F e}_{4}-$ a BIG molecule!
$3324344<$ isotopes (nat l)
The chances of any two hemoglobin molecules in a drop of 6lood being is otopically IDEN冫TICAL, is $\mathcal{V E R S}$ $\mathcal{L E R V} \mathcal{S} \mathcal{M A L L}$.

Molecules

- Definition: \mathcal{T} wo or more atoms 6 ound together
- Identified by a Formula:

Molecular Formula - gives the actual numbers and types of atoms in molecule

Empiric al Formula - gives the relative numbers of atoms in molecule (smallest whole. number ratio)
Mole-Base d Calculations

- How many grams of Phosphorous are there in $0.010 \operatorname{mol}_{P_{2}} \mathrm{O}_{5}$?

Strategu: $\operatorname{mol} \mathcal{P}_{2} \mathrm{O}_{5} \rightarrow \operatorname{mol} \mathcal{P} \rightarrow g \mathbb{P}$
$0.010 \mathrm{~mol} \mathcal{P}_{2} \mathrm{O}_{5} \times \frac{2 \mathrm{~mol} \mathcal{P}}{1 \mathrm{~mol} \mathcal{P}} \times \frac{30.974 \mathrm{~g} \mathcal{P}}{1 \mathrm{~mol} \mathcal{P}}=0.61948 \mathrm{~g} \mathcal{P}$
$1 \mathrm{~mol} \mathrm{P}_{2} \mathrm{O}_{5} \quad 1 \mathrm{~mol} P$

Round to: 0.62 g Pfiospfiorous
Empirical Formula from \% Composition

- What is the empirical formula for a binary compound which is found to be:

$$
56.4 \% \text { Oxygen (by mass) }
$$

43.6\% Phosphorous (6y mass)?

Strategu: \% ->grams $>$ mol

(\% is a relative measure, so $\mathcal{D E F} \mathcal{F} \mathcal{N}$ a sample size (100 g)) In a $100 \cdot \mathrm{~g}$ sample:
$56.4 \mathrm{gO} \times \frac{1 \mathrm{molO}}{15.999 \mathrm{gO}}=\frac{3.525 \mathrm{molO}}{}$

Emp. Form. - continued
This gives: $\mathcal{P}_{1.4076} O_{3.525}$
Dividing: $\mathcal{P O}_{2.50} \rightarrow \mathcal{P}_{2} \mathrm{O}_{5}$
-What about a MO LECULAR formula?
-need a molecular mass of the compound
Example: $\mathcal{M W}$ of $\mathcal{P}_{2} O_{5} \mathrm{cmpd}$ is $284 \mathrm{~g} / \mathrm{mol}$
Empirical Formula Mass $\approx 2 \times 31+5 \times 16=142$
$\mathfrak{M W} /$ Emp Form Mass $=284 / 142=2$
So: $2 \times \mathcal{P}_{2} O_{5}=\mathcal{P}_{4} O_{10}$

