Announcements - 9/18/00

- Exam #1
 - -info page on website
- Tomorrow's Problem Session
 - -put questions in box or email
- Quiz today!
 - -but no quiz on Friday this week

1

Quantifying Reaction Chemistry

■ How many grams of O_2 can be produced via the following reaction from 3.0 grams of $KCIO_3$?

$$KCIO_3$$
 (s) $\xrightarrow{\Delta}$ KCI (s) + O_2 (g) \uparrow

-First, need a balanced equation:

2KCIO₃ (s)
$$\stackrel{\Delta}{\rightarrow}$$
 2KCI (s) + **3**O₂ (g) \uparrow

More QRC

Next: remember that only MOLES can be used to quantify chemical changes:

 $g \ KCIO_3 \ @mol \ KCIO_3 \ @mol \ O_2 \ @g \ O_2$

$$3.0 \text{ g KCIO}_3 \text{ x } \underline{1 \text{ mol KCIO}_3} \text{ x } \underline{3 \text{ mol O}_2} \text{ x } \underline{31.998 \text{ g O}_2} = 122.548 \text{ g KCIO}_3 \quad 2 \text{ mol KCIO}_3 \quad 1 \text{ mol O}_2$$

3

Reaction Reality: Percent Yield

- Previous example gave the *theoretical* yield for the reaction . . . more realistically:
 - -Suppose the reaction of 3.0 g $\rm KCIO_3$ produced 0.55 g $\rm O_2$; calculate the *percent yield* of the reaction

%-yield =
$$\underline{\text{Actual (exptl) Yield}}$$
 x 100
Theoretical Yield
= $\underline{0.55 \text{ g O}_2}$ x 100 = $\underline{\textbf{47\%}}$
1.175 g O₂

Limiting Reagent

We don't always react a stoichiometric amount of reactants:

-How many $g P_2 O_5$ will be produced by the reaction of 2.00 g P with 5.00 $g O_2$?

```
Reaction: P + O_2 \rightarrow P_2O_5

Balance: 4P + 5O_2 \rightarrow 2P_2O_5

Moles: 2.00 g P x 1 mol P = 0.06457 mol P

30.974 g P

5.00 g O<sub>2</sub> x 1 mol O<sub>2</sub> = 0.1563 mol O<sub>2</sub>

31.998 g O<sub>2</sub>
```

5

Limiting Reagent: Cont'd

■ Compare *actual* mol to mol *required*:

```
0.06457 mol P x \frac{5 \text{ mol O}_2}{4 \text{ mol P}} = 0.08071 mol O<sub>2</sub> \frac{1}{4 \text{ mol O}_2} needed to react with actual amt of P So, there will be O_2 leftover after all of the P is consumed: 0.1503 mol O<sub>2</sub> - actual \frac{-0.08071 \text{ mol O}_2}{0.0756 \text{ mol O}_2} reacted \frac{0.0756 \text{ mol O}_2}{0.0756 \text{ mol O}_2} unreacted (excess)
```

The reaction is limited by the amount of **P**, so it is the *Limiting Reagent*.

Limiting Reagent: The Final Straw

■ Since **P** is the limiting reagent, we use *its amount* for the final calculation:

$$g P \otimes mol P \otimes mol P_2O_5 \otimes g P_2O_5$$

$$2.00 \text{ g P x } \underline{1 \text{ mol P}} \text{ x } \underline{2 \text{ mol } P_2O_5} \text{ x } \underline{141.943 \text{ g } P_2O_5} = 30.974 \text{ g P} \underline{4 \text{ mol P}} \underline{1 \text{ mol } P_2O_5}$$

7

Solution Concentrations

- We need to be able to quantify amounts of compounds in solutions:
- 1. Mass Percent

Mass Percent = Solute Mass x 100 Solution Mass

Used, more typically, for $\underline{\text{very dilute}}$ solutions:

ppm = Solute Mass x 106 Trace
Solution Mass

Concentrations: Moles

- Since reaction chemistry is quantified using moles, these are more useful:
- 2. Mole Fraction (X) = mol soluteTotal mol
- 3. Molarity (M) = mol solute
 Liters Solution
- 4. Molality (m) = mol solute kg solvent

-temp independent