Announcements-9/18/00

- Exam \# 1
-info page on we bsite
- Tomorrow's Problem Session
- put questions in box or email
- Quiz today!
- Gut no quiz on \mathcal{F} riday this we ek

Quantifying Reaction Chemistry

- How many grams of O_{2} can be produced via the following reaction from 3.0 grams of KClO_{3} ?

$$
\mathrm{KClO}_{3}(s) \xrightarrow{\Delta} \mathrm{KCl}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \uparrow
$$

-First, need a balanced equation:

$$
2 \mathrm{KClO}_{3}(s) \xrightarrow{\Delta} 2 \mathcal{K C l}(s)+3 \mathrm{O}_{2}(g) \uparrow
$$

More $Q R C$

- Next: remember that only $\mathcal{M O L E S}$ can be used to quantify chemical changes:
g $\mathrm{KClO}_{3} \rightarrow \operatorname{moL} \mathrm{KClO}_{3} \rightarrow \operatorname{moL} \mathrm{O}_{2} \rightarrow g \mathrm{O}_{2}$
$3.0 \mathrm{~g} \mathrm{XClO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{XClO}}{122.548 \mathrm{~g} \mathrm{KClO}_{3}} \times \frac{3 \mathrm{molO}_{2}}{2 \mathrm{~mol} \mathrm{KCO}_{3}} \times \frac{31.99 \mathrm{~g} \mathrm{gg}_{2}}{1 \mathrm{molO}_{2}}=$

$$
\begin{aligned}
& =1.17498 \mathrm{~g} \mathrm{O} \\
& =\underline{1.2 \mathrm{gO}} \underline{2}
\end{aligned}
$$

Reaction Reality: Percent Yield

- Pre vious example gave the the oreticalyield for the reaction... more realistically:
-S uppose the reaction of $3.0 \mathrm{~g} \mathrm{KClO}_{3}$ produced $0.55 \mathrm{~g} \mathrm{O}_{2}$; calculate the percent yield of the reaction
$\%-y$ ield $=\frac{\text { Actual }(\operatorname{exptl}) \text { yield }}{\text { The ore tical Yield }} \times 100$

$$
=\frac{0.55 \mathrm{~g} \mathrm{O}_{2}}{1.175 \mathrm{~g} \mathrm{O}_{2}} \times 100=\underline{47 \%}
$$

Limiting Reagent

- We don't always react a stoicfiometric amount of reactants:
- How many g $P_{2} O_{5}$ will be produced by the reaction of 2.00 g P witf 5.00 g O ?

Reaction: $\mathrm{P}+\mathrm{O}_{2} \rightarrow \mathcal{P}_{2} \mathrm{O}_{5}$
Balance: $\quad 4 P+5 O_{2} \rightarrow 2 \mathcal{P}_{2} O_{5}$
Moles: $2.00 \mathrm{~g} \mathcal{P} \times \underline{1 \mathrm{~mol} P}=0.06457 \mathrm{~mol} P$
$30.974 \mathrm{~g} P$
$5.00 \mathrm{~g} \mathrm{O}_{2} \times \underline{1 \mathrm{molO}} \underline{2}_{2}=0.1563 \mathrm{~mol} \mathrm{O}_{2}$ 31.998 g O

Limiting Reagent: Cont'd

- Compare actual mol to molrequired:
$0.06457 \mathrm{~mol} P \times \underline{5 \mathrm{~mol} \mathrm{O}_{2}}=0.08071 \mathrm{~mol} \mathrm{O}_{2}$

$$
4 \operatorname{mol} \mathrm{P} \quad \text { molo } \mathrm{m}_{2} \text { needed to react }
$$

with actual amt of P
So, there will be O_{2} leftover after all of the P is consumed:
$0.1503 \mathrm{~mol} \mathrm{O}_{2}$ - actual
$-0.08071 \mathrm{molO}_{2}-$ reacted
$0.0756 \mathrm{~mol} \mathrm{O}_{2}$ unreacted (excess)

The reaction is limited by the amount of \mathcal{P}, so it is the Limiting Reagent.

Limiting Reagent: The Final Straw

- Since P is the limiting reagent, we use its amount for the final calculation:
$g \mathcal{P} \rightarrow \operatorname{mol} \mathcal{P} \rightarrow \operatorname{mol} \mathcal{P}_{2} \mathrm{O}_{5} \rightarrow g \mathcal{P}_{2} \mathrm{O}_{5}$
 $30.974 \mathrm{gP} \quad 4 \operatorname{mol} \mathcal{P} \quad 1 \mathrm{~mol}_{2} \mathrm{O}_{5}$

$$
\begin{aligned}
& =4.58265 \mathrm{~g} \mathcal{P}_{2} O_{5} \\
& =\underline{4.58 \mathrm{~g} \mathcal{P}_{2} \underline{O}_{\underline{5}}}
\end{aligned}
$$

Solution Concentrations

- We need to be able to quantify amounts of compounds in solutions:

1. Mass Percent

Mass Percent $=\underline{\text { Solute Mass }} \chi 100$
Solution Mass
Ulsed, more typically, for very difute solutions:

$$
\text { ppm }=\frac{\text { Solute Mass }}{\text { Solution Mass }} \times 10^{6} \quad \text { Trace }
$$

Concentrations: Moles

- Since reaction chemistry is quantified using moles, these are more useful:

2. Mole Fraction $(X)=$ molsolute

Totalmol
3. $\mathcal{M o l a r i t y}(\mathcal{M})=$ molsolute

Liters Solution
4. Molality (m) $=\frac{\text { mol solute }}{\mathrm{kg} \text { solvent }}$

- temp independent

