Announcements-10/6/00

- Quiz Today
- Demo today!

Gas Mixtures

- Dalton's Law of Partial Pressures:

The $\mathcal{T O T A L}$ PRESS URE of a gas mixture
is the SUM of the pressures exerted by each of the gases in the mixture.
$\mathcal{P}_{\text {total }}=\mathcal{P}_{1}+\mathcal{P}_{2}+\mathcal{P}_{3}+\ldots . \cdot$.
$\mathcal{A} t$ constant $\mathcal{T e m p}$ and Volume:

$$
\mathcal{P}_{1}=n_{1}(\mathcal{R I} / \mathcal{V})->\mathcal{P}_{1} \propto n_{1}
$$

- partial pressure of agas in a mixture is proportional to the number of molof that gas in the mixture

Partial Pressures: Example

■ If dry air is $21.0 \% \mathrm{O}_{2}, 78.0 \% \mathcal{N}_{2}$ and $1.0 \% \mathcal{A r}$ (wt\%), what is the partial pressure of O_{2} in a dry air sample at 1.00 atm total pressure?

$$
P_{O_{2}}=X_{O_{2}} P_{\text {Total }}
$$

We need $X_{O_{2}}$:

$$
x_{O_{2}}=\frac{n_{O_{2}}}{n_{O_{2}}+n_{\mathcal{N}_{2}}+n_{\mathscr{A} r}}=\text { mol fraction of } O_{2}
$$

We need mol of each:

$$
n_{O_{2}}=21.0 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} O_{2}}{31.99 \mathrm{gg} O_{2}}=0.6563 \mathrm{~mol} O_{2}(\text { in } 100 \mathrm{~g} \mathrm{Air})
$$

Partial Press Example: Cont'd

- Putting it all togetfer:

$$
\begin{aligned}
X_{O_{2}}=\frac{n_{O_{2}}}{n_{O_{2}}+n_{\mathcal{N}_{2}}+n_{\mathcal{A r}}} & =\frac{0.6563 \mathrm{~mol}}{0.6563+2.784+0.02503 \mathrm{~mol}} \\
& =0.18939
\end{aligned}
$$

Finally:

$$
P_{O_{2}}=X_{O_{2}} P_{\text {Total }}
$$

$$
=(0.18939)(1.00 \mathrm{~atm})=0.18939 \mathrm{~atm}
$$

$\underline{\text { In torr: }} 0.18939 \mathrm{~atm} \chi \underline{760 \text { torr }}=143.9$ torr $=\underline{144 . \operatorname{Torr}}$ 1 atm

Kine tic The ory of Gases

- Developed in the 1800's by physicists Clausius, Maxwell and Boltzmann
- Model of Gas Be favior:
- Pure gas is difute
- atoms/molecules separated bydistances >size
- Molecular motion is:
- continuous, random
- in straigft line s betwe en collisions
- defined by a distribution of velocities
- Colfisions:
- are elastic (no energy loss)
- are the only interactions
- change the direction of motion

More Gas Kine tic Theory

- Implications:

1. Temperature

- The average kinetic energy of the molecules does not change over time (at constant temperature)
- The average kinetic energy of the molecules is proportional to the absolute temperature

2. Pressure

- The pressure exerted by agas is caused by collisions of the gas molecules with the walls of the container
- The magnitude of the pressure de pends on collision frequency and force

Gas Kinetic The orly: Qualitative fy

- Can explain empiric al observations:
- Boyle's Law (PV = constant)
- Increase volume: fewer molecules per unit volume, so there are fewer collisions with the container walls (decreased pressure).
- Charles'Law $(\mathcal{P} / \mathcal{T}=$ constant $)$
- Increase Temp: molecules move faster, so there are more collisions with the container walls (increased pressure).

Gas Kinetic The orly: Quantitatively

- Consider a molecule in a cube moving in one direction:

Quantitative Gas Kinetic

 The ory: Cont'd- What is the force exerted by the molecule on the wall due to the collision?

Force $(\mathcal{F})=\Delta p / \Delta t=2 m v /(2 l / v)$

$$
\mathcal{F}=m v^{2} / \mathscr{l}
$$

- Relating this to pressure:

Pressure $=$ force $/$ unit area
$\mathcal{P}=\mathcal{F} / \mathcal{L}^{2}=\left(m v^{2} / l\right) / \mathcal{L}^{2}=m v^{2} / \beta$
So: $\quad \mathcal{P}=\frac{m v^{2}}{\mathcal{V}} \quad$ Boyle 's Law!

\mathcal{N} ow, apply to an aggregate of g as particles

- For \mathcal{N}_{0} molecules moving in 3-dimensional space, it can be shown that:

$$
P V=1 / 3 \mathcal{N}_{0} m<v^{2}>
$$

where $\left\langle v^{2}\right\rangle$ is the mean squared speed of the aggregate of molecules

- Again, we 've got Boyle's Law (PV = constant) at constant temperature and for a fixed number of gas molecules

But, what about temperature?

Kinetic Energy

- Recall that Kine tic energy is: $1 / 2 m v^{2}$
- Rearranging the previous equation and substituting in the kinetic energy:

$$
P V=2 / 3 \quad \mathcal{N}_{0}<\varepsilon_{k}>
$$

Where $\varnothing_{k}>$ is the average kine tic energy per particle

- We also know that $\mathcal{N}_{0} \otimes_{k}>$ is the totalkine tic energy (E_{k}) for a mole of gas molecules, so:

$$
\mathcal{E}_{K}=3 / 2 P \mathcal{P V}
$$

Kine tic Energy and Temperature

- Recalling the IGL, we can substitute nRT for PV:

$$
\mathcal{E}_{k}=3 / 2 n \mathcal{R T}
$$

-for a fixed amount of gas, temperature is determined solely by the totalkinetic energu of the gas molecules

- Temp is independent of the mass or density or of the composition of the gas
-the velocities of gas molecules must then be dependent upon their masses

Temperature and Velocity

- Bringing back our initial result:

$$
P V=1 / 3 \mathcal{N}_{0} m\left\langle v^{2}\right\rangle
$$

- And recognizing that: $\mathcal{N}_{0} m=\mathcal{M}$ (molar mass)
- And that for a mole of gas: $\quad \mathcal{P V}=\mathcal{R T}$
- We obtain: $\quad 1 / 3 \mathcal{M}\left\langle v^{2}\right\rangle=\mathcal{R T}$
- Rearranging:

$$
\left\langle v^{2}\right\rangle=3 R \mathcal{T} / \mathcal{M}
$$

- And taking the square root of both sides:

$$
v_{r m s}=(3 \mathcal{R} \mathcal{I} / \mathcal{M})^{1 / 2}
$$

rms Velocity
 and Molar Mass

- Knowing that:

$$
v_{r m s}=(3 R \mathcal{T} / \mathcal{M})^{1 / 2}
$$

Thus, the rms velocity of a gas at a constant temperature must vary with gas composition.
For example: $\quad \mathcal{N}_{2}$ at $25.0^{\circ} \mathrm{C}$
$v_{\text {rms }}=\left(3(8.3145 \mathrm{~g} / \mathrm{mol}-\mathcal{K})(298.15 \mathrm{~K}) / 28.014 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}\right)^{1 / 2}$
$=515 \mathrm{~m} / \mathrm{s}$
Other examples: $\mathcal{H e l i u m ~ (4 . 0 0 3 \mathrm { g } / \mathrm { mol }) @ 1 3 6 0 \mathrm { m } / \mathrm { s } , ~ (1)}$
Sulfur Hexafluoride (146g/mol)@ $226 \mathrm{~m} / \mathrm{s}$

