Announcements-10/4/00

- Quiz and Demos on Friday
- Problem Set Solutions
- Now O NLINXE!

Charles'Law Example

- If a gas occupies $1.00 \operatorname{L}$ at $25.0{ }^{\circ} \mathrm{C}$ and, after feating, expands to a volume of 2.00 L , to what temperature was the gas heated?

$$
\frac{\mathcal{V}_{\underline{1}}}{\mathcal{V}_{2}}=\underline{\mathcal{T}}_{\underline{1}} \mathcal{T}_{2} \Rightarrow \mathcal{T}_{2}=\frac{\mathcal{T}_{\underline{1}} \underline{\mathcal{V}_{2}}}{\mathcal{V}_{1}}
$$

$$
\mathcal{T}_{2}=\underline{(25.0+273.15)(2.00 \mathrm{~L})}=596.3 \mathrm{~K}
$$

$$
(1.00 \quad \mathrm{~L})
$$

$$
\mathcal{T}_{2}=596.3 \mathcal{K}-273.15=323.15{ }^{\circ} \mathrm{C}
$$

$$
=323 \cdot{ }^{\circ} \mathrm{C}
$$

Avogadro's Law

- Recall: Equal volumes of gases (at the same temperature and pressure) contain equal number of molecules.

So, it follows that:
Volume \propto \# molgas
(at constant temperature and pressure)

Ideal Gas Law

- Puts together all of the three previous laws:

Boyle: \mathcal{P}-V @ constant \mathcal{T} and n
Charles: V-T @ constant P and n
Avogadro: $\mathcal{V}-n @$ constant \mathcal{P} and \mathcal{T}

So: $\quad \underline{P V}=n \mathcal{R I} \quad$ Ideal Gas Law
$\mathcal{R}=$ universalgas constant $=\underline{0.082058} \mathrm{~L}-\mathrm{atm}-\mathrm{mol}^{-1} \cdot \mathcal{K}^{1}$
(In S.I. Units: $\mathcal{R}=8.3145 \mathrm{~g}-\mathrm{mol}^{-1} \mathcal{K}^{1}$)

Standard Temp and Pressure

- One implication of IGL: at a particular \mathcal{T} and P, a fixed amount of $\mathcal{A N V} G \mathcal{A S}$ will occupy the same volume
- Define a reference condition:
$\mathcal{T}=0^{\circ} \mathrm{C}(=273.15 \mathcal{X})$
$\mathcal{P}=1 \mathrm{~atm}$

Solving IGLfor VO LUME: $\mathcal{V}=n \mathcal{R} \mathcal{T} / \mathcal{P}$
$=(1 \mathrm{~mol})(0.08206)(273.15 \mathrm{~K})$
1 atm
$=\underline{22.41 \mathrm{~L}}$
(votume occupied by 1 mol of $\mathcal{A N} \mathcal{Y} G \mathcal{A S}$ at $\mathcal{S T P}$)

Tips for using the IGL

- There are FO URR variables!
-you've gotta know $\mathcal{T H} \mathcal{H E E}$ to find the 4 th one
- UNNITS! UNNITS! UNNITS!
- convert all quantities to appropriate units

$$
\mathcal{V}=\mathcal{L}, \mathcal{P}=a t m, \mathcal{T}=\mathcal{K} n=m o l
$$

-use dimensional analysis to checkyour units - $\mathcal{H I} \mathfrak{N I}$: look at the units of \mathcal{R} as a finalcheck:

$$
(0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathcal{K})
$$

Example: \mathcal{P}, \mathcal{V} and \mathcal{T} changes

- For a fixed amount (n mol) of gas:

$$
\begin{gathered}
\mathcal{P}_{1} \mathcal{V}_{1}=n \mathcal{R} \mathcal{T}_{1}-\text { initial condition } \\
\mathscr{P}_{2} \mathcal{V}_{2}=n \mathcal{R} \mathcal{I}_{2}-\text { final condition } \\
\underline{\mathscr{P}}_{1} \underline{V}_{\underline{1}}=n \mathcal{R}=\underline{\mathcal{P}}_{\underline{2}} \underline{\mathcal{V}}_{2} \\
\mathcal{T}_{1}
\end{gathered}
$$

So:

Leaving:

$$
\frac{\underline{\underline{P}}_{\underline{1}} \underline{\mathcal{V}}_{\underline{1}}}{\mathcal{T}_{1}}=\frac{\underline{\mathcal{P}}_{2} \underline{\mathcal{V}}_{2}}{\mathcal{T}_{2}}
$$

How does this relate to

Chemistry?

- What mass of Cu will be produced by the reduction of excess CuO by 250. mL \mathcal{H}_{2} at 1.025 atm and $15.0^{\circ} \mathrm{C}$?

The Solution: Gas
 S toic fiometry

Strategu: $\underline{\text { vol/press } / \text { temp } \rightarrow \operatorname{mol} \mathcal{H}_{2}} \rightarrow \operatorname{mol} \mathrm{Cu} \rightarrow g \mathrm{Cu}$ $P V=n R \mathcal{T}:$ solve for n

$$
n=\frac{P V}{\mathcal{R I}}=\frac{(1.025 \mathrm{~atm})(0.250 \mathrm{~L})}{(0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathcal{K})(288.15 \mathcal{K})}=0.010837
$$

$0.010837 \mathrm{~mol} \mathcal{H}_{2}$ х $1 \mathrm{molCu} \times 63.546$ g Cu $=0.68855$

$$
\begin{array}{lll}
1 \operatorname{mol} \mathcal{H}_{2} \quad 1 \operatorname{molCu} \quad g C u \\
& =0.689 \text { gCu }
\end{array}
$$

Gas Density

- Density (d) $=$ mass $/$ volume
- Rearranging IGL:

$$
\frac{n}{\mathcal{V}}=\frac{\mathcal{P}}{\mathcal{R} \mathcal{I}}
$$

- Convert mol \rightarrow grams (mass):

$$
\frac{\mathcal{M W} \notin n}{V}=\frac{\mathcal{P} \chi \mathscr{M W}}{\mathcal{R} \mathcal{I}}
$$

Gas Density:

- Now we fiave density:

$$
d=\frac{\mathcal{P}(\mathcal{M W})}{\mathcal{R} \mathcal{I}}=g / \mathcal{L}
$$

- varies with PRESSURE
- varies with $\mathcal{T E M P E R A} \mathcal{A T U R E}$ - varies with $\mathcal{M O} \mathcal{L A R} \mathcal{M A S S}$

Molar Mass Determination

- If a sample of an unknown gas weighs 0.893 grams and occupies a volume of $250 . \mathrm{mL}$ at $\mathcal{S T P}$, what is its molar mass (MW)?
$\underline{M W}($ molar mass $)=g /$ mol

$$
\text { -solve IGLfor mol }(n): \quad n=\frac{\mathcal{P V}}{\mathcal{R T}}=\frac{(1 \mathrm{~atm})(0.250 \mathrm{~L})}{(0.08206)(273.15 \mathcal{X})}
$$

$$
n=0.0111534 \mathrm{~mol}
$$

So: $\mathcal{M W}=0.893 \mathrm{~g} / 0.0111534 \mathrm{~mol}=80.065 \mathrm{~g} / \mathrm{mol}$

$$
=\underline{80.1 \mathrm{~g} / \mathrm{mol}}
$$

Gas Mixtures

- Dalton's Law of Partial Pressures:

The $\mathcal{T O T A L}$ PRESS URE of a gas mixture is the SUM of the pressures exerted by each of the gases in the mixture.
$\mathcal{P}_{\text {total }}=\mathcal{P}_{1}+\mathcal{P}_{2}+\mathcal{P}_{3}+\cdots \cdot . \cdot$.
$\mathcal{A t}$ constant $\mathcal{T e m p}$ and Volume:

$$
\mathcal{P}_{1}=n_{1}(\mathcal{R I} / \mathcal{V})->\mathcal{P}_{1} \propto n_{1}
$$

- partial pressure of agas in a mixture is proportional to the number of mol of that gas in the mixture

