Announcements - 10/30/00

- Problem Set Solutions
- Ch. 4 \& 5 now online (also available in P / C Library)
- Ch. 6 \& 7 coming later this week
- Website updates
- Maxwell- Boltzmann moved ("Goodies" page!)
- Quiz
- Demo Explained

Ammonia Fountain $\mathcal{D e m o}$

- The reaction:

$$
\mathcal{N} \mathcal{H}_{3}(g) \rightarrow \mathcal{N} \mathcal{H}_{3}(a q)
$$

$.46 .11 \mathrm{~kg} / \mathrm{mol} \quad .80 .20 \mathrm{~kg} / \mathrm{mol}$
$\Delta \mathcal{H}=(-80.20 \mathrm{~kJ} / \mathrm{mol})-(-46.11 \mathrm{~kJ} / \mathrm{mol})=-34.18 \mathrm{KJ}$
$n=P V /$ RI $=(1.0 \mathrm{~atm})(2.0 \mathrm{~L}) /(0.08206)(298.15 \mathcal{X})=\underline{8.17 \times 10^{-2} \mathrm{~mol}}$

$$
\text { PV work }=\Delta n \mathcal{R T}=\underline{200 \mathrm{I}}
$$

More $Q \mathcal{N}$ and Orbitals

3. The Magnetic Quantum Number (ml

- can fave integer values from $\underline{l \rightarrow-l}$
-describes the orientation of the orbital in space
So, some examples:
$n=1$: only one value of lpossigle (0) $\quad 1$ s orbital
only one value of m_{c} possible (0)
n=2: $\quad l=0,1$ (s and p orbitals)
For $\underline{l}=1 m_{\curlywedge} \quad-1\left(x^{\prime} 2 p, 2 p_{z} \quad\right)$
n=3: $\quad l=0,1,2(s, p$ and d orbitals $)$
$\underline{l=2}: m=2,1,0,-2(1)$

Orbital Energies

For Hydrogen:

- energies vary witf n
-same result as witf Bofrr
$\mathcal{E}_{n}=\frac{-\left(e^{4} m_{2}\right) Z^{2}}{\left(8 \varepsilon_{0} h^{2}\right) n^{2}}=\frac{-\mathcal{R}_{2} Z^{2}}{n^{2}}$
-also applies to other one. electron systems

OrbitalS fapes:s-orbitals

- All s-orbitals are spherical but have different radial probability distributions:
-S -orbitals have n-1 radial nodes
- As nincteases, so does the orbital size

OrbitalS fapes: p-orbitals

- p-orbitals are "dumbell"shaped
- Subscripts indicate primary orientation axis
- Nodal plane at nucleus
- As nincreases, the size of the p-orbitals increases

OrbitalS fapes: d-orbitals

> Three "4-Leaf clover" shapes in three planes ($x y$, $x z, y z)$ oriented Getween the axes
> One"4-leaf
 clover" shape in $x y$ plane oriented along the axes
> One dumbellstape with a doughnut in xy plane

I m not making this up...really!

Beyond Hydrogen

- For atoms with more than one electron, we use the same orbitals (phew!) BUI their energies are not the same.
- Electron energies can be related to the effective nucle ar charge $\left(Z_{\text {eff }}\right)$ they experience in an orbital:

$$
Z_{e f f}=Z-S
$$

- electrons in inner shells can shield the outer shellelectrons from the full positive charge (Z) of the nucleus (S = \# of inner shell electrons)
- Ingeneral: for a fixed value of n, energies increase with increasing values of (. (i.e., $d>p>s$)

