Announcements - 10/27/00

- Quiz today (last 15 minutes of class)
- Special Demo today

Wave Properties of Matter

- de Broglie: "If EMR waves can act like particles, why not treat matter like a wave?"

Based on his hypothesis:

RES ULT: -macroscopic things have wavelengths that are incredibly tiny ($10^{-30} \mathrm{~m}$ or so)
-sub-atomic sized things have wavelengths that are of the same order as the ir physical size (\mathfrak{A} for ane-)!

The Uncertainty Principle

- German physicist Werner He isenberg:

There are limits to which we can know both the momentum and the location of $\mathfrak{A N O}$ object.

Quantitatively: $\quad(\Delta p)(\Delta x) \geq k / 4 \pi$
-so, the better we know the position of an object, the worse we know the velocity $(p=m v)$ of the object
-not an issue in the macroscopic world, but the limitation is profound for objects like electrons!

Quantum Mectanics

- 1926: Erwin Scfrödinger describes electrons in an atom as having both wave and particle properties:

The Schrödinger Wave Equation!
Results:

- Solutions to the wave equation are calle d: wave functions (ψ)
- For hydrogen, get the same electron energies as Bofr did
- The square of the wave function $\left(\psi^{2}\right)$ gives a probability density for an electron in a specified energy state

Lowest energy orbital for the hydrogen atom

- The probability densities define what are called orbitals

Orbitals and Quantum \mathcal{N} umbers

- Eack solution to the wave equation can be uniquely specified by three quantum numbers:

1. The Principal Quantum \mathfrak{N} (umber (n)

- can have integer values (1, 2, 3, 4, etc.)
-corresponds to the principalenergy level
-same as the quantum number in Bofr's model -defines the electron shell

2. The Azimuthal Quantum Number (l)
-can have integer values from 0 to $n-1$ for each value of n - defines the orbital shape

- value of Cdetermines the letter used to specify the orbital shape $(f=0,1,2,3 \rightarrow s, p, d, f$ orbitals $)$ -defines the subshell

More $Q \mathcal{N}$ and Orbitals

3. The Magnetic Quantum Number (md

- can have integer values from $\underline{l \rightarrow-L}$
-describes the orientation of the orbital in space
So, some examples:
n=1: only one value of Cpossible (0) $\quad 1 s$ orbital
only one value of m_{1} possible (0)
n=2: $\quad l=0,1$ (s and porbitals)
For $\underline{l=1}: m_{l}=1,0,-1\left(2 p_{\chi}, 2 p_{y}, 2 p_{z}\right.$ orbitals $)$
n=3: $\quad l=0,1,2(s, p$ and d orbitals $)$
For $\underline{l=2}: m_{l}=2,1,0,-1,-2$ (five $3 d$ orbitals)

