Announcements - 10/2/00

-Ch. 10 solutions now on reserve

- We bsite updates
- Quizzes
- Returned at end of class
- This week's lab: Acid/Base Titration
- Demos today!

Gases

> One of the four states of matter
> Simplest to understand both physically and chemically
> Gas Properties
> Lowdensity
$>\mathcal{F}$ fuid
$>$ Can be define d by the ir:

1. Pressure (P)
2. Volume (V)
3. Temperature ($\mathcal{T})$

Pressure

How do we measure/quantify pressure?
Define: $\mathcal{P}=$ force/area

$$
\begin{aligned}
& =\mathcal{N} / m^{2} \\
& =\operatorname{Pascals}(\mathcal{P a})
\end{aligned}
$$

Atmospheric Pressure:

- force exerted by the atmosphere on the surface of the Earth

$$
\mathcal{P}=1 \mathrm{~atm}=101,325 \mathrm{~Pa}
$$

Me as uring Pressure

- Torricelli (1600's):
- atmospheric pressure raises a column of mercury 760 mm
- Barometer
$1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}$
$=760$ torr
$=101,325 \mathrm{~Pa}$
$=101.325 \mathrm{KPa}$

Manometer

(a) $P_{\text {gas }}=P_{h_{1}}$

(b) $P_{\text {gas }}+P_{h_{2}}=P_{\text {atm }}$ $\mathcal{P}_{a t m}>\mathcal{P}_{g a s}$

(c) $P_{\text {gas }}=P_{\mathrm{atm}}+P_{h_{3}}$ $\mathcal{P}_{a t m}<\mathcal{P}_{g a s}$

Boyle 's Law: Pressure-Volume

- Changing pressure on a fixed amount of gas resulted in a corresponding change in volume:

Boyle found that: $\mathcal{P} \chi \mathcal{V}=$ constant movie

Boyle 's Law Example

■ If gas occupies $1.00 \operatorname{L}$ at a pressure of 0.50 atm, what volume would it occupy if the pressure were decreased to 0.10 atm ?

Since $\mathcal{P} \not \subset \mathcal{V}=$ constant: $\quad \mathcal{P}_{1} \mathcal{V}_{1}=\mathcal{P}_{2} \mathcal{V}_{2}$

$$
V_{2}=P_{1} V_{1} / P_{2}=(0.50 \mathrm{~atm})(1.00 \mathrm{~L}) /(0.10 \mathrm{~atm})
$$

$$
\mathcal{V}_{2}=5.0 \mathcal{L}
$$

Cfiarles'Law: Temperature

- Changing temperature of a fixed amount of gas resulted in a corresponding change in volume:

At a fixed pressure, it was found that:

Volume \propto Temp
-implication: at
some temp,
volume would
decrease to ZERO

Charles'Law Example

- If agas occupies $1.00 \operatorname{Lat} 25.0{ }^{\circ} \mathrm{C}$ and, after feating, expands to a volume of 2.00 L , to what temperature was the gas heated?

$$
\begin{aligned}
& \frac{\mathcal{V}_{\underline{1}}}{\mathcal{V}_{2}}=\underset{\mathcal{T}_{2}}{\mathcal{T}_{2}} \Rightarrow \mathcal{T}_{2}=\frac{\mathcal{T}_{\underline{1}} \underline{V_{2}}}{\mathcal{V}_{1}} \\
& \mathcal{T}_{2}=\underline{(25.0+273.15)(2.00 \mathcal{L})}=596.3 \mathcal{K} \\
& (1.00 \mathrm{~L}) \\
& \mathcal{T}_{2}=596.3 \mathcal{K}-273.15=323.15{ }^{\circ} \mathrm{C} \\
& =323 .{ }^{\circ} \mathrm{C}
\end{aligned}
$$

