Announcements-10/16/00

■ Exam \# 2: Wednesday, $10 / 18,7: 00 \mathrm{pm}$

$$
\begin{aligned}
& \text { - A14 } 1 \text { Cook } \\
& \text { - Exam \# } 2 \text { Info Page }
\end{aligned}
$$

- Demo Today!

First Law of Thermodynamics

- "I fie totalenergy of the universe is constant."
- "Energy is neither created or destroyed in a process, only converted to another form."
-Conservation of Energy
- "You can't win. . you can only breakeven."

Example: Gas in a cylinder (fixed volume)

- Suppose we have alas in a cylinder with a movable piston: -What if:
- The piston is locked in a fixed position
-Volume is constant, so: $\underline{w=0}$
$\rightarrow w=f x d \quad O \mathcal{R} \quad \underline{w}=P \Delta V=0$
Thus: $\quad \Delta \mathcal{E}=q_{v}$
- N ow, if we add heat to the system:

$$
q>0, \text { so } \underline{\Delta E>0} \text { (E incr.) }
$$

- temp incr $\rightarrow \mathcal{E}_{k}=3 / 2 R \mathcal{R I} \rightarrow \Delta \mathcal{E}_{k}=3 / 2 \mathcal{R} \Delta \mathcal{T}$

Example: Gas in a cylinder (variable volume)

- OK, now let's allow the piston to move, but let's
disallow he at flow $(q=0)$ - adiabatic process
So:
$\Delta \mathcal{E}=w=-P \Delta V$
- Gas Compression: $\quad \Delta \mathcal{V}<0$-> $\underline{\Delta \mathcal{E}}$ is +
-work is done on the system
-temperature of the gas increases
- Gas Expansion: $\quad \Delta V \mathcal{V}>0 \quad>\underline{\Delta \mathcal{E}}$ is -
-work is done by the system
-temperature of the gas decreases

$\mathcal{M e}$ asuring $\Delta \mathcal{E}$

- We can measure q by the change in temperature:

If $q>0$: heat is added to the system -endothermic (system absorbs heat)

- temperature (of the surroundings) decreases

If $q<0$: heat is given off by the system -exothermic (system loses heat)
-temperature (of the surroundings) increases

Calorime try: Me as uring ΔE

- We can quantify fie at flow (q) by me asuring the change in temperature of a system: Calorimetry
He at Capacity (C): amount of heat (q) required to raise the temperature of a substance by $1 \mathcal{K}$
-if we calculate Cfor a specific amount of a particular substance, we call it the Molar Heat Capacity (c_{v} at constant volume) or the Specific Heat Capacity (c_{s}, per gram of the substance)

Example: for $100.0 \mathrm{~g} \mathscr{H}_{2} \mathrm{O}->$ specific heat $=4.184 \mathrm{~g} / \mathrm{g} \cdot \mathcal{K}$
$C=$ mass χ specific heat $=m \chi c_{s}$
$=100.0 \mathrm{~g} \times 4.184 \mathrm{~g} / \mathrm{g} \cdot \mathrm{K}$
$=\underline{418.4 \mathrm{~g} / \mathrm{K}}$

$\mathcal{H e}$ at flow and temperature

- Now we can relate q and temperature:

$$
q=C\left(\mathcal{T}_{\text {final }}-\mathcal{I}_{\text {initial }}\right)
$$

Example: Howmuch heat is required to raise the temperature of $232.0 \mathrm{~g} \mathcal{H}_{2} \mathrm{O}$ from $25.0^{\circ} \mathrm{C}$ to $78.0^{\circ} \mathrm{C}$?

$$
\begin{aligned}
q=C \Delta \mathcal{I} & =(m \times \text { specific } \mathfrak{k e} \text { at })(\Delta \mathcal{T}) \\
& =(232.0 \mathrm{~g} \times 4.184 \mathrm{~g} / \mathrm{g}-\mathcal{X})(78.0 \cdot 25.0) \\
& =(970.688 \mathrm{~g} / \mathcal{X})(53.0 \mathrm{~K}) \\
& =51446.464 \mathrm{~g}=5.14 \times 10^{4} \mathrm{~g} \\
& =\underline{51.4 \mathrm{~kg}}
\end{aligned}
$$

Constant-Volume

Calorimetry

- Ulse " "bomb" calorimeter:
-typically used with combustion reactions
-heat (q) from rxn is transferred to the water and the calorimeter
-Knowing the he at capacity of the calorimeter:

$$
q_{r \chi n}=-C_{c a l} \chi \Delta \mathcal{T}
$$

So: $\quad q_{v}=\Delta E$
(w=0 @ constant volume)

Entralpy

- Chemistry is commonly performed at constant pressure, so:
- it is easy to measure feat flow $\left(q_{p}\right)$
- work ($\mathcal{P} \Delta \mathcal{V}$) is small (but finite) and hard to measure

Define a new term: Enthalpy (H)

$$
\mathcal{H}=\mathcal{E}+\mathcal{P V}
$$

Relating Entfalpy and Heat

- Recall:

$$
\begin{aligned}
\Delta \mathcal{E} & =q+w \\
\Delta \mathcal{E} & =q_{p} \cdot \mathcal{P} \Delta \mathcal{V} \\
q_{p} & =\Delta \mathcal{E}+\Delta \mathcal{P V} \\
q_{p} & =\Delta(\mathcal{E}+\mathcal{P V})
\end{aligned}
$$

- At constant pressure: $\Delta \mathcal{E}=q_{p} \cdot \mathcal{P} \Delta \mathcal{V}$
- Rearranging: $\quad q_{p}=\Delta \mathcal{E}+\Delta \mathcal{P V}$
- Substituting:

$$
q_{p}=\Delta \mathcal{H}
$$

So, if we measure $q_{p^{\prime}}$ then we can obtain the enthalpy change $(\Delta \mathcal{H})$ directly

Constant-Pressure Calorimetry

- So-called "coffee-cup" calorimetry:
- Add reactants to cup
- Measure resulting temperature increase (or decrease)
${ }^{\bullet} q_{\text {soln }}=-q_{r x n}$
- So: $\Delta \mathcal{H}=-q_{\text {soln }}=-m_{\text {soln }}($ sp feat $) \Delta \mathcal{T}$
- You will do this this we ek in lab!

