Ene rgy, $\mathcal{H e}$ at and Chemical Change

Chemistry 35

$$
\text { Fall } 2000
$$

Thermochemistry

- A part of Thermodynamics dealing with energy changes associated with physical and chemical reactions

Why do we care?

- will a reaction proceed spontane ously?
- if so, to what extent?

It won't tellus:

- how fast the reaction will occur
- the mechanism by whic fithe reaction will occur

What is Energy?

■ Energy is the capacity to do work or to transfer heat

- Kinetic Ene rgu: energy associated with mass in motion (recall: $\mathcal{E}_{k}=1 / 2 m v^{2}$)
- Potential Energy: energy associated with the position of an object relative to other objects (energy that is stored - can be converted to Kine tic energy)

The System

- We must define what we are studying:

System: portion of the universe under study Surroundings: everything else

Energy Transfer

- Energy can be transferred in two different ways:

1. By doing Work (applying a force over a distance)

$$
\mathcal{W}=\mathcal{F} \chi d
$$

2. Heat - q(results in a change in temperature)

Note: \mathcal{W}, q, and \mathcal{E} all have the same units (Ioule), but:

- Weqq depend on path (pathfunction)
- E is independent of path (state function)

First Law of Thermodynamics

- "The total energy of the universe is constant."
- "Energy is neither created or destroyed in a process, only converted to another form."
- Conservation of Energy
- "You can't win. . you can only breakeven."

Example: Gas in a cylinder (fixed volume)

- Suppose we have alas in a cylinder with a movable piston: -What if:
- The piston is locked in a fixed position
-Volume is constant, so: $\underline{w=0}$
$\rightarrow w=f x d \quad O \mathcal{R} \quad \underline{w}=P \Delta V=0$
Thus: $\quad \Delta \mathcal{E}=q_{v}$
- N ow, if we add heat to the system:

$$
q>0, \text { so } \underline{\Delta E>0} \text { (E incr.) }
$$

- temp incr $\rightarrow \mathcal{E}_{k}=3 / 2 R \mathcal{R I} \rightarrow \Delta \mathcal{E}_{k}=3 / 2 \mathcal{R} \Delta \mathcal{T}$

Example: Gas in a cylinder (variable volume)

- OK, now let's allow the piston to move, but let's
disallow he at flow $(q=0)$ - adiabatic process
So:
$\Delta \mathcal{E}=w=-P \Delta V$
- Gas Compression: $\quad \Delta \mathcal{V}<0$-> $\underline{\Delta \mathcal{E}}$ is +
-work is done on the system
-temperature of the gas increases
- Gas Expansion: $\quad \Delta V \mathcal{V}>0 \quad>\underline{\Delta \mathcal{E}}$ is -
-work is done by the system
-temperature of the gas decreases

$\mathcal{M e}$ asuring $\Delta \mathcal{E}$

- We can measure q bythe change in temperature:

If $q>0:$ heat is added to the system -endothermic (system absorbs feat)
-temperature (of the surroundings) decreases

If $q<0$: heat is given off by the system -exothermic (system loses feat)
-temperature (of the surroundings) increases

Calorimetry: Me as uring $\Delta \mathcal{E}$

- We can quantify he at flow (q) by me as uring the change in temperature of a system: Calorimetry
Heat Capacity (C): amount of heat (q) required to raise the temperature of a substance by $1 \mathcal{K}$
-if we calculate Cfor a specific amount of a particular substance, we call it the Molar Heat Capacity (c_{v} at constant volume) or the Specific Heat Capacity (c_{s}, per gram of the substance)

Example: for $100.0 \mathrm{~g}_{\mathcal{H}_{2} \mathrm{O}} \mathrm{Pspec}$ ific heat $=4.184 \mathrm{~g} / \mathrm{g}-\mathcal{K}$
$\mathcal{C}=$ mass χ specific heat $=m \chi c_{s}$
$=100.0$ g x $4.184 \mathrm{~g} / \mathrm{g}-\mathcal{K}$
$=\underline{418.4 \mathrm{~J} / \mathcal{K}}$

$\mathcal{H e}$ at flow and temperature

- Now we can relate q and temperature:

$$
q=C\left(\mathcal{T}_{\text {final }}-\mathcal{I}_{\text {initial }}\right)
$$

Example: Howmuch heat is required to raise the temperature of $232.0 \mathrm{~g} \mathcal{H}_{2} \mathrm{O}$ from $25.0^{\circ} \mathrm{C}$ to $78.0^{\circ} \mathrm{C}$?

$$
\begin{aligned}
q=C \Delta \mathcal{T} & =(m \times \text { specific heat })(\Delta \mathcal{T}) \\
& =(232.0 \mathrm{~g} \times 4.184 \mathrm{~g} / \mathrm{g}-\mathcal{X})(78.0 \cdot 25.0) \\
& =(970.688 \mathrm{~g} / \mathcal{K})(53.0 \mathrm{~K}) \\
& =51446.464 \mathrm{~g}=5.14 \times 10^{4} \mathrm{~g} \\
& =\underline{51.4 \mathrm{~kJ}}
\end{aligned}
$$

Constant-Volume Calorimetry

- Ulse a "bomb" calorimeter:
-typically used with combustion reactions
-he at (q) from rxn is transferred to the water and the calorimeter
-Knowing the he at capacity of the calorimeter:

$$
q_{r \chi n}=-C_{c a l} \chi \Delta \mathcal{T}
$$

So: $\quad q_{v}=\Delta E$
(w=0 @ constant volume)

Entralpy

- Chemistry is commonly performed at constant pressure, so:
- it is easy to measure feat flow $\left(q_{p}\right)$
- work ($P \Delta \mathcal{V}$) is small (6ut finite) and hard to measure

Define a new term: Enthalpy (H)

$$
\mathcal{H}=\mathcal{E}+\mathcal{P V}
$$

Relating Entfalpy and $\mathcal{H e}$ at

- Recall:

$$
\begin{aligned}
\Delta \mathcal{E} & =q+w \\
\Delta \mathcal{E} & =q_{p} \cdot \mathcal{P} \Delta \mathcal{V} \\
q_{p} & =\Delta \mathcal{E}+\Delta \mathcal{P V} \\
q_{p} & =\Delta(\mathcal{E}+\mathcal{P V})
\end{aligned}
$$

- At constant pressure: $\Delta \mathcal{E}=q_{p} \cdot \mathcal{P} \Delta \mathcal{V}$
- Rearranging: $\quad q_{p}=\Delta \mathcal{E}+\Delta \mathcal{P V}$
- Substituting:

$$
q_{p}=\Delta \mathcal{H}
$$

So, if we measure $q_{p^{\prime}}$ then we can obtain the enthalpy change $(\Delta \mathcal{H})$ directly

Constant-Pressure
 Calorimetry

- So-called "coffee-cup" calorimetry:
- Add reactants to cup
- Me as ure resulting temperature increase (or decrease)
${ }^{\bullet} q_{\text {soln }}=-q_{r x n}$
- $\underline{S_{0}}: \Delta \mathcal{H}=-q_{\text {soln }}=-m_{\text {soln }}(s p$ feat $) \Delta \mathcal{T}$
- You will do this this week in lab!

\mathcal{H} ow are $\Delta \mathcal{E}$ and $\Delta \mathcal{H}$ related?

- From the definition of Enthalpy:

$$
\Delta \mathcal{H}=\Delta \mathcal{E}+\mathcal{P} \Delta \mathcal{V}
$$

- for an ide algas: $\mathcal{P} \Delta \mathcal{V}=\mathcal{R} \mathcal{I} \Delta n$

So:

Enthalpies of Reactions

- Enthalpy (H) is a state function, so all we need to Know are the initial and final values for a reaction:

$$
\Delta \mathcal{H}_{r \chi n}=\mathcal{H}(\text { products })-\mathcal{H}(\text { reactants })
$$

Together with a balanced reaction expression, we have a thermochemical equation:

More on Enthalpy

- Enthalpy is an extensive property
-the magnitude of $\Delta \mathcal{H}$ depends on the quantity of reactant
- $\Delta \mathcal{H}_{\text {forward }}=-\Delta \mathcal{H}_{\text {reverse }}$
- reverse reaction will have same $\Delta \mathcal{H}$, but with the opposite sign

■ Reactions with $\underline{\Delta \mathcal{H} \ll 0}$ often occur spontaneously
-6ut not always; there are exceptions (wait until
Thermodynamics to resolve this fully!)

Enthalpy of Reaction Calculation Example

- Calculate the $\Delta \mathcal{H}$ for the reaction that occurs
 following reaction:
$\mathcal{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow \mathcal{H}_{2} \mathrm{O}(\mathrm{l})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathcal{H}=-98.2 \mathrm{KJ}$
convert: $g \mathcal{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{Kg}$
$1.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2} \chi \frac{1 \mathrm{~mol} \mathcal{H}_{2} \underline{O}_{2}}{34.01 \mathrm{~g}_{2} \mathcal{H}_{2} \mathrm{O}_{2}} \times \frac{-98.2 \mathrm{kI}}{1 \mathrm{~mol} \mathcal{H}_{2} \mathrm{O}_{2}}=$

$$
=-2.89 \mathrm{~kJ}
$$

$\mathcal{H e s s}$ 'Law

- $\Delta \mathcal{H}$ is a state function so we can use any sequence of reactions (that sum to the desired reaction) to calculate a value of $\Delta \mathcal{H}_{r \chi n}$:

IF: $\quad \mathcal{R x n}(1)+\mathcal{R x n}(2)=\mathcal{R x n}(3)$
Then: $\quad \Delta \mathcal{H}_{1}+\Delta \mathcal{H}_{2}=\Delta \mathcal{H}_{3}$
Anexample:
$\underline{\Delta \mathcal{H}}$
$\mathfrak{R x n}(1): S n(s)+\mathrm{Cl}_{2}(g) \rightarrow \mathrm{SnCl}_{2}(\mathrm{~s}) \quad-349.8 \mathrm{~kg}$

$\mathcal{R x n}(3): S n(s)+2 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{SnCl}_{4}(\mathrm{l})-545.2 \mathrm{Kg}$

Hess's Law: Example

- We can use Hess's Law to calculate $\Delta \mathcal{H}$ for reactions without ever actually faving to perform the reaction:

Find $\Delta \mathcal{H}$ for the following reaction:

$$
2 \mathcal{N} \mathcal{H}_{3}(g)+3 \mathcal{N}_{2} O(g) \rightarrow 4 \mathcal{N}_{2}(g)+3 \mathcal{H}_{2} O(l)
$$

What we know:
$\underline{\Delta \mathcal{H}}$
Rxn(1): $\quad 4 \mathcal{N H}_{3}(g)+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathcal{N}_{2}(\mathrm{~g})+6 \mathcal{H}_{2} \mathrm{O}(\mathrm{l}) \quad-1531 \mathrm{~kg}$
Rxn(2): $\mathcal{N}_{2} \mathrm{O}(\mathrm{g})+\mathcal{H}_{2}(\mathrm{~g}) \rightarrow \mathcal{N}_{2}(\mathrm{~g})+\mathcal{H}_{2} \mathrm{O}(\mathrm{l}) \quad-367.4 \mathrm{~kg}$
Rxn(3): $\mathscr{H}_{2}(\mathcal{g})+1_{2} \mathrm{O}_{2} \rightarrow \mathscr{H}_{2} \mathrm{O}(\mathrm{l})$

- 285.9 kJ

Hess's Law Example: Cont'd

- We need to react only $\mathcal{T W O} \operatorname{mol} \mathcal{N H}_{3}$, so divide $r x n(1)$ by 2:

$$
2 \mathcal{N} \mathcal{H}_{3}(g)+3 / 2 \mathrm{O}_{2}(g) \rightarrow \mathcal{N}_{2}(g)+3 \mathcal{H}_{2} \mathrm{O}(\mathrm{l})
$$

- We need to react $\mathcal{T H R E E}$ mol $\mathcal{N}_{2} O$, so multiply rxil2) 6y 3:

$$
3 \mathcal{N}_{2} \mathrm{O}(g)+3 \mathcal{H}_{2}(g) \rightarrow 3 \mathcal{N}_{2}(g)+3 \mathcal{H}_{2} O(l)
$$

- We need to get rid of the stuff not in the final rxn $\left(\mathcal{H}_{2}, O_{2}\right.$, and excess $\mathcal{H}_{2} O$), so reverse rxn(3) and multiply 6y 3:

$$
3 \mathcal{H}_{2} \mathrm{O}(\mathfrak{l}) \rightarrow 3 \mathcal{H}_{2}(\mathfrak{g})+3 / 2 \mathrm{O}_{2}(\mathfrak{g})
$$

- Add ém up!

Hess's Law Example: The Thrilling Conclusion!

- Whatever was done to the reaction equations, we need to do to the $\Delta \mathcal{H}$ values:
$\begin{array}{lll}\Delta \mathcal{H}_{1} \div 2 & = & -1531 \div 2= \\ \Delta \mathcal{H}_{2} \times 3= & -765.5 \mathrm{kI} \\ & .367 .4 \times 3= & -1102.2 \mathrm{kI}\end{array}$
$\Delta \mathcal{H}_{3} \underline{(-3)}=-285.9 \times(-3)=\underline{857.7 \mathrm{~kg}}$

$$
\underline{\Delta \mathcal{H}_{r \times n}}=-1010.0 \mathrm{kI}
$$

Enthalpies of Formation

- A consistent way to tabulate $\Delta \mathcal{H}$ values:
- for a defined reaction type (formation from elements)
- for a fixed amount of compound (1 mol)
-under standard conditions ($25^{\circ} \mathrm{C}, 1$ atm)
Called: The Standard Molar Enthalpy of Formation

$$
\Delta \mathcal{H}^{o r}{ }_{f}^{o r}
$$

Example:

$$
\mathfrak{A g}(s)+1 / 2 \mathcal{C l}_{2}(g) \rightarrow \mathcal{A g C l}(s) \quad \Delta \mathcal{H}=-127.0 \mathrm{~kJ}
$$

Then: $\quad \Delta \mathcal{H}^{\circ}{ }_{f}(\operatorname{AgCl}(s))=-127.0 \mathrm{~kJ} / \operatorname{mol}$

Ulsing Enthalpies of Formation

- Hess's Law and tablulated $\Delta \mathcal{H}^{\circ}{ }_{f}$ values are a powerful tool for predicting enthalpy changes for reactions:

$$
\Delta \mathcal{H}^{o}=\sum \Delta \mathcal{H}^{o}{ }_{f}(\text { products })-\Sigma \Delta \mathcal{H}^{o}{ }_{f} \text { (reactants) }
$$

Example: The Thermite Reaction

$$
8 \mathcal{A l}(s)+3 \mathcal{F e}_{3} \mathrm{O}_{4}(s) \rightarrow 4 \mathcal{A l}_{2} \mathrm{O}_{3}(s)+9 \mathcal{F e}(s)
$$

We know:

$$
\Delta \mathcal{H}_{f}^{o}\left(\mathcal{F e}_{3} \mathrm{O}_{4}\right)=-1120.9 \mathrm{~kJ}
$$

$$
\Delta \mathcal{H}_{f}^{o}\left(\mathcal{A l}_{2} O_{3}\right)=-1669.8 \mathrm{~kJ}
$$

So:

$$
\begin{gathered}
\Delta \mathcal{H}^{0}=[4(-1669.8 \mathrm{~kJ} / \mathrm{mol})+9(0)]-[3(-1120.9 \mathrm{~kJ} / \mathrm{mol})+8(0)] \\
\Delta \mathcal{H}^{0}=(-6679.2 \mathrm{~kJ})-(-3362.7)=-3316.5 \mathrm{~kJ}
\end{gathered}
$$

Demo Example: Burning $\mathcal{M g}$

- The overall reaction is:
$\Delta \mathcal{H}^{{ }^{\circ}}{ }_{f}:$

$$
2 \mathcal{M g}(s)+\mathrm{CO}_{2}(s) \rightarrow 2 \mathcal{M g O}(s)+C(s)
$$

$\mathcal{H o w}$ do we find $\Delta \mathcal{H}^{o}{ }_{f}$ for $S O L I D \quad \mathrm{CO}_{2}$?
Ulse Hess's Law!

We know: $\Delta \mathcal{H}^{\circ}{ }_{f}$ for $\mathrm{CO}_{2}(\mathcal{g})=-393.51 \mathrm{~kJ} / \mathrm{mol}$

But how do we deal with phase changes?

Enthalpies of Phase Changes

- There are enthalpy changes associated with physical processes:

$$
\begin{array}{ll}
\mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{l}) & \Delta \mathcal{H}_{\text {fusion }}=6.01 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{CO}_{2}(\mathrm{l}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathcal{H}_{\text {vap }}=44.01 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

So:

$$
\mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \begin{aligned}
\Delta \mathcal{H}_{\text {sublimation }} & =\Delta \mathcal{H}_{\text {fusion }}+\Delta \mathcal{H}_{\text {vap }} \\
\Delta \mathcal{H}_{\text {sublimation }} & =50.02 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

We want:

$$
\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~s}) \quad \Delta \mathcal{H}=-\Delta \mathcal{H}_{\text {sub }}=-50.02 \mathrm{~kJ} / \mathrm{mol}
$$

Putting it all together

- So, to get $\Delta \mathcal{H}^{0}{ }_{f}$ for $\mathrm{CO}_{2}(\mathrm{~g})$:

$$
\begin{array}{ll}
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathcal{H}_{f}=-393.51 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~s}) & \Delta \mathcal{H}=-50.02 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

Adding gives:

$$
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~s}) \quad \Delta \mathscr{H}^{{ }_{f}}=-443.53 \mathrm{kI} / \mathrm{mol}
$$

And, finally:
$2 \mathfrak{M g}(s)+\mathrm{CO}_{2}(s) \rightarrow 2 \mathfrak{M g O}(s)+C(s)$
$\Delta \mathcal{H}_{f}{ }_{f}: \quad 0.443 .53 \mathrm{~kJ} / \mathrm{mol}-601.70 \mathrm{~kg} / \mathrm{mol} 0$
$\Delta \mathscr{H}^{{ }^{\circ}{ }^{x n}}=2(-601.70 \mathrm{~kJ} / \mathrm{mol})-(-443.53 \mathrm{~kJ} / \mathrm{mol})=\underline{-759.87 \mathrm{~kJ}}$

Bond Entfalpies

- Armed with Hess's law and $\Delta \mathcal{H}^{0}{ }_{f}$ values, let's dissect the reaction process (i.e., the energetics of bond making and breaking):

For CH_{4} (methane):
We know: $\quad \mathcal{C}(\mathrm{s})+2 \mathcal{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}) \quad \Delta \mathcal{H}^{\circ}{ }_{f}=-74.9 \mathrm{~kJ} / \mathrm{mol}$

- We want to know: the bond enthalpy for the C-H bond So, look at the reverse reaction:

$$
\mathrm{CH}_{4}(g) \rightarrow \mathcal{C}(g)+4 \mathcal{H}(g) \quad \Delta \mathcal{H}=4 \times \mathcal{C} \cdot \mathcal{H} \text { bond entfalpy }
$$

Hess's Law to the rescue

- We want to do this:

Entfalpy Cycle

$C(s)+2 \mathcal{H}_{2}(g)$

$$
\begin{array}{rlrl}
\mathrm{CH}_{4}(g) & \rightarrow \mathcal{C}(s)+2 \mathcal{H}_{2}(g) & & -\Delta \mathcal{H}^{o_{f}}=-(-74.9 \mathrm{~kJ}) \\
\mathcal{C}(s) & \rightarrow \mathcal{C}(g) & \Delta \mathcal{H}^{0}{ }_{v a p}= & 718.4 \mathrm{~kJ} \\
\underline{2 \mathcal{H}_{2}}(\underline{g}) & \rightarrow 4 \mathcal{H}(\mathfrak{g}) & 4 \times \Delta \mathcal{H}^{o_{f}}=\frac{4(217.9 \mathrm{~kJ})}{1664.9 \mathrm{~kJ}}
\end{array}
$$

So, C-H bond enthalpy $=1664.9 \mathrm{~kJ} / 4=\underline{416.2 \mathrm{~kJ}}$

Bond Entfalpies: What good are they?

- They indicate fowstrong a bond is:
$\begin{array}{ll}\mathcal{N} \equiv \mathcal{N} & 946 \mathrm{~kJ} / \mathrm{mol} \\ \mathcal{H}-\mathcal{H} & 436 \mathrm{~kJ} / \mathrm{mol}\end{array}$
Ingeneral: $\equiv>=>$.
- If we assume that bond enthalpies for a particular bond are constant in all compounds, then we can use them to estimate $\Delta \mathcal{H}_{r \chi n}$:

-This works well if there are no intermolecular forces (i.e., in the gas phase!)

