

 A part of *Thermodynamics* dealing with energy changes associated with <u>physical and chemical</u> <u>reactions</u>

Why do we care?

-will a reaction proceed spontaneously? -if so, to what extent?

It won't tell us:

-how *fast* the reaction will occur -the *mechanism* by which the reaction will occur

 H_2O_2 (I) \rightarrow H_2O (I) + ½ O_2 (g) ΔH = - 98.2 kJ

convert: $g H_2 O_2 \rightarrow kJ$

1.00 g H₂O₂ x <u>1 mol H₂O₂</u> x <u>-98.2 kJ</u> = 34.01 g H₂O₂ x <u>1 mol H₂O₂</u> 1 mol H₂O₂

= -<u>2.89 kJ</u>

Whatever was done to the *reaction equations*, we need to do to the ΔH values:

∆H ₁ <u>÷ 2</u> =	-1531 ÷ 2 =	-765.5 kJ
ΔH ₂ <u>x</u> 3 =	-367.4 x 3 =	-1102.2 kJ
ΔH ₃ <u>x (-3)</u> =	- 285.9 x (-3) =	857.7 kJ

 $\Delta H_{rxn} = -1010.0 \text{ kJ}$

Bond Enthalpies

■ Armed with Hess's law and △H^o_f values, let's dissect the reaction process (i.e., the energetics of bond *making* and *breaking*):

 $CH_4(g) \rightarrow C(g) + 4 H(g) \quad \Delta H = 4 \times C - H \text{ bond enthalpy}$

N≡N	946 kJ/mol
H-H	436 kJ/mol

In general: $\equiv > = > -$

 If we assume that bond enthalpies for a particular bond are constant in all compounds, then we can use them to estimate ΔH_{rxn}:

 $\Delta H_{rxn} = \Sigma$ Reactant Bond Enthalpies - Σ Product Bond Enthalpies (energy added to break bonds) (energy released by making bonds)

-This works well if there are no intermolecular forces (i.e., in the gas phase!)