

More Gas Kinetic Theory

Implications:

1. Temperature

- The *average kinetic energy* of the molecules does not change over time (at constant temperature)
- The *average kinetic energy* of the molecules is proportional to the **absolute temperature**

2. Pressure

- The pressure exerted by a gas is caused by collisions of the gas molecules with the walls of the container
- The *magnitude* of the pressure depends on collision frequency and force

23

Now, apply to an *aggregate* of gas particles

For N₀ molecules moving in 3-dimensional space, it can be shown that:

$PV = 1/3 N_0 m < v^2 >$

where <v2> is the mean squared speed of the aggregate of molecules

-Again, we've got **Boyle's Law** (PV = constant) at constant temperature and for a fixed number of gas molecules

But, what about *temperature*?

27

utting it all toge (P + <i>n</i> 2	:ther: ² <i>a/V²</i>)(V - <i>nb</i>) = nR	т
(P + <i>n</i> ²	$(v^{2}a/V^{2})(v - nb) = nR$	т
(P + <i>n</i> ²	<i>'a/V'</i>)(V – <i>nb</i>) = nR	
TABLE 10.3 Van der Waals Constants for Gas Molecules		
ubstance	a(L ² -atm/mol ²)	b (L/mol)
e	0.0341	0.02370
e	0.211	0.0171
r	1.34	0.0322
r	2.32	0.0398
	4.19	0.0510
e		
e 2	0.244	0.0266
2 2	0.244 1.39	0.0266 0.0391
2	0.244 1.39 1.36	0.0266 0.0391 0.0318
2 2 2	0.244 1.39 1.36 6.49	0.0266 0.0391 0.0318 0.0562
2 2 2 2 2 2 2 2	0.244 1.39 1.36 6.49 5.46	0.0266 0.0391 0.0318 0.0562 0.0305
2 2 2 2 2 0 Ha	0.244 1.39 1.36 6.49 5.46 2.25	0.0266 0.0391 0.0318 0.0562 0.0305 0.0428
2 2 0 0	0.244 1.39 1.36 6.49 5.46 2.25 2.50	0.0266 0.0391 0.0318 0.0562 0.0305 0.0428