CHEM 35
 General Chemistry
 EXAM \#1

September 20, 2000
Name: \qquad Anne Serkey

SSN: \qquad
Lab T.A.: \qquad
INSTRUCTIONS: Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, shall all of your work -- HOW you arrived at a particular answer is MORE important than the answer itself! Circle your final answer to numerical questions.

The entire exam is worth a total of 150 points. Attached are a periodic table and a formula sheet jam-packed with useful stuff!

1. (3 pts each) Carry out the following operations, and express the answer with the appropriate number of significant figures:
a. $1.24056+75.8=$

$$
\begin{aligned}
& 1.24056 \\
& +75.8 \\
& \hline 77.04056 \text {-> Round to tenths place: } \underline{\mathbf{7 7 . 0}}
\end{aligned}
$$

b. $320.55-(6104.5 / 2.3)=$

$$
320.55
$$

$$
\frac{-2654.1304}{-2333.580} \text {-> round to HUNDREDS place: } \underline{\mathbf{- 2 3 0 0}} \text { or } \underline{\mathbf{- 2 . 3} \mathbf{2} 10^{3}}
$$

c. $(0.0045 \times 20,000.0)+(2813 \times 12)=$
90.000

2. (3 pts each) The all-time record lowest temperature ever recorded on this planet is $-57.63^{\circ} \mathrm{C}$ (recorded on July 21, 1983 in Vostok, the Russian Antarctic station).
a. Express this temperature in ${ }^{\circ} \mathrm{F}$.

$$
\begin{aligned}
{ }^{\circ} \mathrm{F} & =(9 / 5)^{\circ} \mathrm{C}+32 \\
& =(9 / 5)(-57.63)+32=-71.734{ }^{\circ} \mathrm{F} \rightarrow \underline{\mathbf{- 7 1 . 7 3}}{ }^{\circ} \mathrm{F}
\end{aligned}
$$

b. Express this temperature in Kelvins (K).

$$
\begin{aligned}
\mathrm{K} & ={ }^{\circ} \mathrm{C}+273.15 \\
& =-57.63+273.15=215.52 \mathrm{~K} \rightarrow \underline{\mathbf{2 1 5} .52 \mathrm{~K}}
\end{aligned}
$$

3. (10 pts) A 26.27-g sample of a solid is placed in a flask. Toluene, in which the solid is insoluble, is added to the flask so that the volume of the solid and liquid together is 50.00 mL . The solid and liquid toluene together weigh 52.65 g . The density of toluene at the temperature of the experiment is $0.864 \mathrm{~g} / \mathrm{mL}$. What is the density of the solid?

$$
\begin{aligned}
\text { solid }+ \text { toluene } & =52.65 \mathrm{~g} \\
\text { solid } & =\frac{26.27 \mathrm{~g}}{26.38 \mathrm{~g}} \text { toluene }
\end{aligned}
$$

26.38 g toluene $\times \frac{1 \mathrm{ml} \text { toluene }}{0.864 \mathrm{~g} \text { toluene }}=30.53241 \mathrm{~mL}$ toluene

$$
\begin{aligned}
\text { solid }+ \text { toluene } & =50.00 \mathrm{~mL} \\
\text { toluene } & =\frac{30.53241 \mathrm{~mL}}{19.46759 \mathrm{~mL}}
\end{aligned}
$$

```
density of the solid = 26.27 g
\[
=1.34942 \mathrm{~g} / \mathrm{mL} \rightarrow 1.35 \mathrm{~g} / \mathrm{mL}
\]
```

4. (16 pts) Fill in the gaps in the following table:

Symbol	${ }^{52} \mathrm{Cr}^{3+}$	${ }^{107} \mathrm{Ag}^{+}$	${ }^{75} \mathrm{As}^{3-}$
Protons	24	47	33
Neutrons	28	60	42
Electrons	21	46	36
Net Charge	$3+$	$1+$	$3-$

5. (2 pts each) From this list of elements: $\mathbf{A r}, \mathbf{H}, \mathbf{G a}, \mathbf{A l}, \mathbf{C a}, \mathbf{B r}, \mathbf{G e}, \mathbf{K}, \mathbf{O}$; pick the one that best fits each of the following descriptions. You may use each element only ONCE.
a. an alkali metal:

K
b. an alkaline earth metal: Ca
c. a noble gas:

Ar
d. a halogen: Br
e. a metalloid: \qquad
f. a nonmetal listed in group IA: Ge
g. a metal that forms a 3+ ion:
\qquad H
h. a nonmetal that forms a 2-ion: \qquad 0
i. an element that resembles aluminum: _Ga
6. (1 pt each) Give the atomic symbol for the following elements:
a. calcium: \qquad
b. sodium: \qquad
c. mercury:

Hg
d. lead: \qquad Pb
7. (1 pt each) Give the name of the element for the following atomic symbols:
a. $\mathrm{Cu}:$ \qquad Copper
b. K : \qquad
c. $\mathrm{H}:$ \qquad
d. Ag: \qquad
8. (3 pts each) Write a complete, balanced chemical equation for each of the following reactions:
a. Solid calcium carbide $\left(\mathrm{CaC}_{2}\right)$ reacts with water to form an aqueous solution of calcium hydroxide and acetylene gas $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$.

```
CaC2(s) + 2H2O(l) }->\textrm{Ca}(\textrm{OH}\mp@subsup{)}{2}{(aq)}+\mp@subsup{\textrm{C}}{2}{}\mp@subsup{\textrm{H}}{2}{}(\textrm{g}
```

b. $\mathrm{HBr}+\mathrm{F}_{2} \rightarrow \mathrm{HF}+\mathrm{Br}_{2}$

$$
2 \mathrm{HBr}+\mathrm{F}_{2} \rightarrow 2 \mathrm{HF}+\mathrm{Br}_{2}
$$

c. $\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

9. (8 pts) The element magnesium consists of three naturally occurring isotopes with masses 23.98504, 24.98584, and 25.98259 amu. The relative abundances of these three isotopes are $78.70,10.13$, and 11.17 percent, respectively. From these data, calculate the average atomic mass of magnesium.
```
23.98504(0.7870) + 24.98584(0.1013) + 25.98259(0.1117)=
    18.87622648 + 2.531065592 + 2.9022553 = 24.3095474
    =24.31 amu
```

10. (6 pts) Show the Lewis structure for $\mathrm{CH}_{3} \mathrm{Cl}$.
```
4+3+7 = 14 valence electrons
```


a. (3 pts) What shape does VSEPR theory predict for this molecule?

Four bonding electron pairs = tetrahedral
b. (3 pts) The electronegativity values for C, H and Cl are 2.55, 2.2 and 3.16, respectively. Which bond(s) is(are) the most polar?

For the $C-H$ bonds: $\ddot{A} E N=2.55-2.2=0.35$
For the $C-C l$ bond: $\ddot{A} E N=3.16-2.55=0.61$

C-Cl bond has greatest ÄEN, so it is the most polar.

c. (3 pts) Does this molecule have a net dipole? If so, indicate the positive and negative regions, on the Lewis structure, by the symbols $\delta+$ and δ-, respectively.

Yes, there is a net dipole as the $C-C l$ bond is more polar than the $C-H$ bonds. Since $C l$ is the most EN, the $\delta-$ will be on the Cl. Since H is the least EN, the $\delta+$ will be on the three hydrogens.
11. (9 pts) Draw the Lewis and VSEPR structures for SF_{6}.

```
S = 6 valence electrons
F = 7 x6 = 42 valence electrons
42 + 6 = 48 valence electrons
```

The VSEPR structure for SIX electron pairs is Octahedral
12. Ibuprofen, a potent headache remedy, has a molar mass of about 206 grams and has been determined to be 75.69 \% C, $8.80 \% \mathrm{H}$, and 15.51 \% O by mass.
a. (12 pts) Determine the empirical formula for ibuprofen.

$$
\begin{aligned}
& 75.69 \mathrm{~g} \mathrm{Cx} \frac{1 \mathrm{~mole} \mathrm{C}}{12.0107 \mathrm{~g} \mathrm{C}}=6.30188 \mathrm{~mol} \mathrm{C} \\
& 8.80 \mathrm{~g} \mathrm{Hx} \underset{1.00794 \mathrm{~g} \mathrm{H}}{=}=8.730678 \mathrm{~mol} \mathrm{H} \\
& 15.51 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mole} \mathrm{O}}{15.9994 \mathrm{~g} \mathrm{O}}=0.969411 \mathrm{~mol} \mathrm{o} \\
& \text { C: } \frac{6.30188 \mathrm{~mol}}{0.969411 \mathrm{~mol}}=6.50 \times 2=13 \\
& \underline{H}: \frac{8.730678 \mathrm{~mol}}{0.969411 \mathrm{~mol}}=9.00 \times 2=18 \\
& \text { ㅇ: } \frac{0.969411 \mathrm{~mol}}{0.969411 \mathrm{~mol}}=1.00 \times 2=\mathbf{2} \\
& \text { So, } \quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}
\end{aligned}
$$

b. (6 pts) Determine the molecular formula for ibuprofen.
$13 C=13 \times 12=156$
$18 \mathrm{H}=18 \times 1=18$
$20=2 \times 16=32$
Empirical Mass = $206 \mathrm{~g} / \mathrm{mol}=$ molar mass

```
Empirical Formula = Molecular Formula = = (13 H H18 O
```

c. (6 pts) Calculate the molar molecular mass of ibuprofen to the nearest $\mathrm{mg} / \mathrm{mol}$.

```
13 C = 13 x 12.0107 = 156.1391
18 H = 18 x 1.00794 = 18.1429
20=2 x 15.9994=32.9988
206.2808 g/mol -> 206.281 g/mol
```

(206,281 mg/mol)
13. (9 pts each) A tablet of Advil ${ }^{\text {Tm }}$ contains 200. mg of ibuprofen.
a. How many molecules of ibuprofen are in a single Advil ${ }^{\text {TM }}$ tablet?
200. mg Ibu $\times \frac{1 \text { gram }}{1000 \mathrm{mg}} \times \frac{1 \mathrm{~mol} \text { Ibu }}{206.281 \mathrm{~g}} \mathrm{Ibu} \frac{6.02214 \times 10^{23} \text { molecules }}{1 \mathrm{~mol} \mathrm{Ibuprofen}}=$
$=5.8387733 \times 10^{20}$ molecules
$=$
$=\underline{\mathbf{5 . 8 4} \times 10^{20} \text { molecules Ibuprofen }}$
b. How many moles of oxygen (from the ibuprofen) are there in a single Advill ${ }^{\text {m }}$ tablet?

$$
\begin{aligned}
\text { 200. } \mathrm{mg} \text { Ibu } \times \frac{1 \mathrm{gram}}{1000 \mathrm{mg}} & \times \frac{1 \mathrm{~mol} \text { Ibu }}{206.281 \mathrm{~g} \text { Ibu }} \times \frac{2 \text { moles } 0}{\mathrm{~mol} \text { Ibuprofen }}
\end{aligned}=
$$

EXTRA CREDIT! - 10 points

We've been claiming all semester that, for atomic- and molecular-sized systems, electromagnetic forces between and with atoms are much greater than gravitational forces between atoms and sub-atomic particles. Ok, let's demonstrate that with some calculations!

Calculate:

1) The magnitude of the coulombic attractive force between the proton in the nucleus of a hydrogen atom and the electron whirling around it. For the purposes of this calculation, assume that the distance separating the proton and the electron is $5 \AA$
2) The magnitude of the gravitational attractive force between the same two particles in a hydrogen atom.

Based on your calculations, is our assumption justified?

1) Coulombic attraction:

$$
\begin{aligned}
& \mathrm{F}=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{\mathrm{q}_{1} \underline{\mathrm{q}}_{2}}{\mathrm{r}^{2}} \quad \varepsilon=8.85 \times 10^{-12} \mathrm{C}^{2}-\mathrm{N}^{-1}-\mathrm{m}^{-2} \\
& =\frac{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(-1.60 \times 10^{-19} \mathrm{C}\right)}{4(3.14159)\left(8.85 \times 10^{-12} \mathrm{C}^{2}-\mathrm{N}^{-1}-\mathrm{m}^{-2}\right)\left(5 \times 10^{-10} \mathrm{~m}\right)^{2}}= \\
& =-9.20761 \times 10^{-10} \mathrm{~N}=\underline{-9.21 \times 10^{-10} \mathrm{~N}} \\
& \text { 2) Gravitational attraction: } \\
& \mathrm{F}=\frac{-\mathrm{Gm}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}} \quad \mathrm{G}=6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2}-\mathrm{kg}^{-2} \\
& \frac{\text { mass electron: }}{5.4858 \times 10^{-4}} \mathrm{amu} \times \frac{1.66054 \times 10^{-24} \mathrm{~g}}{1 \mathrm{amu}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=9.10939 \times 10^{-31} \mathrm{~kg} \\
& \text { mass proton } \\
& \frac{1.007276 \mathrm{amu}}{1.0 m u} \times \frac{1.66054 \times 10^{-24} \mathrm{~g}}{1 \mathrm{amu}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=1.67262 \times 10^{-27} \mathrm{~kg} \\
& F=\frac{-\left(6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2}-\mathrm{kg}^{-2}\right)\left(9.10939 \times 10^{-31} \mathrm{~kg}\right)\left(1.67262 \times 10^{-27} \mathrm{~kg}\right)}{\left(5 \times 10^{-10} \mathrm{~m}\right)^{2}} \\
& F=-4.065116 \times 10^{-49} \mathrm{~N}=\underline{\mathbf{- 4} .07 \times 10^{-49} \mathrm{~N}}
\end{aligned}
$$

