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Notation

X or C ¨ ¨ ¨ a curve
S ¨ ¨ ¨ a surface
Ω ¨ ¨ ¨ used as canonical bundle w/o subscript, or sheaf of holomorphic differentials with subscript
ωX ¨ ¨ ¨ canonical sheaf/bundle
I ¨ ¨ ¨ ideal sheaf, resp. (abusively) homogeneous ideal or canonical ideal. Note this is graded.
L ¨ ¨ ¨ a line bundle/invertible sheaf on X
ϕ ¨ ¨ ¨ the map to projective space induced by L

H0pX,Lq ¨ ¨ ¨ the global sections of L on X
K ¨ ¨ ¨ or KX , a canonical divisor on X
O ¨ ¨ ¨ the structure sheaf, often abusively used for ring of integers of that sheaf
si ¨ ¨ ¨ ith global section
ϕi ¨ ¨ ¨ ith basis element for group of global sections
Pn ¨ ¨ ¨ ProjpH0pX,Lqq for some degree n bundle L

Ź

M ¨ ¨ ¨ for some free module M, the exterior algebra
SympMq ¨ ¨ ¨ the symmetric algebra on the free module M

dp,q ¨ ¨ ¨ the boundary map in the pp, qqth part of the Koszul complex
Kp,qpB, V q ¨ ¨ ¨ the pp, qqth Koszul cohomology group of a SympV q-module B and vector space V
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1. Introduction

This document is intended to demonstrate how to derive the Petri equations for a canonical
curve. A classic example of some known equations are the 3 degree 2 equations in P4 (quadrics)
which determine a genus 5 curve by their complete intersection and these notes will start off by
writing down those equations. The Petri equations in general are designed to compute the section
ring of a curve in an embedding, and the decisive idea which makes it possible to determine in
particular what kinds of polynomials generate the homogeneous ideal of an embedded curve is
to demonstrate generation of that ideal with Koszul cohomology. That is accomplished here by
intersecting the multuplication sequences for the symmetric and tensor algebras over the vector
space of global sections with both the Koszul complexes and the exact sequences determined by
the normal generation of the canonical bundle. The main results in these notes are Max Noether’s
theorem that a canonically embedded nonhyperelliptic curve is projectively normal and Theorem
3.1 which is summarized in terms of the title as:

Theorem 1.1. Every minimal generator for the canonical ideal of nonhyperelliptic, canonical genus
5 curve in P4 has degree at most 2.

First, as promised, this document will actually include the degree 2 homogeneous equations which
generate the canonical ideal of the embedded curve. In the next section, many definitions about line
bundles are stated, the Euler relations between the structure sheaf and the sheaf of holomorphic
differentials is introduced with a couple of important twists and some sheaf cohomology, and the
Koszul cohomology is developed. An entire section is devoted to each of the rather elaborate proofs
of the main theorems stated above. Finally, some literature review regarding what people have done
for other kinds of curves and for which varieties there are known or knowable Petri equations, is the
conclusion of the document, by way of alluding to the next projects which will follow this example.

1.1. Motivating example.

Let X be a genus 5 canonical, non-hyperelliptic, smooth, irreducible, projective, complex alge-
braic curve. The canonical bundle Ω “ ωX defines an embedding (closed) ϕ : X Ñ P4. Let R denote
the canonical ring R “ RpXq “

À8
d“0H

0pX,Ωbdq of X in P4. In particular R – Crx1, ¨ ¨ ¨ , x5s{I.
and the point of this document is to show:
R is generared in degree 1, I is generated in degree 2 (’by quadrics’), and dimC I2 “ 3.

To begin the discussion properly requires at least a working concept of what a syzygy module
is. As an R-ideal, I naturally has the structure of an R-module, and in fact is finitely generated.
However, more information is needed that simply the generators, say f1, ¨ ¨ ¨ , fn for I. In particular
there are nontrivial relations among those generators, which form a set called the (first) syzygies [3,
chapter 6], denoted Syzpf1, ¨ ¨ ¨ , fnq. It turns out that Syzpf1, ¨ ¨ ¨ , fnq is itself an R-module, say with
generators g1, ¨ ¨ ¨ , gm, and there is an R-module of relations among the gi, denoted Syzpg1, ¨ ¨ ¨ , gmq,
which is the module of (second) syzygies for I. Proceeding in this way one defines a sequence of
successive syzygy modules for I which is called a resolution. The properties of that sequence itself
which are relevant for this discussion are discussed later in Section 3. With this inductive-like idea
of how relations among generators form modules known as syzygies, the syzygies which correspond
to the quadrics whose complete intersection is a genus 5 curve in P4 can be written down explicitly.

Let ϕ : X Ñ P4 be the map obtained from global sections of the canonical bundle

p ÞÑ rs1ppq, ¨ ¨ ¨ , s5ppqs

and let x1, ¨ ¨ ¨ , x5 P X be some closed points in general position. Then consider a basis ϕ1, ¨ ¨ ¨ , ϕ5

of H0pX,Ωq such that ϕipxjq ‰ 0 if and only if i “ j.
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In particular by a uniform position theorem in [2, Section 3] and the geometric Riemann-Roch

dimH0pX,Kp´x1 ´ ¨ ¨ ¨ ´ x̂i ´ ¨ ¨ ¨ ´ xgqq “ 1,

where x̂i means that point is excluded, and ϕi is taken to be the generator for each i. Therefore as
a section of K

#

ϕipxiq ‰ 0,

ϕipxjq “ 0, i ‰ j

so the ϕi form a basis for H0pC,Kq.
The assumption that the points xi are in general position also means the divisors pϕiq are

supported at 2g ´ 2 distinct points with pairwise disjoint support. Note that for any relation
ÿ

λiϕi “ 0,

evaluating at xi gives λi “ 0
To understand these relations and ultimately to give bases for each graded component of the

ideal of X in P4 some notation and the base point free pencil trick will be introduced next. Consider
the maps

ψn : H0pPg´1,OPg´1pnqq Ñ H0pC,Knq

given by restriction and let X1, ¨ ¨ ¨ , Xg be a basis for H0pPg´1,OPg´1p1qq defined by

Xi “ ψ´1
1 pϕiq,

so that the Xi act like homogeneous coordinates.

Example. [2] Given P “ P pX1, ¨ ¨ ¨ , Xgq P H
0pPg´1,OPg´1p1qq say that P “ ψnpP q so in paricular

one might say

X2
1X3 “ ϕ2

1ϕ3.

Let D “ x3 ` ¨ ¨ ¨ ` xg. Then the general position of the xi means

dimH0pX,Kp´Dqq “ 2,

where the vector space has a basis ϕ1 and ϕ2. Since the support of the pϕiq are pairwise disjoint,
the pencil |Kp´Dq| is basepoint free. Riemann-Roch helps out once again: in the towers

H0pX,Knq Ą H0pX,Knp´Dqq Ą ¨ ¨ ¨ Ą H0pX,Knpp´n` 1qDqq,

where n´ 1 ě s ě 1, for each s the theorem says

h0pX,Knp´sDqq “ p2n´ 1qpg ´ 1q ´ spg ´ 2q

and each vector space in the filtration has codimension g´2 in the previous. To actually write Petri’s
equations for the genus 5 curves, for each s there must be n-canonical forms in H0pX,Knp´sDqq
which are linearly independent modulo H0pX,Knpp´s´ 1qDqq.

Lemma 1.2. [2, Basepoint free pencil trick] Let C be a smooth curve, let L be an invertible sheaf
on C and let F be a free OC-module. Suppose s1 and s2 are linearly independent sections of L and
denote the subspace of H0pC,Lq which they generate V. Then the map

φ2,2 : V bH0pC,Fq Ñ H0pC,F b Lq

given by

s1 b t2 ´ s2 b t1 ÞÑ s1t2 ´ s2t1

has kernel

kerφ2,2 – H0pC,F b L´1pBqq,

where B is the base locus of the pencil spanned by s1 and s2.
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The application which is relevant to the Petri equations is

kerφn,s – H0pC,Kn´2pp´s` 2qDqq.

Now the inductive desciption of bases for the H0pX,Knq for each n proceeds as follows. The map

φ2,1 : H0pX,Kq bH0pX,Kp´Dqq Ñ H0pX,K2p´Dqq

is surjective by 1.2 so

ϕ2
1, ϕ1ϕ2, ϕ

2
2, ϕ1ϕi, ϕ2ϕi,

where 3 ď i ď g, form a basis for H0pX,K2p´Dqq. At the top of the tower

H0pX,K2q Ą H0pX,K2p´Dqq,

the ϕ2
3, ¨ ¨ ¨ , ϕ

2
g are differentials inH0pX,K2q which are linearly independent moduloH0pX,K2p´Dqq

and since codimpH0pX,K2p´Dqq in H0pX,K2qq “ g ´ 2 the basis for H0pX,K2q is

ϕ2
1, ϕ1ϕ2, ϕ

2
2 | |

ϕ1ϕi | | basis of H0pX,K2p´Dqq
ϕ2ϕi | |

ϕ2
3, ¨ ¨ ¨ , ϕ

2
g | basis of H0pX,K2q.

However, in writing down all of the differentials in each homogeneous order n, some nontrivial
relations begin to arise between them. For example, for all 3 ď i, k ď g where i ‰ k, ϕiϕk P
H0pX,K2p´Dqq and in particular vanishes at x1 and x2.

Mumford in [16] concisely describes these relations

ϕiϕj “

g
ÿ

k“3

αijkpϕ1, ϕ2qϕk ` νijϕ1ϕ2,

and among higher orders than explicitly written down here (in H0X,K3 in particular)

ηi ´ ηj “

g
ÿ

k“3

α1ijkpϕ1, ϕ2qϕk ` ν
1
ijϕ

2
1ϕ2 ` ν

2
ijϕ1ϕ

2
2,

where the α are linear, α1 are quadratic and ν’s are scalars repectively.
In particular the homogeneous degree 2 equations

fij “ xixj ´

g
ÿ

k“3

αijkpx1, x2qxk ´ νijx1x2,

and the degree 3 equations

gij “ pµix1 ´ λix2qx
2
i ´ pµjx1 ´ λjx2qx

2
j ´

g
ÿ

k“3

α1ijkpx1, x2qxk ´ ν
1
ijx

2
1x2 ´ ν

2
ijx1x

2
2,

where the 3 ď i, j ď 5, and i ‰ j are generators of the ideal of X in P4. In other words the fij
all vanish on X in Pg´1 and are exactly the subvariety-defining equations guarenteed by Petri,
Enriques, Babbage, et al in [2] and [16]. To be rigorous, these

pg ´ 2qpg ´ 3q

2

linearly independent elements of I2 match the dimension of I2 which [2]’s formulation of Max
Noether’s theorem guarentees so indeed the fij form a basis.

The full list of these equations is

f34, f35, f43, f45, f53, f54

g34, g35, g43, g45, g53, g54
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These are the equations guarenteed by Max Noether’s theorem but there are nontrivial syzygies
between these relations.

Lemma 1.3. [16] Let X be a genus 5 canonical, non-hyperelliptic, smooth, irreducible, complex
algebraic curve. There are syzygies

(1) fij “ fji
(2) gij ` gjk “ gik.

(3) xkfij ´ xjfik `
g
ř

l“3
l‰k

αijlfkl ´
g
ř

l“3
l‰k

αiklfjl “ ρijkgjk,

where 3 ď i, j, k ď g, i, j, k are distinct, and the ρijk are scalars symmetric in i, j and k,

which generate the components of the homogeneous ideal of X in its canonical embedding IX{Pg´1,2

and IX{Pg´1,3 respectively.

Proof. This is a proof of only the second syzygy. The first is trivial and the third requires more
discussion.

gij ` gjk “ pµix1 ´ λix2qx
2
i ´ pµjx1 ´ λjx2qx

2
j ´

řg
k“3 α

1
ijkpx1, x2qxk ´ ν

1
ijx

2
1x2 ´ ν

2
ijx1x

2
2

`pµjx1 ´ λjx2qx
2
j ´ pµkx1 ´ λkx2qx

2
k ´

řg
k“3 α

1
ijkpx1, x2qxk ´ ν

1
jkx

2
1x2 ´ ν

2
jkx1x

2
2

“ pµix1 ´ λix2qx
2
i ´ pµkx1 ´ λkx2qx

2
k ´

řg
k“3 α

1
ijkpx1, x2qxk ´ ν

1
ikx

2
1x2 ´ ν

2
ikx1x

2
2

“ gik,

where ν 1ik “ ν 1ij ` ν
1
jk and ν2ik “ ν2ij ` ν

2
jk. �

Application of the first two kinds of syzygy reduces the number of relations per the following
table

type 1, type 2,
f34 “ f43 g34 ` g45 “ g35

f35 “ f53 g35 ` g54 “ g34

f45 “ f54 g45 ` g53 “ g43

g43 ` g35 “ g45

g53 ` g34 “ g54

g54 ` g43 “ g53

which leaves only the following generators for the ideal

f34, f35, f45, g34, g35, g45

subject to the relations

ρ354g34 “ x4f35 ´ x5f34 `
ÿ

l“3
l‰4

α35lf4l ´
ÿ

l“3
l‰4

α34lf5l,

ρ345g35 “ x5f34 ´ x4f35 `
ÿ

l“3
l‰5

α34lf5l ´
ÿ

l“3
l‰5

α35lf4l,

and

ρ435g45 “ x5f43 ´ x3f45 `
ÿ

l“3
l‰5

α43lf5l ´
ÿ

l“3
l‰5

α45lf3l.

It turns out the existence of the degree 3 equations characterizes some of Petri’s exceptional
cases per the following fact.

Lemma 1.4.
Let X be a genus 5 canonical, non-hyperelliptic, smooth, irreducible, complex algebraic curve. The
sygygies of 1.3 satisfy the the following condition. Either ρijk “ αijk “ 0 whenever i, j, k are
distinct, in which case C is either trigonal or in the genus 6 case may be a nonsingular plane
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quintic, or t3, ¨ ¨ ¨ , gu “ I1 Y I2, where for all j P I1 and k P I2 there exists an i with ρijk ‰ 0 and
αijk ‰ 0 and such that the ideal of C is generated by the fij alone.

Note that this latter case applies to the genus 5 curves in these notes and will be discussed more,
but to be clear the trigonal map in the genus 5 case if all ρ vanish is given by the vanishings of the
3rd kind of syzygy, each a degree 1 map to P1 respectively.

Theorem 1.5. Let X be a genus 5 canonical, non-hyperelliptic, smooth, irreducible, complex alge-
braic curve. The syzygies f34, f35 and f45 generate the canonical ideal of X its canonical embedding
in P4.

Proof. Consider any partition of t3, 4, 5u which includes at least one nonempty subset and the set
theoretic complement of that the first component. If at least some ρijk ‰ 0 then gik is determined
by the fij . If every g were to be 0 the result also follows. �

Because the object of interest for this inductive style argument is ker
`

H0pX,Ωq‘2 Ñ H0pX,Ωb2q
˘

,
a cohomological version of the proof is, forgive the pun, natural. It is worth noting that this choice
of basis is not arbitrarily restrictive. Let ϕ1, ¨ ¨ ¨ , ϕg be a basis of differential forms for H0pC,ωCq
such that

#

ϕipxiq ‰ 0

ϕipxjq “ 0, if i ‰ j.

Lemma 1.6. Let X be a genus 5 canonical, non-hyperelliptic, smooth, irreducible, complex algebraic
curve. Let ϕ : X Ñ P4 be the map obtained from global sections of the canonical bundle

p ÞÑ rs1ppq, ¨ ¨ ¨ , s5ppqs

and let x1, ¨ ¨ ¨ , x5 P X be some closed points in general position. Suppose ϕ1, ¨ ¨ ¨ , ϕ5 form a basis
for H0pX,Ωq such that ϕipxjq ‰ 0 if and only if i “ j. Given any basis η1, ¨ ¨ ¨ , ηg there exist some
ai,j P C such that ϕi “

řg
k“1 ai,kηk.

Proof. Let η1, ¨ ¨ ¨ , ηg be a basis for H0pC,ΩCq. Since the data of H0pC,ΩCq is some cover by affine
opens pUi Ñ CqiPΛ with sections si P ΩCpUiq compatible over intersections, for any x P C, the η’s
globally generate H0pC,ΩCq in the sense that

ΩC,x “ spantpη1qx, ¨ ¨ ¨ , pηgqxu.

One of the rational sections pηiqx is a generator for the localization ΩC,x at x. Suppose for each
of x1, ¨ ¨ ¨ , xg P C some closed points in general position, that α1, ¨ ¨ ¨ , αg generate ΩC,x1 , ¨ ¨ ¨ ,ΩC,xg

respectively. Then
pη1qx1 “ r1α1 pη1qx2 “ r2α2 ¨ ¨ ¨ pη1qxg “ rgαg
pη2qx1 “ s1α1 pη2qx2 “ s2α2 ¨ ¨ ¨ pη2qxg “ sgαg

...
...

pηgqx1 “ t1α1 ¨ ¨ ¨ pηgqxg “ tgαg

for some r1, s1, ¨ ¨ ¨ , t1 P OC,x1 , r2, s2, ¨ ¨ ¨ , t2 P OC,x2 , rg, sg, ¨ ¨ ¨ , tg P OC,xg and so on. Recall that
each of the local rings OC,xi is a discrete valuation ring with a unique maximal ideal the uniformizer
at xi. Since ΩC,xi is generated by αi for each i,

xri, si, ¨ ¨ ¨ , tiy “ OC,xi

so one of ri, si, ¨ ¨ ¨ , ti P OˆC,xi . Suppose for some ai,1, ¨ ¨ ¨ , ai,g P C not all 0 that

pai,1η1 ` ai,2η2 ` ¨ ¨ ¨ ` ai,gηgqpxjq “ 0

for some j ‰ i. At the stalk

pai,1η1 ` ai,2η2 ` ¨ ¨ ¨ ` ai,gηgqxj “ rai,1prjpxjqq ` ai,2psjpxjqq ` ¨ ¨ ¨ ` ai,gptjpxjqqsαj
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so without loss of generality if rj is the unit, since ai,1rj ` ¨ ¨ ¨ ` a1,gtj “ 0,

ai,1 “ ´r
´1
j pxjq rai,2sjpxjq ` ¨ ¨ ¨ ` ai,gtjpxjqs .

In particular the solution lies in C. Indeed rj , sj , ¨ ¨ ¨ , tj P OC,xj so the evaluations
rjpxjq, ¨ ¨ ¨ , sjpxjq P OC,xj{M “ κpCq, where M is the uniformizer at x2 and κpCq “ κpxjq is
the residue field of the curve at the stalk. So since sj , ¨ ¨ ¨ , tj vanish to nonnegative order at xj
as localizations of a global section to an affine open, and rj by assumption of being a unit is
nonvanishing at xj ,

rj P OˆC,xj ñ rjpxjq P pOC,xj{Mqˆ “ Cˆ

and each of sjpxjq, ¨ ¨ ¨ , tjpxjq lie in a finite extension of C, hence each is a complex number since
C is algebraically closed, so there are no such nontrivial extensions of C. �

Finally, one last word of introduction is in order here. It is an exercise level problem for modern
mathematicians to prove that the complete intersection of 3 quadrics in P4 is a genus 5 curve. The
main ideas are to use the adjunction formula and the corresponding genus formula. If Y is the
complete intersection of the degrees d1, d2, d3 hypersurfaces D1, D2, D3 Ă P4 respectively, then

gy “
pd1 ` d2 ` d3 ´ 5qd1d2d3 ` 2

2
.

Therefore, it is the purpose of these notes to go the other way, namely from the curve to the
complete intersection which defines it in its canonical embedding.

2. Background

This section has parts which resectively introduce facts about line bundles, states the sheaf
relation given by the Euler sequence, along with relevant twists, and defines the Koszul cohomology.
All of this is done with the specific example of a genus g canonical, non-hyperelliptic, smooth,
irreducible complex algebraic curve in mind. Line bundle facts come from [18], [19], [20] and [21]
and Section 2.1 is about the properties with which a line bundle gives an embedding and the
properties of the embedded curve. The Euler sequence is from [25] while the twists and pullbacks
come from [10] with the Stacks Project references above, and Section 2.2 states Euler’s relation
between the sheaf of differentials and the structure sheaf along with the twists and wedge products
needed later for Koszul cohomology. Finally Koszul cohomology is defined in [11], used in [10], and
the relevant information about wedge products and explicit maps comes from [5], so Section 2.3
concretely defines the Koszul complex and motivates why it is relevant to the discussion of Petri’s
equations. The first two sections are mostly standard facts but the selection of those facts used for
this problem is not from any particular source.

2.1. Line Bundle Facts. The main object of study in these notes is the following object.

Definition 2.1. [12, 1.2] For a line bundle L on a scheme X the section ring is the graded ring

RpX,Lq “
à

dPN
H0pX,Lbdq

and is also called the Cox ring.

A necessary condition for a line bundle to give an embedding as the canonical bundle does, has
to do with the generation of that invertible sheaf L.

Definition 2.2. [10] Say a line bundle L on X a scheme is globally generated or generated by its global sections
if there is an inclusion

ϕL : X ãÑ PpH0pX,Lqq “ Pr

P P

p ÞÑ rs0ppq, ¨ ¨ ¨ , srppqs.
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The other necessary condition for a line bundle to embed with as good of properties as the
canonical embedding involves the common vanishing of global sections.

Definition 2.3. The base locus of a line bundle L on X is
č

sPH0pX,Lq

ts “ 0u.

Say that L is basepoint free if the base locus is empty

In particular, the way a line bundle gives an embedding of a variety into projective space can be
stated with the following definitions.

Definition 2.4. [22] Say the line bundle L is ample if there is some nonnegative r P Z such that

Lbr is very ample.

Definition 2.5. [22] Say a line bundle L is very ample if the embedding ϕL : X Ñ Pr by global
sections of L is a closed immersion and L is basepoint free.

Turning from the embedding to the embedded object, the corresponding property to global
generation is the normality of the embedded subvariety.

Definition 2.6. [11] Let B be a ring. Some subvariety V Ă PrB is projectively normal if the
canonical maps

H0pPrB,OPrB pdqq Ñ H0pV,OV pdqq,

where OV – OPr{IV is the structure sheaf on V, are surjective for all d ą 0.

The major result in this section and the biggest theorem as such which is proved in this document
is Max Noether’s theorem. To set that up requires just one more definition and one intermediate
fact about terminology.

Definition 2.7. [10] Say the line bundle L is normally generated if the maps ρk : SymkH0pLq Ñ

H0pLkq are surjective for all k ě 0.

Fact 2.8. L is a normally generated line bundle if and only if the embedded curve ϕLpXq Ă Pr,
for r “ h0pLq ´ 1 is projectively normal.

Proof. Under the identification OPrB pdq “
ČSPrB pdq,

H0pPrB,OPrB pdqq “ Brx0, ¨ ¨ ¨ , xrsd,

and since H0pX,ϕ˚LOXpdqq “ H0pX,Lbdq and

SymkpH0pX,Lqq “ SymkpBs0 ‘ ¨ ¨ ¨ ‘Bsrq “ Rrs0, ¨ ¨ ¨ , srsk,

where R “ RpLq is the Cox ring of the line bundle, and everything happens over the base ring B,
the definitions of normally generated and projectively normal are the same. �

The intersection theory result which is the title of these notes is made possible thanks to Noether’s
theorem which is stated in one form here. The proof is reserved for a later section of its own.

Theorem 2.9 (Noether). [10] A canonically embedded nonhyperelliptic curve X with genus g is
projectively normal. That is to say the maps

H0pPg´1,OPg´1pkqq Ñ H0pX,Ωk
Xq

are surjective for all k ě 0.

For clarity, these facts are connected by the following statement.

Lemma 2.10.
Suppose L is a line bundle on a scheme X.

https://stacks.math.columbia.edu/tag/01QN
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(1) If L is very ample then it is basepoint free.
(2) L is basepoint free if and only if it is globally generated.

Proof. If L is very ample, the induced map φL : X Ñ Pr is a closed immersion. But L is basepoint
free if and only if there exists a morphism φL : X Ñ Pr and that map is already given. If L is
basepoint free then there is no x P X such that for all s P H0pX,Lq, sx P MxLx since spxq “ 0
if and only if sx ” 0 pmod MXLxq but the base locus of a basepoint free map is empty. If L is
globally generated, for each x P X there is s P H0pX,Lq such that OX,xsx “ Lx, so L basepoint
free. Therefore L is globally generated if and only if it is basepoint free. �

The last result in this section, from Serre, will come up while computing the cohomology in the
Koszul complex section.

Theorem 2.11 (Serre vanishing). [11, 2.a.6] If L is an ample line bundle on X and F is a coherent
sheaf of OX-modules then

H ipX,F bOXpqLqq “ 0, q ! 0,

where q ! 0 means q is a sufficiently large negative number.

2.2. Euler Sequence. In this section, some relations between different sheaves are introduced.
Eventually, by forming the long exact sequences in sheaf cohomology from different short exact
sequences given here, the Koszul cohomology will be able to inductively demonstrate that all
syzygies for the canonical ideal are generated in degree 2.

This is one of the most useful definitions in this document and will come up many times.

Definition 2.12. The Euler sequence on Pn is the following exact sequence of sheaves on Pn

0 Ñ ΩPnA Ñ OPnp´1q‘n`1 Ñ OPn Ñ 0

which relates the sheaf of holomorphic differentials Ω to the structure sheaf on OPn .

For rigor, it is worth checking exactness.

Lemma 2.13. [24] The Euler sequence is exact.

Proof. Let ϕ : Op´1q‘pn`1q Ñ O be the degree 1 map

ps0, ¨ ¨ ¨ , snq ÞÑ x0s0 ` ¨ ¨ ¨ ` xnsn.

Identifying the kernel of this map with differentials can be done locally since injectivity and sur-
jectivity are local properties. Consider U0 where x0 ‰ 0 some open set. Consider some coordinates
xj{0 “

xj
x0

for 1 ă j ď n. To each differential

f1px1{0, x2{0, ¨ ¨ ¨ , xn{0qdx1{0 ` ¨ ¨ ¨ ` fnpx1{0, ¨ ¨ ¨ , xn{0qdxn{0 P ΩPn

there are n` 1 sections of Op´1q since by treating the projective coordinates naively,

f1dx1{0 “ f1dp
x1
x0
q

“ f1
x0dx1´x1dx0

x20

“
f1
x0
dx1 `

´x1
x20
f1dx0.

Note x0

´

´x1
x20
f1

¯

` x1

´

f1
x0

¯

“ 0 and that both ´x1
x20
f1 and f1

x0
are homogeneous of degree ´1.

Let ı : ΩPnA Ñ Op´1q‘pn`1q be given by

f1dx1{0 ` ¨ ¨ ¨ ` fndxn{0 ÞÑ

ˆ

´
x1

x2
0

f1 ´ ¨ ¨ ¨ ´
xn
x2

0

fn,
f1

x0
,
f2

x0
, ¨ ¨ ¨ ,

fn
x0

˙

.

First of all ı|U0pΩPnq Ď kerϕ since

x0

ˆ

´
x1

x2
0

f1 ´ ¨ ¨ ¨ ´
xn
x2

0

fn

˙

` x1

ˆ

f1

x0

˙

` ¨ ¨ ¨ ` xn

ˆ

fn
x0

˙

“ 0
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Then ı|U0 is one-to-one since ker ı|U0 “ t0u as ıpf1dx1{0 ` ¨ ¨ ¨ ` fndxn{0q “ p0, ¨ ¨ ¨ , 0q if and only if
fi “ 0 for 1 ď i ď n.
Also ı surjects onto the kernel of Op´1q‘pn`1q Ñ OX since for

pg0, ¨ ¨ ¨ , gnq P kerpOp´1q‘pn`1q Ñ OXq,

let fi “ x0gi for each 1 ď i ď n. To verify this construction consider the map on two different
coordinate patches at once, say U0XU1, where in particular there should be a compatible solution.
Note that

f1dx1{0 ` f2dx2{0 ` ¨ ¨ ¨ ` fndxn{0 “ f1d
1

x0{1
` f2d

x2{1
x0{1

` ¨ ¨ ¨ ` fnd
xn{1
x0{1

“
´f1
x2
0{1

dx0{1 `
x0{1dx2{1´x2{1dx0{1

x2
0{1

f2 ` ¨ ¨ ¨ `
x0{1dxn{1´xn{1dx0{1

x2
0{1

fn

“
´f1
x2
0{1

dx0{1 `
f2
x0{1

dx2{1 ´
f2x2{1
x2
0{1

dx0{1 ` ¨ ¨ ¨ `
fn
x0{1

dxn{1 ´
fnxn{1
x2
0{1

dx0{1

“ ´
f1`f2x2{1`¨¨¨`fnxn{1

x2
0{1

dx0{1 `
f2
x0{1

dx2{1 ` ¨ ¨ ¨ `
fn
x0{1

dxn{1

“ ´
f1`f2x2{1`¨¨¨`fnxn{1

x2
0{1

dx0{1 `
f2x1
x0

dx2{1 ` ¨ ¨ ¨ `
fnx1
x0

dxn{1.

In particular the dx2{1 term maps to the second factor in Op´1q‘pn`1q and gives f2
x0

as desired and
likewise for each dxj{1 term for j ą 2. Also the dx0{1 term goes to zero factor

´

řn
j“1 fi

pxi{x1q
px0{x1q2

¯

x1
“ f1

xi
x2

0

as desired. The first factor must be corrected because the
ř

i xipith factorq “ 0. �

Twists of the Euler sequence will show up in a few different forms, but the first one, below, will
be the form of the Euler sequence most used in these notes.

Lemma 2.14. Since the Euler sequence is exact then the following is exact

(2.1) 0 Ñ ΩPnp1q Ñ O‘n`1
Pn Ñ OPnp1q Ñ 0,

Now the stage can be set for the Koszul complex with some manipulation of the Euler sequence
from the previous lemma.

Lemma 2.15. Let L “ OPnp1qbOXOX . Let r “ h0pLq´1 and ML “ ϕ˚LΩPrp1q. Then the following
pullback by φL of the sequence above is exact

0 ÑML Ñ H0pLq bC OX Ñ LÑ 0.

In this lemma, the pullback from before will get a twist.

Lemma 2.16. The following is exact

0 ÑML b L
k´1 Ñ H0pLq bC L

k´1 Ñ Lb Lk´1 Ñ 0.

Proof. Since L is a line bundle it is locally free and hence twisting by L preserves exactness. Twist
the sequence above in 2.15 by Lk´1 to obtain the sequence in the statement. �

This lemma is just another twist, but this time with some wedge products.

Lemma 2.17. The following is exact.

(2.2) 0 Ñ
2
ľ

ML b L
k´1 Ñ

2
ľ

H0pLq bC L
k´1 ÑML b L

k Ñ 0.
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Proof. Taking wedge products in Lemma 2.15 and twisting by Lk´1 also preserves exactness so to
obtain the sequence in the statement, first consider the dual sequence

0 Ñ L_ Ñ H0pLq_ bC OX ÑM_
L Ñ 0.

By [18, Tag 00DM] the following is exact

L_ bH0pLq_ bOX Ñ

2
ľ

H0pLq_ bOX Ñ

2
ľ

M_
L Ñ 0.

Take the dual again, note that ML – L bOX H0pLq bC OX by Lemma 2.15, and the following is
exact

0 Ñ
2
ľ

ML Ñ

2
ľ

H0pLq bC OX ÑML

and twisting by Lk´1 finally gives

0 Ñ
2
ľ

ML b L
k´1 Ñ

2
ľ

H0pLq bC L
k´1 ÑML b L

k.

The rightmost map is given by

ps1 ^ s2q b f ÞÑ s1 b s2f ´ s2 b s1f

and is surjective since this is a Koszul map d2,k´1 composed of pIdbmk´1q and pψidbIdq, where ψid

is dual to an injective map and is surjective, andmk´1 is surjective by definition of the multiplication
map in ‘kPNL

k. This makes the sequence right exact. �

2.3. Koszul Complex.

In this section, the Koszul cohomology is introduced. This tool will give an interpretation of
Petri’s theorem, which this document is an example of, as a statement about cohomology. The
actual computational technique which come from this complex is stated in Theorem ??, but this
section is focused on demonstrating what kinds of maps exist in the Koszul complex, and that it is
indeed a well-defined complex.

Let F be a field, let V be an n-dimensional F-vector space and let B “
À

qPZBq be a graded

SympV q-module. Note that the abstract looking SympV q in the context of the embedded curves in
these notes is actually quite a familiar ring, but for greater generality in future projects the result
will be phrased with slightly different notation.

Fact 2.18. Let R be a ring and let M be a free R-module with basis y0, ¨ ¨ ¨ , yn. The homogeneous
coordinate ring of PnR is SympMq – Rry0, ¨ ¨ ¨ , yns.

Proof. Both the symmetric algebra SympMq and the polynomial ring Rry0, ¨ ¨ ¨ , yns, where the yi
are a basis are free objects in their respective categories. The homogeneous polynomials of degree
1 are a free R-module which can be identified with M itself and in particular satisfies the following
universal property of the symmetric algebra: for every linear f : M Ñ A a morphism of algebras,
there is a unique algebra homomorphism g : SympMq Ñ A such that f “ g˝i, for i : M Ñ SympMq
the inclusion map. Suppose that f 1 : Rry0, ¨ ¨ ¨ , yns1 Ñ A is a linear algebra morphism for some
R-algebra A. Then since Rry0, ¨ ¨ ¨ , yns is the free object in the category of R-algebras there is the
unique g1 : Rry0, ¨ ¨ ¨ , yns Ñ A such that f 1 “ g1 ˝ i1 for i1 : Rry0, ¨ ¨ ¨ , yns1 ãÑ Rry0, ¨ ¨ ¨ , yns. �

For the sake of the notation used in the Koszul complex in these notes the coordinate ring will
still be written SympV q since this will make some nontrivial identifications easier to see once the
more intricate proofs begin. But for intuition it is nice to keep in mind that the symmetric algebra
in this context is nothing more than a typical polynomial ring. It is also advantageous to phrase
as many definitions and proofs for the Koszul complex in terms of the symmetric algebra since it

https://stacks.math.columbia.edu/tag/00DM
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functions as a coordinate free version of the polynomial ring per 2.18. With all of this set up, it is
time to define the Koszul cohomology.

Definition 2.19 (Koszul complex). [11, 1.a.2] Let F be a field, let V be an n-dimensional F-vector
space and let B “

À

qPZBq be a graded SympV q-module. The Koszul complex is the long exact
sequence

¨ ¨ ¨ Ñ

p`1
ľ

V bBq´1
dp`1,q´1
Ñ

p
ľ

V bBq
dp,q
Ñ

p´1
ľ

V bBq`1
dp´1,q`1
Ñ

p´2
ľ

V bBq`2
dp´2,q`2
Ñ ¨ ¨ ¨

where the maps dp,q are defined to be the composite maps

dp,q “ pIdbmqq ˝ pψid b Idq,

where

#

ψid :
Źp V Ñ

Źp´1 V b V, is dual to the exterior product map

mq : V bBq Ñ Bq`1, is multiplication in B,

such that the following commutes

Źp V bBq
Źp´1 V b V bBq

Źp´1 V bBq`1

ψidbId

dp,q
Idbmq

Each of these maps and the commutativity of the diagram is worked out explicitly in this section.
First of all, the Koszul cohomology groups need to be defined.

Definition 2.20 (Koszul cohomology groups). [11, 1.a.7] Let F be a field, let V be an n-dimensional
F-vector space and let B “

À

qPZBq be a graded SympV q-module. The Koszul cohomology groups of B
are the groups

Kp,qpB, V q “
ker dp,q

im dp`1,q´1
.

It turns out that the Koszul complex terminates after finitely many maps in either direction,
which is established by the next definition.

Definition 2.21 (Koszul conventions). [11, 1.a.8] Let F be a field, let V be an n-dimensional F-
vector space and let B “

À

qPZBq be a graded SympV q-module. Say Kp,qpB, V q “ 0 when p ă 0 or
p ą dimV.

Likewise with the Cox ring being a fundamental object of study in these notes, this next definition
is the formal way to state what the Koszul complex is able compute.

Example. If x1, x2, ¨ ¨ ¨ are generators forB with deg xi “ ei then a weight q relation among the generators
has form

ÿ

i

uixi, ui P Symq´eipV q,

and a primitive relation is one which is not a SympV q linear combination of relations of lower
weight. If

ř

i u
ν
i xi are a basis of primitive relations of weights eν respectively, a weight q syzygy is

ÿ

ν

wνu
ν
i “ 0 for all i, wν P Symq´eν pV q.
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Definition 2.22. [11, 1.b.3] Let F be a field, let V be an n-dimensional F-vector space and let
B “

À

qPZBq be a graded SympV q-module. The syzygies of order p and weight q of B form a

SympV q-module denoted Mp,qpB, V q.

The definition of order p and weight q syzygies is inductive. Say that
M0,q is the module of degree q generators for B as a SympV q-module,
M1,q is the module of primitive relations in weight q for B,
M2,q is the module of syzygies of weight q among relations for B and so on.

The computation by Koszul groups of these syzygies comes from this theorem of Green.

Theorem 2.23 (Syzygy). [11, 1.b.4] Let F be a field, let V be an n-dimensional F-vector space
and let B “

À

qPZBq be a graded SympV q-module.

Kp,qpB, V q –Mp,p`qpB, V q as F-vector spaces.

Now that the premilinary definitions are stated, and the motivation for considering the Koszul
complex is hidden in Theorem ??, the promised explicit description of the complex follows.

Let N be an R-module, and ϕ : N Ñ R.
Consider a diagonalization ∆ :

Ź

N Ñ
Ź

N bR
Ź

N the unique map of algebras defined by

m ÞÑ mb 1` 1bm

for m P
Ź1N “ N and mb 1` 1bm P

Ź

N b
Ź0N ‘

Ź0N b
Ź

N Ă
Ź

N b
Ź

N.

In particular the component of ∆ which maps
ŹiN Ñ N b

Źi´1N given on generators by

∆1pm1 ^ ¨ ¨ ¨ ^miq “

i
ÿ

j“1

p´1qj´1mj bm1 ^ ¨ ¨ ¨ ^ m̂j ^ ¨ ¨ ¨ ^mi,

where m̂j means that mj is left out of the product, gives a description of the differentials

δϕ :
i

ľ

N Ñ

i´1
ľ

N.

Define δϕ to be the composite

i
ľ

N
∆1
Ñ N bR p

i´1
ľ

Nq
ϕb1
Ñ RbR

i´1
ľ

N “

i´1
ľ

N.

Note when i “ 1 the composite is just ϕ. Then δ2
ϕpn1 ^ ¨ ¨ ¨ ^ niq is a linear combination of terms

n1^¨ ¨ ¨^ n̂j^¨ ¨ ¨^ n̂j1^¨ ¨ ¨^ni. If j ă j1 then the coefficient of the term above in δ2
ϕpn1^¨ ¨ ¨^niq

is

p´1qjp´1qj
1´1ϕpnjqϕpnj1q ` p´1qjp´1qj

1

ϕpnjqϕpnj1q “ 0

so δ2
ϕ “ 0.

Lemma 2.24. Let V {F be a finite dimensional vector space and SympV q be the symmetric algebra

over V. Then the differentials δϕ :
Źp V Ñ

Źp´2 V for ϕ P V ˚ satisfy δ2
ϕ “ 0.

Proof. Let ∆ :
Ź

V Ñ
Ź

V be the map x ÞÑ x b 1 ` 1 b x. Consider ∆1 :
Źp V Ñ V b

Źp´1 V
given on the basis by

∆1pm1 ^ ¨ ¨ ¨ ^mpq “

p
ÿ

j“1

p´1qj´1mj bm1 ^m2 ^ ¨ ¨ ¨ ^ m̂j ^ ¨ ¨ ¨ ^mp.
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Let ϕ P V ˚ “ HomFpV,Fq and let δϕ :“ pϕb 1q ˝∆1 be the composite map

p
ľ

V
∆1
Ñ V b p

p´1
ľ

V q
ϕb1
Ñ

p´1
ľ

V.

Then
δϕpm1 ^ ¨ ¨ ¨ ^mpq “ pϕb 1qp

řp
j“1p´1qj´1mj bm1 ^ ¨ ¨ ¨ ^ m̂j ^ ¨ ¨ ¨ ^mpq

“ ϕp
řp
j“1p´1qj´1mjq bm1 ^ ¨ ¨ ¨ ^ m̂j ^ ¨ ¨ ¨ ^mp

“
řp
j“1p´1qj´1ϕpmjq bm1 ^ ¨ ¨ ¨ ^ m̂j ^ ¨ ¨ ¨ ^mp

and extend by linearity, so

δ2
ϕpm1 ^ ¨ ¨ ¨ ^mpq “ δϕp

řp
j“1p´1qj´1ϕpmjq bm1 ^ ¨ ¨ ¨ ^ m̂j ^ ¨ ¨ ¨ ^mpq

“ pϕb 1qp
řp
k“1p´1qk´1mk b

řp
j“1p´1qj´1ϕpmjq bm1 ^ ¨ ¨ ¨ ^ m̂j ^ ¨ ¨ ¨ ^ m̂k ^ ¨ ¨ ¨ ^mpq

“
řp
k“1p´1qk´1ϕpmkq b

řp
j“1p´1qj´1ϕpmjq bm1 ^ ¨ ¨ ¨ ^ m̂j ^ ¨ ¨ ¨ ^ m̂k ^ ¨ ¨ ¨ ^mpq.

Since a basis for
Źp´2 V, a free rank

ˆ

dimFpV q

p´ 2

˙

F-module, is

tvi1 , ¨ ¨ ¨ , vip´2 : 1 ď i1 ă ¨ ¨ ¨ ă 1p´2 ď dimFpV qu

corresponding to all pp´ 2q-subsets of t1, ¨ ¨ ¨ , dimKpV qu, we can write

δ2
ϕpm1 ^ ¨ ¨ ¨ ^mpq “

pdimFpV q
p´2 q
ÿ

l“0

alpvl1 ^ ¨ ¨ ¨ ^ vlp´2q

where the al of the term m1 ^ ¨ ¨ ¨ ^ m̂j ^ ¨ ¨ ¨ ^ m̂k ^ ¨ ¨ ¨ ^mpq is

p´1qk´2p´1qj´1ϕpmkqϕpmjq ` p´1qk´1p´1qj´1ϕpmkqϕpmjq “ 0,

since for each interchange of mi and mj in the wedge to bring mj out in front, or to leave it out in
Eisenbud’s terminology, a factor of ´1 is added, conclude that δ2

ϕ “ 0. �

Lemma 2.25. Let V {F be a finite dimensional vector space with basis v1, ¨ ¨ ¨ , vn. Then the dual
to the exterior product map

V _ ^

p´1
ľ

V _ Ñ

p
ľ

V _

given by
v_ b α ÞÑ v_ ^ α

is the component ∆1 of the diagonal map on the pth graded piece
ŹP V of the exterior algebra

Ź

V
given by

∆1pv1 ^ ¨ ¨ ¨ ^ vpq “

p
ÿ

j“1

p´1qj´1vj b v1 ^ ¨ ¨ ¨ ^ v̂j ^ ¨ ¨ ¨ ^ vp.

Proof. Consider the following diagram

α^ v_
Źp V _

Źp V v1 ^ ¨ ¨ ¨^p

αb v_
Źp´1 V _ ^ V _

Źp´1 V b V ∆1pv1 ^ ¨ ¨ ¨ ^ vpq

P
_

Q

P
_

Q

Since p
Źp V q_ “

Źp V _ for v_1 ^ ¨ ¨ ¨ ^ v_p P
Źp V _, pv_1 ^ ¨ ¨ ¨ ^ v_p q

_ “ v1 ^ ¨ ¨ ¨ ^ vp, which is
abbreviated v. Recall that

∆1pvq “

p
ÿ

j“1

p´1qj´1vj b v1 ^ ¨ ¨ ¨ ^ v̂j ^ ¨ ¨ ¨ ^ vp
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so

p∆1pvqq_ “

p
ÿ

j“1

p´1qj´1pvj b v1 ^ ¨ ¨ ¨ ^ v̂j ^ ¨ ¨ ¨ ^ vpq
_ “

p
ÿ

j“1

p´1qj´1v_j b v
_
1 ^ ¨ ¨ ¨ ^ v̂j ^ ¨ ¨ ¨ ^ v

_
p

and applying the exterior product map v_ b α ÞÑ α^ v_ to ∆1_ therefore yields

p
ÿ

j“1

p´1qj´1v_j ^ v
_
1 ^ ¨ ¨ ¨ ^ v̂j ^ ¨ ¨ ¨ ^ v

_
p “ v_1 ^ ¨ ¨ ¨ ^ v

_
p

so indeed the dual to the exterior product map on duals given by

pαb v_ ÞÑ α^ v_q

is ∆1. �

One pedagogical word. After a nice example at PCMI 2022 by Herny Cohn about how to de-
fine duals, the approach here is to offer both a definition that is clearly a dual object per the
discussion following Theorem 2.23, and then to offer another definition which makes rigorous the
well-definedness of the dual. This is a relationship between the exterior product map and the
contraction-by-the-identity that will both verify that the Koszul complex is indeed a complex and
be a computational tool used later on.

Let F be a field, let V be an n-dimensional F-vector space and let B be a graded SympV q-module.
Suppose id P V _ b V is the identity. Note that V _ b V – EndpV q and id “

řn
i“1 v

_
i b vi. Since

v_i pvjq “ δi,j , the Kronecker delta, if w “
řn
j“1 cjvj P V then

idpwq “ p
řn
i“1 v

_
i b viqpwq

“
řn
i“1 viv

_
i pwq

“
řn
i“1 vip

řn
j“1 cjv

_
i pvjqq

“
řn
i“1 vici.

With this setup, the relationship mentioned above follows.

Lemma 2.26. Let F be a field, let V be an n-dimensional F-vector space and let B “
À

qPZBq

be a graded SympV q-module. The dual to the exterior product map
Źp´1 V _ b V _ Ñ

Źp V _ is a

contraction-by-id map ψid :
Źp V Ñ

Źp´1 V b V.

Proof. Write mq : V b Bq Ñ Bq`1 for the multiplication map. Then define dp,q such that the
following commutes

Źp V bBq
Źp´1 V b V bBq

Źp´1 V bBq`1

ψidbId

dp,q
Idbmq

In particular, ψid “ ∆1 by Claim 2.25 so dp,q “ ∆1 bmq. �

Finally, to check that d2 “ 0 in the Koszul complex observe that since δ2
ϕ “ 0, d2 “ 0 in this

Koszul complex.
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3. Koszul Cohomology Computes Syzygies

This section is devoted to the proof of a theorem that Koszul cohomology computes an upper
bound for the degree of generators for the ideal of the embedded curve. A key definition is the map
σk :

Ź2H0pLq bH0pLk´1q Ñ H0pML b L
kq given by

pv1 ^ v2q b α ÞÑ v1 b v2α´ v2 b v1α.

Theorem 3.1 (Koszul decription of syzygies). [10, 1.3] Suppose L is normally generated so ϕL is

an embedding. Suppose k0 P Z is such that the maps σk :
Ź2H0pLq Ñ H0pMLbL

kq are surjective
for all k ě k0. Then every minimal generator for the canonical ideal of X in Pg´1 has degree at
most k0.

The commutativity of the diagram below is the proof by picture of the theorem.

Ź2H0pLq bH0pLk´1q

Ź2H0pLq b Symk´1H0pLq 0 0

0 ker νk H0pLq bH0pLkq H0pLk`1q 0

0 kerµk H0pLq b SymkH0pLq Symk`1H0pLq 0

H0pLq b Ik Ik`1

0 0

σk

βk

1bρk´1

νk

αk

µk

1bρk ρk`1

To show that the diagram commutes is an involved argument, and relies on another visual
theorem from topology.

Lemma 3.2 (snake lemma). If the following commutes

A B C 0

0 A1 B1 C 1

f

a

g

b c

f 1 g1

the sequence

kerpaq Ñ kerpbq Ñ kerpcq
d
Ñ cokerpaq Ñ cokerpbq Ñ cokerpcq

is exact, where d denotes a connecting homomorphism.

Proof. See page 792 in [4]. �

This one is just for intuition.

Lemma 3.3 (Symmetric-Tensor-Exterior algebra sequence). Let M be a free R-module of rank n,
where R contains 1

2 . Then the following sequence is exact

0 Ñ Sym2M ÑM bM Ñ

2
ľ

M Ñ 0.
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Proof. Let ^ : Mb2 Ñ
Ź2M be the map abb ÞÑ a^b. To make this explicit, suppose a “

řn
i“1 aixi

and b “
ř

j“1 bjxj . Then the exterior algebra relation x b x “ 0 forces px ` yq b py ` xq “ 0 and

pxb yq ` py b xq “ 0, which means

a^ b “ p
řn
i“1 aixiq ^ p

řn
j“1 bjxjq

“ ab b´
řn
i“1 aixi b bixi.

The exterior algebra
Ź

M is a well known quotient of ‘nPNM
bn and the map ^ is surjective.

Let s : Sym2M ÑMb2 be the map m1m2 ÞÑ
1
2

ř

σPS2
mσp1q bmσp2q “

1
2 rm1 bm2 `m2 bm1s .

Since ab´ p´1qdeg adeg bba “ 0 in Sym2pMq,

m1 bm2 `m2 bm1 “ 0
ðñ m1m2 “ p´1qdeg adeg bm2m1

ðñ m1m2 “ 0
or m1 “ m2 with degm1 odd,

and in the latter case m2
1 “ 0 P Sym2M. So kerpsq “ 0 and s is injective. Then impsq Ă kerp^q

since

m1 ^m2 `m2 ^m1 “ m1 ^m2 ´m1 ^m2 “ 0

and finally kerp^q Ă impsq since

pxb yq ` py b xq “ 2spxyq

and

px` yq b py ` xq “ sppx` yqpy ` xqq ´ sppy ` xqpx` yqq.

�

Finally, with a restatement for convenience, the Koszul computation theorem and a proof.

Theorem 3.4. [10, 1.3] Let X be a genus 5 non-hyperelliptic, canonical, smooth, irreducible,
complex algebraic curve and let L be a line bundle on X. Suppose L is normally generated so ϕL is
an embedding. Suppose k0 P Z is such that the maps σk :

Ź2H0pLq Ñ H0pMLbL
kq are surjective

for all k ě k0. Then every minimal generator for the canonical ideal of X in Pg´1 has degree at
most k0.

Proof. Every minimal generator for the canonical ideal of X in Pr has degree at most k0 if and
only if the maps H0pLq b Ik Ñ Ik`1 are surjective for all k ě k0. This statement means that Ik0
generates I as a graded ring. Let ρk : SymkH0pLq Ñ H0pLkq be the surjective maps from the
definition of a normally generated line bundle, Definition 2.7. Then ker ρk “ Ik and the following
commutes.

0 0

kerpµkq kerpνkq

0 H0pLq b Ik H0pLq b SymkpH0pLqq H0pLq bH0pLkq 0

0 Ik`1 Symk`1pH0pLqq H0pLk`1q 0

0 0

αk

1bρk

µk νk

ρk`1
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where the vertical maps are multiplication in their respective graded rings. The lower horiztonal
short exact sequence is the exact sequence induced by the assumption that ρk`1 is surjective and
the likewise the upper short exact sequence is induced by ρk but with the tensor preserving ex-
actness. It is nontrival that the tensor preserves exactness but this follows from right exactness of
the ρ-sequences per [19, Tag 00CW]. By the snake lemma 3.2, H0pLq b Ik Ñ Ik`1 is surjective if
αk : kerµk Ñ ker νk is surjective. There are two Koszul complex with maps that takes values in
kerµk and ker νk respectively and the normal generation of the line bundle relates these complexes
so it is possible to show that αk is surjective with a computation in Koszul cohomology.

Let βk “ d
pSymH0pLqq
2,k´1 :

Ź2H0pLq b Symk´1H0pLq Ñ H0pLq b SymkH0pLq be the maps

pv1 ^ v2q b α ÞÑ v1 b pv2 ¨ αq ´ v2 b pv1 ¨ αq.

Then βk is realized in kerµk as the symmetric relation xb y ´ y b x “ 0 forces

v1 b pv2 ¨ αq ´ v2 b pv1 ¨ αq ÞÑ αb pv1 b v2q ´ αb pv2 b v1q “ 0.

By definition 2.19 βk “ pIdH0pLqbµk´1q ˝ pψid b IdSymk-1 H0pLqq, ψid is dual to the exterior product

which is injective, and µk´1 is surjective so βk is surjective onto kerµk.

Turning to ker νk, recall the pullback of the Euler sequence on Pr from Lemma 2.15. Twist the
sequence by Lk and take global sections so that the following is exact

H0pML b L
kq

f
Ñ H0pLq bH0pLkq

νk
Ñ H0pLk`1q

and ker νk “ f˚H
0pML b Lkq. To make it more clear how Koszul cohomology will compute these

global sections, the pushfoward will be abusively written as just H0pML b Lkq, but keep in mind
that this is H0pML b Lkq Ă H0pLq b H0pLkq. The global sections of the sequence from Lemma
2.17 form the exact sequence

2
ľ

H0pMLq bH
0pLk´1q Ñ

2
ľ

H0pLq bH0pLkq
σk
Ñ H0pML b L

kq

where σk “ d
p‘kPNH

0pLkqq
2,k´1 is a Koszul map with exact the same form at βk but the Koszul complex

is with respect to a different graded algebra over H0pLq. Just as with βk, imσk Ď ker νk but this
time the matter is subtler, since there is apparently no symmetric relation to fall back on. But

νkpσpps1 ^ s2q b fqq “ νkps1 b s2f ´ s2 b s1fq
“ s1s2f ´ s2s1f
“ 0,

since ρk´1 is surjective so s1 and s2 are the image of some symmetric tensors and s1s2 “ s2s1.
Then the following commutes

Ź2H0pLq b Symk´1H0pLq kerµk

Ź2H0pLq bH0pLk´1q ker νk

βk

1bρk´1 αk

σk

and if σk is surjective then so is αk. �

https://stacks.math.columbia.edu/tag/00CV
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4. Noether’s theorem

In this section, Noether’s theorem is proved as a consequence of Theorem 3.1.

Theorem 4.1 (Noether). [10] A canonically embedded nonhyperelliptic curve X Ď Pg´1 with genus
g is projectively normal. That is to say the maps

H0pPg´1,OPg´1pkqq Ñ H0pX,Ωk
Xq

are surjective for all k ě 0.

One useful fact to have on hand for the proof of Noether’s theorem is the example of the wedged
pulled back Euler sequence 2.2. Let MΩ “ ϕ˚ΩΩPrp1q and let QΩ “ M_

Ω be the OX -dual. The
following is exact.

(4.1) 0 Ñ QΩ b Ω´l´1 Ñ

˜

2
ľ

H0pΩq_

¸

bC Ω´l Ñ

˜

2
ľ

QΩ

¸

b Ω´l Ñ 0.

This series of lemmas introduces an exact sequence which is derived under the assumption that
the line bundle being studied is very ample and which explains some vanishing of global sections
in Lemma 4.4.

Lemma 4.2. [10] Let X be a non-hyperelliptic genus 5 canonical, smooth, irreducible, complex
algebraic curve and let ϕ : X Ñ P4 be the map obtained from global sections of the canonical
bundle. Let D “ x1 ` ¨ ¨ ¨ ` xg´2 P DivpXq, where the xi are points in X of general position which
are distinct and linearly independent in Pg´1.
Let ΛD be the pg ´ 3q-plane in Pg´1 spanned by D.
Let L “ Ωp´Dq and suppose that L is very ample. Then

(1) ΛD is the subspace PpWDq Ă PpH0pΩqq where WD “ H0pΩq{H0pΩp´Dqq.
(2) There is a surjection of sheaves on X, uD : WD bC OX Ñ ΩbOD.
(3) ΛD XX “ D as schemes.
(4) h0pΩp´Dqq “ 2.
(5) MΩp´Dq “ Ω_pDq.

(6) Let ΣD “ keruD. Then ΣD – ‘
g´2
i“1OXp´xiq.

Proof.

(1) The line bundle L “ Ωp´Dq is very ample if the induced map ϕL is a closed immersion.
In other words L separates points and tangent vectors and hence there is a hyperplane,
a global section si of H0pX,Lq which passes through each xi and not the others. The
immersion of D then are those global sections of H0pΩq which correspond to hyperplanes
intersecting in exactly x1, ¨ ¨ ¨ , xg´2, where from [25, ] this the set

WD “ ts P H
0pΩq : div s`D “ 0u “ H0pΩq{H0pΩp´Dqq.

(2) Recall from Lemma 2.15 the sequence

0 ÑMΩ Ñ H0pΩq bC OX Ñ Ω Ñ 0.

The map uD corresponds to the map H0pΩq bC OX Ñ Ω given by the pullback by ϕL of

ps0, ¨ ¨ ¨ , sg´2q ÞÑ x0s0 ` ¨ ¨ ¨ ` xg´2sg´2

and therefore is given by a map of the same form. The correspondence is in the sense of
the diagram [10, 2.1] abbreviated below
uD is surjective since the Euler sequence is exact.

(3) D is naturally a subscheme of PpWDq so since by assumption D spans ΛD this step follows
from the dinstinctness and independence of points in general position.
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H0pΩq bC OX Ω

WD ΩbOD
uD

(4) By Riemann Roch since pdegD “ g ´ 3q ă 2g ´ 1,

h0pX,Lq ´ h0pX,KX b L
´1q “ degL` 1´ g

h0pX,Lq ´ p2g ´ 2´ 2g ´ 2q “ g ´ 3` 1´ g
h0pX,Lq ´ 4 “ ´2

so h0pΩp´Dqq “ 2.
(5) Recall that MΩp´Dq is defined by ϕ˚Ωp´DqΩPg´1p1q. To identify this with Ω_pDq “ TXpDq

consider another version of Lemma 2.15

0 ÑMΩp´Dq Ñ H0pΩp´Dqq bC OX Ñ Ωp´Dq Ñ 0

which is exact since L “ Ωp´Dq is very ample by assumption. The original version of the
Euler sequence Definition 2.12 twisted by D is the exact sequence

0 Ñ ΩPg´1pDq Ñ OPg´1pD ´ 1q‘g Ñ OPg´1pDq Ñ 0

so since by the previous part of the lemma h0pΩp´Dqq “ 2, taking the OX -duals the
pullbacks of the Euler sequences must give the same exact sequences.

(6) This is a decomposition of the maps with form ps0, ¨ ¨ ¨ , sg´2q Ñ x0s0 ` ¨ ¨ ¨ ` xg´2sg´2 into
the components si ÞÑ xisi.

�

In the context of the previous lemma there is the following useful sequence of vector bundles.

Lemma 4.3. [10, 2.3] Let X be a non-hyperelliptic genus 5 canonical, smooth, irreducible, complex
algebraic curve and let ϕ : X Ñ P4 be the map obtained from global sections of the canonical bundle.
Write Ω “ ωX , let MΩ “ ϕ˚ΩΩPrp1q and let QΩ “M_

Ω be the OX-dual.

(1) The following is exact

0 ÑMΩp´Dq ÑMΩ Ñ ΣD Ñ 0,

(2) By Lemma 4.2 the following is exact

0 Ñ Ω_pDq ÑMΩ Ñ ‘
g´2
i“1OXp´xiq Ñ 0.

Proof.

(1) Recall the definitions MΩp´Dq “ ϕ˚Ωp´DqΩPg´1p1q and MΩ “ ϕ˚ΩΩPg´1p1q. Let i : D ãÑ X be

the inclusion of the divisor. Since D is effective and very ample by assumption and X is
projective the map is a closed immersion so there is an exact sequence

0 Ñ OXp´Dq Ñ OX Ñ i˚OD Ñ 0

where the maps are respectively the inclusion of regular functions which vanish at ´D and
the quotient map by that inclusion. Taking Euler sequences (vertically, on each term) gives
the following exact sequence

0 Ñ ΩXp´Dq Ñ ΩX Ñ ΩX bOD Ñ 0.

This is just inclusion of holomorphic differentials with fixed zeros followed by the quotient
by the inclusion. The pullbacks need to commute with this sequence which makes

0 ÑMΩp´Dq ÑMΩ Ñ ΣD Ñ 0
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exact, so now the inclusion is happening on the curve itself rather than in the projective
space containing the embeddings.

(2) In this proof let g “ 5 so that D “ x1 ` x2 ` x3 and ΛD is the 2-plane in P4 spanned by
these points. Consider the flag of linear spaces Λ0 Ă Λ1 Ă ΛD corresponding to the divisors
D0 “ x1, D1 “ x1 ` x2 and D itself respectively. Let E0 “ D0 “ x1, let E1 “ x2 and let
E2 “ x3. Then there is filtration of ΣD by vector bundles

ΣD Ą F1 Ą F2 Ą 0

such that Fi{Fi`1 “ OXp´Eiq by [20, Tag 0120].

�

This next result about global sections allows for a proof of a dual version of Noether’s theorem.

Lemma 4.4 ([10] Corollary 2.4).
Let X be a non-hyperelliptic genus 5 canonical, smooth, irreducible, complex algebraic curve and
let ϕ : X Ñ P4 be the map obtained from global sections of the canonical bundle. Write Ω “ ωX ,
let MΩ “ ϕ˚ΩΩPrp1q and let QΩ “M_

Ω be the OX-dual. Let QΩ “M_
Ω . Then for each l ě 1,

(1) H0pQΩ b Ω´lq “ 0

(2) H0p
Ź2QΩ b Ω´lq “ 0.

Proof. Consider QΩ “M_
Ω , where

MΩ “ φ˚LΩPrp1q “ φ˚LΩPr b L.

Taking the dual of the exact sequence Lemma 4.3, and then tensoring by Ω´l gives the sequence

0 Ñ p‘
g´2
i“1OXpxiqq b Ω´l Ñ QΩ b Ω´l Ñ Ωp´Dq b Ω´l Ñ 0.

The induced long exact sequence is

H0pp‘
g´2
i“1OXpxiqq b Ω´lq Ñ H0pQΩ b Ω´lq Ñ H0pΩXp´Dq b Ω´lq Ñ ¨ ¨ ¨

where

H0pp‘
g´2
i“1OXpxiqq b Ω´lq “ H0p‘

g´2
i“1 Ω´lpxiqq “ ‘

g´2
i“1H

0p´lKX ` xiq,

for KX a canonical divisor, and where

H0pΩp´Dq b Ω´lq “ H0pKX ´D ´ lKXq “ H0p´pl ´ 1qKX ´Dq.

Since degp´lKX ` xiq ă 0, H0p´lKX ` xiq “ 0 and likewise since deg´pl ´ 1qKX ´Dq ă 0 for
all l ě 1, both of the H0’s surrounding H0pQΩ b Ω´lq are 0 and H0pQΩ b Ω´lq “ 0. Taking the
induced long exact sequence from (4.1),

H0pQΩ b Ω´l´1q Ñ

2
ľ

H0pΩq_ bH0pΩ´lq Ñ H0p

2
ľ

QΩ b Ω´lq Ñ ¨ ¨ ¨ ,

by the argument above

2
ľ

H0pΩq_ bH0pΩ´lq – H0p

2
ľ

QΩ b Ω´lq

and again by the argument above the right hand side vanishes by degree considerations. �

This next lemma is equivalent to Theorem 3.1 if Lemma 4.4 and Noether’s theorem hold. It also
makes for a convenient proof of Noether’s theorem and is a purely cohomological version of Petri’s
theorem.

https://stacks.math.columbia.edu/tag/0120
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Lemma 4.5. [10, Corollary 1.7] Let X be a non-hyperelliptic genus 5 canonical, smooth, irreducible,
complex algebraic curve and let ϕ : X Ñ P4 be the map obtained from global sections of the
canonical bundle. Write Ω “ ωX , let MΩ “ ϕ˚ΩΩPrp1q and let QΩ “M_

Ω be the OX-dual. Suppose

H0p
Ź2QΩ b Ω´lq “ 0 for all l ě 1 and the map

2
ľ

H0pΩq_ Ñ H0p

2
ľ

QΩq

from the sequence (4.1) is surjective. Then the homogeneous ideal of X in its canonical embedding
is generated by quadrics.

Proof. By Lemma 4.4 H0p
Ź2QΩ b Ω´lq “ 0 and the map

Ź2H0pΩq_ Ñ H0p
Ź2QΩq is injective.

Therefore it is enough to show that dimH0p
Ź2QΩq “ dim

Ź2H0pΩq_ “
`

g
2

˘

to conclude that
the map in the statement is surjective. By Noether’s theorem, Ω is normally generated since it is
projectively normal in its embedding and nonhyperelliptic, so the maps ρk from Theorem 3.1 are
surjective for k ě 0. The punchline of this lemma is a specific version of Theorem 3.1 so the game
is to show the maps σk from 3.1 are surjective for k ě 2. Let l “ k ´ 2 and let ψk be the maps in
the long exact sequence induced by the sequence (4.1)

H0pQΩ b Ω´l´1q Ñ

2
ľ

H0pΩq_ bH0pΩ´lq
ψl`2
Ñ H0p

2
ľ

QΩ b Ω´lq Ñ ¨ ¨ ¨ .

Note that ψk is surjective for k ě 2 by the hypotheses, but in practice the important feature of
these maps is their transpose. Recall the sequence Lemma 2.17 where wedge products of a pullback
of Euler are twisted by Lk´1, and write down the long exact sequence

¨ ¨ ¨ Ñ H0pML b L
kq Ñ H1p

2
ľ

ML b L
k´1q

τk
Ñ

2
ľ

H0pLq bH1pΩk´1q Ñ ¨ ¨ ¨ .

By duality τk is the transpose ψTk , so since ψk is surjective, τk is injective, but τk is injective if and
only if σk is surjective. By Theorem 3.1 the homogeneous ideal of X in its embedding is generated
by quadrics. H0p

Ź2QΩ b Ω´lq “ 0, �

Finally, with the tools used to prove Lemma 4.5 in mind, Noether’s theorem can be proved.

Proof. This is a proof of Theorem 4.1.
Recall that Ω is normally generated if and only if H1pMΩ b Ω´kq Ñ H0pΩq b H1pΩkq, from the
twist of the pulled back Euler sequence Lemma 2.15, are injective by Lemma 4.4. But given Lemma
4.5, those maps are injective if and only if the injective maps H0pΩq_ Ñ H0pQΩq are surjective.
Recall that Ω is very ample by assumption, and the following sequence, a filtration of MΩ, is exact

0 Ñ Ω_pDq ÑMΩ Ñ ‘
g´2
i“1OXp´xiq Ñ 0.

Therefore

h0pQΩq ď h0pΩp´Dqq `
řg´2
i“1 h

0pOXpxiqq
“ 2 `pg ´ 2q
“ h0pΩq.

�

5. Koszul Cohomological Proof of Petri’s Theorem

In this section, the Koszul cohomology with particular assistance of the previous two sections’
main results, will be used to prove Petri’s theorem for the case of a genus 5, non-exceptional curve.
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Let X be a non-hyperelliptic, smooth, irreducible, projective complex curve of genus 5. To prove
Petri’s result that IX{P4 is generated by quadrics, [10] use Lemma 4.5 and the essence of the
argument is to demonstrate that

h0p

2
ľ

QΩq ď

ˆ

5

2

˙

.

The proof of that fact is the main purpose of this section because of Lemma 4.4, restated here for
convenience.

Fact 5.1. H0p
Ź2QΩ b Ω´lq “ 0 for all l ě 1.

Proof. This is part of Lemma 4.4. �

Fact 5.2. The map
Ź2H0pΩq_ Ñ H0p

Ź2QΩq induced from Lemma 4.1 is injective.

Proof. This is the other part of Lemma 4.4. �

Finally for clarity a version of the uniform position theorem of [2] is stated in the language of
[10].

Lemma 5.3. GL An effective divisor E of degree k spans a pk ´ r ´ 1q-plane in Pg´1 if and only
if it moves in a linear system of dimension r.

Now the proof of Petri’s theorem can proceed as in [10].

Theorem 5.4. [10] Let X be a non-hyperelliptic, smooth, irreducible, projective complex curve of
genus 5. Suppose A is a degree 4 line bundle on X with h0pAq “ 2 such that A and ω b A_ are
generated by global sections. The the homogeneous ideal of X in its canonical embedding IX{P4 is
generated by forms of degree 2.

Before the proof, one more sequence must be exact, but the proof of exactness is nontrivial and
the setup is based on the statement of Petri’s theorem, so it will be stated as a result in its own
right here.

Let A PW 1
4 pXq be the line bundle from the statement of Theorem 5.4. Let D “ pdiv fq for some

f P H0pX,Aq. Since A is generated by global sections and all of the spaces in consideration lie over
C which has characteristic 0

D “ x1 ` ¨ ¨ ¨ ` x4,

for some distinct xi.

Corollary 5.5. [10] Let D “ x1 ` ¨ ¨ ¨ ` x4 be as above for some distinct xi. No effective divisor
contained in D can move in a nontrivial linear series.

Proof. Suppose such a divisor existed. The |D| either has a base point or dimension at least 2 both
of which contradict global generation and uniform position per Lemma 5.3. �

In P4 “ ProjpH0pX,ωqq, D spans a 2-plane ΛD and by Lemma 5.3 any proper subset of the xi
are linearly independent.

Corollary 5.6. [10] Let X be a non-hyperelliptic genus 5 canonical, smooth, irreducible, complex
algebraic curve and let ϕ : X Ñ P4 be the map obtained from global sections of the canonical bundle.
Let D “ x1 ` ¨ ¨ ¨ ` x4 for some distinct closed points xi in general position. Write Ω “ ωX , let
MΩ “ ϕ˚ΩΩPrp1q and let QΩ “ M_

Ω be the OX-dual. Let MΩp´Dq “ Ω_pDq. Then the following is
exact

0 ÑMΩp´Dq ÑMΩ Ñ ΣD Ñ 0.

Proof. Since ω b A_ “ Ωp´Dq is generated by global sections and h0pΩp´Dqq “ 2 exactness
follows. �
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Finally, the last new exact sequence needed to prove Petri’s theorem

Lemma 5.7. [10] Let X be a non-hyperelliptic genus 5 canonical, smooth, irreducible, complex
algebraic curve and let ϕ : X Ñ P4 be the map obtained from global sections of the canonical
bundle. Let D “ x1`¨ ¨ ¨`x4 for some distinct closed points xi in general position. Write Ω “ ωX ,
let MΩ “ ϕ˚ΩΩPrp1q and let QΩ “M_

Ω be the OX-dual. The sequence

0 Ñ OXp´xg´2 ´ xg´1q Ñ ΣD Ñ ‘
g´3
i“1OXp´xiq Ñ 0

is exact.

Proof. Let D1 “ x1 ` x2 and let E “ x3 ` x4. Then Ωp´D1q is generated by global sections since
the only possible base points are x3 and x4 but if either were a base point then some pg´ 2q of the
txiu would lie in the pg ´ 4q-plane ΛD1 spanned by D1. Let V “ H0pΩp´D1qq{H0pΩp´Dqq and let
ṽE : H0pΩp´D1qq bC OX Ñ ΩbOE be the natural map defined by evaluating sections of Ωp´D1q
on E. Let vE : V bC OX Ñ Ω b OE be the induced map. As effective divisors D and D1 span
hyperplanes λD and λD1 Ă P4 which in particular are the subspaces

ΛD “ PpWDq, ΛD1 “ PpWD1q Ă PpH0pΩqq.

Then the following commutes.

0 0

V bC OX ΩbOE

0 ΣD WD bC OX ΩbOD 0

0 ΣD1 WD1 bC OX ΩbOD1 0

0 0

vE

uD

If s P H0pΩp´D1qq is some section which does not vanish on D then s cannot vanish at x3 or
x4. So ṽE and therefore vE are surjective. Since dimC V “ 1 implies that ker vE – OXp´Eq the
following is exact

0 Ñ OXp´x3 ´ x4q Ñ ΣD Ñ ΣD1 Ñ 0.

Finally since D1 is composed of a pair of linearly independent points spanning a line ΛD1

ΣD1 “ OXp´x1q ‘OXp´x2q.

�

Recall that the goal is to prove Theorem 5.4.

Proof. By the exactness of Corollary 5.6 the following is exact

0 Ñ
2
ľ

pΣ_Dq Ñ
2
ľ

QΩ Ñ Σ_D b Ωp´Dq Ñ 0.
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The exactness of Lemma 5.7 implies that

0 Ñ
2
ľ

pOXpx1q ‘OXpx2qq Ñ

2
ľ

Σ_D Ñ OXpx1 ` x3 ` x4q ‘OXpx2 ` x3 ` x4q Ñ 0

and

0 Ñ Ωp´D ` x1q ‘ Ωp´D ` x2q Ñ Σ_D b Ωp´Dq Ñ Ωp´D ` x3 ` x4q Ñ 0

are exact. Finally since g “ 5 all of the divisors in two previous exact sequences above are properly
contained in D so each has a unique section and

h0p

2
ľ

Σ_Dq ď

ˆ

2

2

˙

` pg ´ 3q.

Then since h0pΩp´D ` xiqq “ 2 for each i but h0pΩp´D ` x3 ` x4qq “ h0pΩp´D1qq “ 3 it follows
that

h0pΣ_D b Ωp´Dqq ď 2pg ´ 3q ` 3.

By the exactness of

0 Ñ
2
ľ

Σ_D Ñ
2
ľ

QΩ Ñ Σ_D b Ωp´Dq Ñ 0,

conclude that

h0p

2
ľ

QΩq ď

ˆ

2

2

˙

` 3pg ´ 3q ` 3 “

ˆ

5

2

˙

.

�

6. Literature Review and Statement of Thesis-Like Problems

To conclude the document, some motivations for doing this problem are stated. The idea behind
the example which this work explains is to re-derive the Petri equations for a canonical curve.
Eventually the goals will be to write equations for canonical varieties, surfaces in particular, and
for stacks. An example of a problem which this theory might address is to write down the algebra
of modular forms for a congruence subgroup in the function field setting. This section verifies that
Koszul cohomology computations apply to varieties of higher dimension than curves, introduces
canonical surfaces with example of surfaces for which equations are known and demonstrates some
known results about the section rings of stacks. It turns out that Koszul cohomology is related
to log stacky curves by the Kp,1-theorem, which states that the order p relations, or relations
of relations of relations so on p times, among degree p ` 1 generators for the embedded curve,
both canonical and stacky, can be computed with a Koszul cohomology group. As a subject, this
might be called studying Torelli problems or the recovery of suitably nice varieties from abstract
principally polarized abelian varieties such as the Jacobian of a smooth genus g curve.

6.1. Kp,1 and other Syzygy Theory.

In [11] Green makes good on a claim in [10] that the statement and proof of Theorem 3.1 can be
done for any projective variety over an algebraically closed base field with arbitrary characteristic.
A key technique is the relation of exact sequences of the pulled back bundle MΩ with line bundle
quotients corresponding to secant planes to the canonical curve. The embedding need not even
be canonical, as any very ample line bundle has a flag of linear spaces which gives the same sort
of filtration. Then the Kp,1 theorem is a relation between syzygies in the ideal of a Cox ring and
the E1 page of a spectral sequence in a way that gives Green fairly immediate generalizations to
projective varieties. This section makes these claims more precise and includes a conjecture about
surfaces.
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Lemma 6.1. [11, 0.17] Let X be a projective variety of dimension at least 2 with KX ď 0, and let
L is an ample line bundle on X. Then if X XH is a smooth hyperplane section it is connected and
H1pX, qLq “ 0 for all q ě 0.

In this situation Green is able to conclude a ’Lefschetz’ theorem.

Theorem 6.2. [11, 3.b.7] With the hypotheses of Lemma 6.1, Kp,qpX,Lq – Kp,qpX XH,Lq.

Example. Theorem 6.2 holds for K3 surfaces and Fano 3-folds.

Theorem 6.3. [11, 3.c.1] Let m “ dimφLpXq and suppose h0pX,Lq “ r ` 1. Then
$

’

&

’

%

Kp,1pX,Lq “ 0, for p ą r ´m

Kr´m,1pX,Lq “ 0, unless φLpXq is an m-fold of minimal degree

Kr´m´1,1pX,Lq “ 0, unless deg φLpXq ď r ` 2´m or φLpXq lies on an pm` 1q-fold of minimal degree.

The Kp,1 theorem is the Koszul complex generalization of Petri’s equations and computes those
equations with Theorem ??. The proof of Theorem ?? itself involves the promised spectral se-
quences and as is those sequences will eventually be useful for computing Koszul groups of surfaces
they are introduced here. Fix d0 P Z and consider the bigraded complex

A´p,´q “

$

’

&

’

%

Źp V b‘iě0

`

SymipV q bMq,d´p´i

˘

, q ě 0
Źp V bBd´p, q “ ´1

0, q ă ´1

with maps

Ap,q
d
Ñ Ap`1,q, where d :

#

Źp V b Syml´2 V Ñ V b Syml´1 V Ñ Syml V, q ě 0

is the map from Definition 2.19, q “ ´1

and

Ap,q
δ
Ñ Ap,q`1

which is
Ź´p V tensored with p´1qp times the degree pd0´ pq terms of the minimal free resolution

¨ ¨ ¨ Ñ
à

qěq1

SympV qp´qq bM1,q Ñ
à

qąq1

SympV qp´qq bM0,q Ñ B Ñ 0.

Since d2 “ 0, δ2 “ 0 and dδ` δd “ 0 there are two spectral sequences E and E1 abutting the total
complex with Ep,q1 “ 0 for all p, q and

E1p,q1 “

$

’

&

’

%

K´p,d0´ppB, V q, q “ ´1, and any p

M´q,d0pB, V q, q ě 0, p “ 0

0, o{w

in [11, 1.b.9].

6.2. Surfaces.
One extension of this kind of explicit canonical modeling is to ask for models of varieties in

higher dimensions. In the spirit of induction, two dimensional varieties, or surfaces are next. Two
central questions about surfaces are

(1) which varieties are canonical?
(2) given a canonical variety X, is it known how to write down its equations?

First of all a precise definition for a surface is required.

Definition 6.4. [17, 1.1.1] A surface S is a complex, projective surface which is an irreducible and
reduced algberaic variety of dimension 2 over C.
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Recall that a variety Y is canonical if Y – ProjpY,KY q. Then if Y is canonical, the map
CrX0, ¨ ¨ ¨ , Xrs “ RpPr,Op1qq Ñ RpY,KY q is surjective and it follows that the canonical ring of Y
is finitely generated. A crucial part of what are secretly syzygy results in this area of math is the
projective normality of the embedded object: the curves as in the Petri equation example which is
most of these notes, or in this section some kind of surface. This is just by way of reminder that
this discussion of normality has to do both with the bundles on the varieties in question, and the
normality of the embedded object with the maps induced by those bundles per Section 2.

6.2.1. Canonical Models and Canonical Singularities.
Please keep in mind through this section, which defines a canonical surface, that the upshot is that
the canonical model is a projective variety. That fact will become indispensible for the proof of
finite generation of the canonical ring. With a few exercises from Hartshorne there is an abstract
characterization of the canonical models in terms of resolutions (proper birational morphisms with
a smooth variety).

The sort of catch phrase definition of the canonical bundle is the “top exterior power of the sheaf
of differentials” and that statement is precise in the follow sense.

Definition 6.5. [13, 1.31] Let X be a smooth variety over a field K.
(1) the canonical sheaf of X is ωX “

ŹdimX ΩX{K
(2) any divisor D such that OXpDq – ωX is a canonical divisor.

One convenient argument for smoothness of a variety is based on the composition of the variety.

Fact 6.6. Let X be a variety over the field K. If K “ K then nonsingularity of X implies smooth-
ness.

Proof. Thanks to [25] this proof is almost immediate as the so called Jacobian criterion for smooth-
ness immediately forces smoothness. Suppose X is a nonsingular variety of dimension r over K
some algebraically closed field. Then X “ SpecKrx1 ¨ ¨ ¨ , xns{pf1, ¨ ¨ ¨ , frq Ñ SpecK is smooth of
relative dimension n if it is flat of relative dimension n and the corank of the Jacobian is n. But
X Ñ SpecK is smooth if and only if X is a disjoint union of nonsingular K-varieties of dimension
n which X is by assumption. �

The notion of smoothness offers a nice characterization of the canonical class for a variety.

Definition 6.7. [13] Let X be a normal variety over a perfect field K. Let j : Xsm Ñ X be the
inclusion of the locus of smooth points. The unique linear equivalence class KX of Weil Divisors
on X such that KX |Xsm “ KXsm called the canonical class of X.

The inclusion of smooth locus also gives a different expression of the canonical sheaf.

Definition 6.8. [13] Let X be a normal variety over a perfect field K. Let j : Xsm Ñ X be the
inclusion of the locus of smooth points. The pushforward ωX “ j˚ωXsm is the canonical sheaf on
X.

The pushforward definition 6.8 comes with these results.

Fact 6.9.

(1) The canonical sheaf of X is a rank 1 coherent sheaf on X.
(2) If X is proper then the canonical sheaf ωX agrees with the dualizing sheaf ω0

X .

Finally there are enough criteria to define a canonical model.
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Theorem 6.10. [13, 1.32] A normal proper variety Y is a canonical model for X if and only if
there is m0 ą 0 such that m0KY is Cartier and ample and there is a resolution f : X Ñ Y and an
effective f -exceptional divisor E (fpEq has codimension at least 2 as a subvariety of Y ) such that

m0KY „ f˚pm0KY q ` E.

Local singularities may appear on canonical models.

Definition 6.11. [13, 1.33] A normal variety Y has canonical singularities if both

(1) m0KY is Cartier for some m0 ą 0 and
(2) there is a resolution f : X Ñ Y and an effective f -exceptional divisor E such that

m0KY „ f˚pm0KY q ` E.

Here are some remarks which have nontrivial proofs about this defininition.

Fact 6.12.

(1) This definition is independent of the choice of resolution.
(2) Equivalently, Y has canonical singularities if and only if every point y P Y has an etale

neighborhood which is an open subset on some canonical model.

Proof. From [14, 2.12] if f̃ : X Ñ Y is some other resolution than f, then write

KY „Q f̃
˚KX `

ÿ

aiEi,

where the sum runs over f̃ -exceptional divisors Ei. If X is canonical then ai ě 0 for each i and
taking m0 “ 1 and E “

ř

aiEi makes KY equivalent to the resolution by f. The equivalent
formulation in terms of etale maps requires a whole different resolution-free definition of canonical
singularities and since those are things to be avoided for the purposes of this discussion, that proof
is not included. �

A complete list of canonical singularities is known in dimension 2 and a lot is known in dimension
3.

Example. [13, 1.33.3-1.33.6] Some known canonical singularities are

(1) Smooth points are canonical.
(2) The hypersurface singularity px1x2 ` fpx3, ¨ ¨ ¨ , xnq “ 0q is canonical if and only if f is not

indentically 0.
(3) The quotient singularity Ad{ 1

n p1, n´ 1, a3, ¨ ¨ ¨ , adq is canonical for each d ě 3 if pn, aiq “ 1.
Its canonical class is Cartier if and only if n | a3 ` ¨ ¨ ¨ ` ad.

(4) There is a Reid-Tai criterion for canonicity of arbitrary singularities but it is not easy to
write the closed form.

(5) The cone CdpPnq over the Veronese embedding Pn Ñ PpH0pPn,Opdqqq has a canonical
singularity if and only if d ď n` 1. Its canonical class is Cartier if and only if d | n` 1.

(6) General cones are covered in other works of Kollar cited in [13, 1.33.6].

6.2.2. Classification of Surfaces.
The classification of surfaces separates out families of canonical and other surfaces each of which is
thoroughly studied in its own right. To motivate this, the classification of algebraic curves provides
a convenient and historical context. A map from a nonsingular projective curve C of genus g into
projective space using a multiple nKC of the canonical class KC , is an embedding for some n ě 3
if g ą 1. In particular if C is nonhyperelliptic, then n ě 1 works, as in these notes, n ě 2 works for
hyperelliptic curves when g ą 2 and n ě 3 works for curves of genus 2.

Likewise with curves, a certain kind of surface, in particular surfaces of general type, have a
theory of when a multiple of their canonical class gives a birational map between the surface and
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its embedding in projective space. There is a coarse and quasi-projective moduli space of surfaces
of general type with a correspondence between pairs of Chern numbers and surfaces of general type
but the description of the moduli space itself is a difficult problem. Even though in some sense
most surfaces have general type, only components of the moduli space are known, and only finitely
many examples. To discuss the modeling which is more the spirit of these notes it will be enough
for now to define Chern classes and discuss their geography.

One intermediate definition which needs to be stated is that of the first Chern class for a surface
S, denoted c1pSq.

Definition 6.13 (1.3.1). [?] Let X be a smooth projective variety of dimension n and let E be
a vector bundle of rank r on X generated by its global sections. Then c1pEq “ c1p

Źr Eq is the
vanishing locus of a global section of

Źr E.

A fact which makes the Chern class both more intuitive and useful for a smooth projective variety
at least, comes from a very involved discussion of duals, Grassmanians, ect... but is summarized
here.

Fact 6.14.

(1) cpSq “ cpTSq “ 1 ` c1pTSqt ` c2pTSqt
2 P A0pSq ‘ A1pSqt ‘ A2pSqt2, where TS denotes the

tangent bundle on S,

(2) c1pEq “ c1pdetEq for E a vector bundle, where detE “
ŹdimpXqE,

(3) c1pSq “ c1pω
_
S q “ c1pdetTSq “ ´KS for KS the canonical class on S.

Here is a first definition of a surface of general type, stated in the most intuitive terms possible.

Definition 6.15. [23, 20.12] An algebraic surface S is of general type if P2pSq ě 1 and c2
1 ą

0, where P2pSq “ dimCH
0pS,OSp2KSqq is the 2-plurigenus of S and c2

1 is the self intersection

multiplicity defined by c2
1pSq “ KS ¨KS .

Another formulation of general type now with respect to an object embedded in some space is
due to the Kodaira dimension.

Definition 6.16. [23, 20.6.7; 11.1]

(1) A complex variety V is of hyperbolic type if κpV q “ dimV, where κpV q is the Kodaira
dimension.

(2) An algebraic surface of hyperbolic type is called an algebraic surface of general type.

The reason surfaces of general type are so distinguished here is the next theorem stated in the
general form it was first proved and then restated with the particular application to surfaces of
general type.

Theorem 6.17. [17, 3.3.2] Let X be a canonical surface. If m ě 5 then mKX is very ample.

Theorem 6.18. [6] A surface S of general type has an embedding into projective space by 5KS

such that the image of S in its embedding is birationally equivalent to S.

One such embedding is the following example.

Example. [6]
If m ą 4 then a degree m nonsingular surface in P3 is a surface of general type and KX itself gives
an embedding.

The classification of surfaces requires one last definition.

Definition 6.19. [23, 20.2] A surface S is called a minimal model if any bimeromorphic map

f : S̃ Ñ S of a surface S̃ onto S is morphism.

Finally classes of surfaces besides those of general type are given in the next theorem.
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Theorem 6.20. Surfaces S for which no mulitple nKS gives an embedding are divided into five
classes

(1) rational surfaces - per remark [23, 20.17] any rational surface free from exceptional curves
of the first kind is either P2 or a P1-bundle over P1.

(2) K3 surfaces - definition [23, 20.6.3] says S is a K3 surface if qpSq “ 0 and S is analytically
trivial, where qpSq “ dimCH

1pS˚,OS˚q is the irregularity of S, and S˚ is a nonsingular
model of S.

(3) ruled surfaces - definition [23, 20.6.1] says a surface S is a ruled surface of genus g if S is

birationally equivalent to a product of P1 and a nonsingular genus g curve C.
(4) Abelian varieties - in [21, Tag 0BF9], an abelian variety is a group scheme over a field F

which is also a proper, geometrically integral variety over F.
(5) surfaces with a pencil of elliptic curves - per definition [23, 20.6.2] a surface S is an

elliptic surface if there is a surjective morphism f : S Ñ C onto C a nonsingular curve
such that the general fibre of is an elliptic curve.

The rest of this section, following [17] is a more precise study of surfaces of general type which
will include some invariant theory, Riemann-Roch for surfaces, and Enriques-Kodaira classification
for surfaces of general type by those invariants, otherwise known as the “Geography of Chern num-
bers.” After all of that, finally some motivation for this amount of attention these surfaces get is
stated in some examples of interesting surfaces of general type and some theorems which connect
this theory to the rest of the document.

Surfaces have four important invariants, which have not been defined before since their compu-
tation relies on some extra assumptions as in the Riemann-Roch statement after this.

Definition 6.21. [17] Let S be a smooth surfaces.

(1) Geometric genus pgpSq “ h0pOSpKSqq

(2) mth plurigenus Pm “ h0pOSpmKsqq

(3) irregularity q “ h1pOSq “ h0pΩ1
Sq per Hodge theory

(4) Euler characteristic χ “ χpOSq “ 1´ q ` pg.

The Euler characteristic for a smooth surface of general type is computable with the Riemann-
Roch theorem for surfaces stated here.

Theorem 6.22. [17, 1.1.3] Let S be a smooth surface and D P DivpSq. Then

χpOSpDqq “ χpOSq `
DpD ´KSq

2
.

With these tools, some “cartography” for the classification of surfaces becomes possible, which
in particular motivates the claim that “most surfaces are of general type,” and what follows in a
concise summary of work by Enriques and Kodaira in classifying surfaces. The picture summary
for Enriques-Kodaira classification: “Geography of Surfaces of General Type.”

Now that there is some appropriate setting for them here are some examples of surfaces of general
type organized by certain characteristic and nice properties.

Example.

(1) Horikawa surfaces - lie on or near the Noether line
(2) c2 “ 3 - so called “fake projective line”/Mumford surfaces
(3) c2 “ 10 - Catanese surfaces which are simply connected
(4) c2 “ 11 - quotient surfaces called “Godeaux surfaces”
(5) c2 “ 11 - arithmetic genus 0 simply connected surfaces called “Barlow surfaces”
(6) Todorov surfaces - a counterexample to the Torelli theorem

https://stacks.math.columbia.edu/tag/0BF9
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K2
S

χpOSq

K2 “ 1

χ “ 1

9χ
2χ´ 6

surfaces of
general type

Figure 1. [17, Figure 2.1]

Another class of examples come from the following observations.

Example.

(1) if C1, C2 and are genus g1, g2 ě 2 curves then C1 ˆ C2 is a minimal surface of general type
with q “ g1 ` g2, pg “ g1g2, K

2 “ 4pg1 ´ 1qpg2 ´ 1q
(2) complete intersections of pn´ 2q hypersurfaces in Pn are almost always minimal surfaces of

general type

There is definitely immediate work to be done following up on these examples, especially in
light of the following two theorems which connect this theory to the rest of these notes. First is a
theorem of Castelnuovo which describes when a surface is minimal, in the sense of not admitting
E2 “ ´1 curves.

Theorem 6.23. [17, 1.2.4] Let S1 be a smooth surface and E a smooth rational curve on S1 such
that E2 “ ´1. Then there exists a smooth surface S and a morphism φ : S1 Ñ S such that π
contracts E to p some point and pS1, πq is isomorphic to the blow-up of S at p.

Turning the discussion back to the filtrations or resolutions involved in4 which are more fleshed
out in 6.1, there is a resolution theorem for surfaces.

Theorem 6.24. [17, 1.2.3] Let S be a smooth surface and let f : S Ñ Pn be a rational map. Then

there is a finite sequence of blow-ups of S, ε : Sprq Ñ Spr´1q ¨ ¨ ¨ Ñ Sp1q Ñ S and a morphism
g : Sprq Ñ Pn, a (minimal if r is) resolution of the indeterminacy locus of f, such that the following
commutes.

Sprq

S Pn
ε

g

f

6.2.3. Finite Generation of the Canonical Ring and Projective Normality for Surfaces.
The canonical ring of a variety is known to be finitely generated in characteristic 0 but this result is
nontrivial. With the intention of using as little as possible but as much as is necessary to describe
what [8] says about finite generation, there are some big ideas which characterize the proof and
demonstrate the features of a canonical example of surfaces for which Petri equations exist. As
this result is intrinsically related to the structure of the surface, such a discussion narrows down a
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good class of surfaces to follow up on.

A classical result of Zariski is that h0pX,OXpmKXqq is a bounded periodic polynomial f of
degree m ď 2 called the Kodaira dimension of the embedded variety. The Kodaira dimension 0
case is well known. In particular ωS – OS and the function field κpSq “ 0 so S is either K3, an
abelian surface, or an Enriques surface. The canonical morphism is trivial, but the arithmetic of
each of these classes is complicated. Abelian surfaces come up later.

On the other hand the proofs of finite generation in the Kodaira dimensions 1 and 2 cases do
respectively include the so called kitchen sink approach, or using a little bit of everything. In
Kodaira dimension 1 there is some map g from the surface S to the curve C whose general fibre is
an elliptic curve and an effective divisor ∆ with rational coefficients which measures how far S is
from being a product of C and the elliptic curve. Kodaira shows that KS “ g˚pKC ` ∆q and it
follows that

RpS,KSq “ RpC,KC `∆q “
à

ně0

H0pC,OCptmpKC `∆quqq

which is known to be finitely generated. The subtler Kodaira dimension 2 case relies on the
projectivity of the variety which allows an expression of the canonical ring as a coordinate ring
under some embedding.

Theorem 6.25. [8, Base point free] Let X be a smooth projective variety. If KX is nef (KX ¨X ě 0)
and big (Kodaira dimension of KX “ dimkX) then KX is semiample and it follows that RpX,KXq

is finitely generated.

If there is a map f : X Ñ Pr such that D “ f˚H, for H some hyperplane, then say that D is
semiample. In this case RpX,Dq is finitely generated. If D “ f˚H is semiample then it is nef:
D ¨ C ě 0 for C Ă Pr some curve. Therefore the problem of finite generation, with the help of a
theorem of Fujino and Mori which allows the assumption that KX or KX `∆ is big, is all about
finding nef KX .

Theorem 6.26. [9, 37] Let S be a minimal surface of general type. Then for m ě 4, mKS is base
point free and if m ě 5 the embedding morphism induced by the bundle mKS is birational.

Finally, some characetrization of projective normality for surfaces connects the definitions of
canonical varieties, finite generation of the canonical ring and the equations for the embedded
surface.
Let S be a projective surface, so a smooth projective scheme of dimension 2 over C.
Let L be a line bundle on S which is nef and big and such that L “ L`KS is spanned by global
sections and big.
Let H :“ Lbn for n ě 1 and call the associated map ϕnL : S Ñ Pr.

Definition 6.27. [1, 1.4] H is projectively normal if for every ρ ě 0 the maps

H0pPr,Opρqq – SymρH0pS,Hq Ñ H0pS,Hρq

are surjective.

Remarkably when ρ “ 0 the maps are surjective for all n and if ρ “ 1 the maps surject if H is
very ample. With some Koszul cohomology Andreatta and Ballico demonstrate some very clear
extensions of the example in this paper.

Theorem 6.28. [1, 2.4] Let S and L as above, and such that h0pLq ě 4. For each n ě 2 if Lbn

is very ample then it is projectively normal. If h0pLq ě 4 then the ideal of ϕnLpSq is generated by
quadrics.
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Turning to abelian surfaces, there is a complete study of the projective normality of abelian
surfaces embedded by complete linear systems.
Let A be an abelian surface.
Let L be an ample line bundle of type pn1, n2q on A, and denote the induced map
ϕL : AÑ Pn1n2´1.

Theorem 6.29. [7, 1.1 and summary]

(1) If n1 ě 3 then ϕL is a projectively normal embedding.
(2) If n1 “ 2 then ϕL is a projectively normal embedding if and only if no point of kpLq is a

base point of L1, where L “ L12.
(3) If n1 “ 1 then L is a primitive bundle of type p1, n2q such that

(a) If n2 “ 7, 9, 11 or n2 ě 13 then ϕL is projectively normal if and only if L is very ample.
(b) If n2 ě 7 and A is generic (NSpAq – Z) then ϕL is a projectively normal embedding.
(c) If n2 ą 8 and A is not isogenous to a product of elliptic curves then ϕL is a projectively

normal embedding.
(4) If L has type p1, nq then the induced map ϕL : AÑ Pn´1 is a projectively normal embedding

if and only if L is very ample and n ě 7.

6.3. Algebraic Stacks and Embeddings not over Algebraically Closed Fields. On the
other hand, Cox rings makes sense with more general base rings that C which was done for this
document. Algebraic stacks and embeddings over rings which are not algebraically closed fields,
say free modules for example, are two immediate examples of ways these Petri equations or syzygy
theory might also be generalized.

In this section some results of [26] about Cox rings of stacky curves are stated by way of demon-
strating that the kind of tools employed in this paper already have some generalizations to curves
where to paraphrase Green, the intrinsic geometry of the curve is actually considered. Luckily this
also comes with some tricks like Noether’s theorem being opened up beyond the complex embed-
dings Green and Lazarsfeld describe.

The generalization of Noether’s theorem in [26] is done over a general field k but since this kind
of Cox ring computation works for less friendly base rings, the particular things about being a field
which make the following work are of great importance. Though the proof of the theorem which
immediately follows is done over an algebraically closed field, Voight and DZB emphasize that
the surjectivity of the maps which make the embedded curve projectively normal per the classical
statement of Noether, is a statement in linear algebra.

Theorem 6.30. [26, 3.2.1] Let X be a genus g ě 2 curve over a field F and let E,E1 be effective
divisors on X. Then the mulitplication

H0pX,K ` Eq bH0pX,K ` E1q Ñ H0pX, 2K ` E ` E1q

is surjective if and only if one of the following holds

(1) X is not hyperelliptic, g ě 3 and degE “ degE1 “ 0
(2) E  E1 (over F) or not both of E and E1 are hyperelliptic fixed and degE “ degE1 “ 2
(3) degE ě 3 and either degE1 “ 0 or degE1 ě 2.

Of course the punchline of [26] is important here as well, not only because it demonstrates a
respect for the intrinsic geometry of modular curves, or log stacky orbifold curves, but also as a
kind of motivation for all of this work.
The Cox ring of a modular curve has a unique structure since the graded pieces Rd “ H0pXΓ,Ω

dq

of the canonical ring are the cusp forms S2dpΓq and H0pX,Ωp∆qbdq “M2dpΓq. With this idea, the
canonical ring of the log curve pX,∆q for ∆ the divisor of cusps for Γ leads to some interesting
classical examples.
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Example. Let Γ “ PSL2pZq and let Xp1q “ ΓzH˚ with ∆ “ 8. Then RK`∆pXp1qq “ CrE4, E6s

so even though the log curve pXp1q,∆q has genus 0 and hence a trivial canonical ring as a Riemann
surface, the underlying scheme over C, Xp1q “ ProjRK`∆pXp1qq so the log curve must be treated
as a curve with an ample canonical divisor.

Theorem 6.31. [26] Let pX,∆q be a tame log stacky curve over a field k with signature pg; e1, ¨ ¨ ¨ , er, δq.
Let e “ maxt1, e1, ¨ ¨ ¨ , eru. Then RpX,∆q “

À

dě0H
0pX,Ωp∆qbdq is generated as a k-algebra in

degree at most 3e with relations among those generators of degree at most 6e.

Better yet would be to make these computations in the Drinfeld setting, so to consider the upper
half plane in the function field setting, where the algebraically closed base field over which the
”scheme stuff” happens, is infinite dimensional. The air quotes are not intended to be cheeky here
either, but rather to indicate that actually something totally nontrivial happens when considering
the moduli space of Drinfeld modules as an orbifold curve. The natural instinct of the arithmetic
geometer is to use GAGA principles, and at worst stacks, to deal with things like elliptic curves with
level structure by forming their moduli space, and although Drinfeld modules have a corresponding
lattice quotient theory, and even a level structure, there is an obstruction to what maybe has to
be called classical stack theory now, in the Drinfeld setting. Some new version of a stacky curve
needs to be defined to be able to use tech such as [26] to compute the generators and relations for
the canonical ring of a congruence subgroup in the Drinfeld setting.

To this end and by way of connecting this section to the last one about surfaces there is one
more kind of result which is worth including here: the theorems of Aaron Landesman, Peter Ruhm,
and Robin Zhang.

Theorem 6.32. [15, 1.1.1] Let D “
řn
i“0 αiDi P DivPr bZ Q for some αi “

ci
ki
P Qą0 in reduced

form and each Di P DivPr an integral divisor. The section ring RpPr, Dq is generated in degree at
most max0ďiďn ki with relations generated in degree at most 2 max0ďiďn ki.

Theorem 6.33. [15, 1.1.2] Let D “
řn
i“0 αiDi P DivPrbZQ for some αi “

ci
ki
P Q in reduced form.

Let li “ lcm0ďjďn, j‰i kj and let ai “ degDi. Let Pr – Projkrx0, ¨ ¨ ¨ , xrs and fi P krx0, ¨ ¨ ¨ , xrs be
such that Di “ V pfiq. If tf0, ¨ ¨ ¨ , fnu contains a basis for H0pPr,OPrp1qq then RpPr, Dq is generated
in degrees at most ω “

řn
i“0 liai with relations generated in degrees at most

max

ˆ

2ω,
max0ďiďn ai

degD
` ω

˙

.
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