Introduction to Cryptography

PCMI 2022 - Undergraduate Summer School

Yesterday: talked about ideas behind FHE
Homework today: "simple cipher" from last week
secret key: p
public key: $\quad x_{i}=q_{i} p+r_{i}$
incr: $\quad c=r_{x_{0}}\left(m+\sum x_{i}+2 r\right)$
dec: $m \equiv r_{p}(c) \bmod 2$

PLWE: polynomial learning with errors
(variant of RLWE)
K a number field $\quad \begin{array}{r}{[K: \mathbb{Q}]} \\ \operatorname{dim}_{\mathbb{Q}} K\end{array}$

$$
\begin{aligned}
& K=\mathbb{Q}(\gamma)=\left\{a_{0}+a_{1} \gamma+\ldots+a_{n-1} \gamma^{n-1}: a_{i} \in \mathbb{Q}\right\} \\
& \gamma \in K
\end{aligned}
$$

We can actually choose $\gamma \in O_{k}$ elements with min poly $\in \mathbb{Z}[x]$

$$
\begin{aligned}
& K=\mathbb{Q}(\gamma)=\left\{a_{0}+a_{1} \gamma+\ldots+a_{n-1} \gamma^{n-1}: a_{i} \in \mathbb{Q}\right\} \\
& \gamma \in K
\end{aligned}
$$

We can actually choose $\gamma \in O_{K}$ elements with $\min p o l y \in \mathbb{Z}[x]$

If min poly of γ has degree n

$$
\begin{aligned}
& \gamma^{n}+b_{n-1} \gamma^{n-1}+\ldots+b_{0}=0 \\
& x^{n}+b_{n-1} x^{n-1}+\ldots+b_{1} x+b_{0}
\end{aligned}
$$

Example: $K=\mathbb{Q}\left(\frac{\sqrt{2}}{2}\right)=\left\{a_{0}+a_{1} \frac{\sqrt{2}}{2}: a_{0}, a_{1} \in \mathbb{Q}\right\}$

$$
x=\frac{\sqrt{2}}{2} \quad x^{2}=\frac{1}{2} \quad x^{2}-\frac{1}{2}=0 \quad 2 x^{2}-1=0
$$

So $\frac{\sqrt{2}}{2} £ O_{k}$ but $K=\mathbb{Q}(\sqrt{2})$ and $\sqrt{2} \in O_{k}$

Sometimes when we are lucky:

$$
O_{k}=\mathbb{Z}[\gamma]=\left\{a_{0}+a_{1} \gamma+a_{2} \gamma^{2}+\ldots+a_{n-1} \gamma^{n-1}: a_{i} \in \mathbb{Z}\right\}
$$

This is pare, and when it is so, we say that O_{k} is monogenic

For now assume ${\vartheta_{k}}$ is monogenic.
LWE pairs ($\vec{a}_{i}, b_{i}=\vec{a}_{i} \cdot \vec{s}+e_{i}$)

Drawing from the PLWE error distribution:
Fix $\sigma>0 \quad$ Lej

- draw n integers independently at random from a discrete Gaussian with variance σ^{2}
- Form the "small" element

$$
e=e_{0}+e_{1} \gamma+\ldots+e_{n-1} \gamma^{n-1} \in O_{K}
$$

Fix a prime $q \in \mathbb{Z}$, consider the quotient Ring

$$
O_{k} / q O_{k}=: R_{q}
$$

we know that

$$
O_{k} q_{q} \theta_{k}=\left\{a_{0}+a_{1} \bar{\gamma}+a_{2} \bar{\gamma}^{2}+\ldots+a_{n-1} \bar{\gamma}^{n-1}: a_{i} \in \mathbb{Z} / q \mathbb{z}\right\}
$$

where $\bar{\gamma}$ is a Representative of $\gamma+g\left(O_{k}\right.$

To get a small element of R_{q}

- draw a small $e \in \cup_{k}$
. Reduce the coefficients in the poly nomial modulo of

A PLWE cipher: K, q, σ all public

- Key generation: "Q(γ)
- secret key is a Random small $s \in R_{q}$
- public key: choose $a \in R_{q}$ uniformly at random small $e \in R_{q}$
publish $(a, b) \quad b=a s+e$
- encryption:
- draw 3 small random elements of R_{q}, name them $r_{1} e_{1}, e_{2}$
- to send the n bits $m_{0}, m_{1}, \ldots, m_{n-1} \quad\left(m_{i} \in\{0,1\}\right)$ form

$$
m=m_{0}+m_{1} \bar{\gamma}+\ldots+m_{n-1} \bar{\gamma}^{n-1} \in R_{q}
$$

- send the pair (U, V) where

$$
\begin{aligned}
& u=a r+e_{1} \\
& v=b r+e_{2}+\left\lfloor\frac{9}{2}\right\rfloor m
\end{aligned}
$$

- decryption: compute $V-U S=z_{0}+6.6 \times \cdots$ Round the coefficients of the polynomial to O OR $\left\lfloor\frac{9}{2}\right\rfloor$

The security is based on the hardness of the decision RLWE problem
tell apart pairs (a, b) with $b=a s+e$ from random pairs (a, b)

Note that here the secret is small not uniformly distributed. Turns ont that it doesn't matter,

This Relies on search reducing to decision
—

That's all for now!

