Introduction to Cryptography
Today's homework should be ready soon! (just got sent to printing)

Recall an LWE pair looks like (\vec{a}_{i}, b_{i})
. $\vec{a}_{i} \in \mathbb{E}_{q}^{n} \quad q$ prime integer, odd

$$
b_{i}=\vec{a}_{i} \cdot \vec{s}+e_{i} \in \mathbb{F}_{q}
$$

r "small error"

Regev's LWE cipher, fix n, prime q, σ^{2} variance
key generation
, choose Random $\vec{s} \in \mathbb{F}_{q}^{n}$, this is the private key

- choose random $\vec{a}_{i} \in \mathbb{F}_{q}{ }^{n}$, errors $e_{i} \in \mathbb{F}_{q}$ uniformly chosen from a Gaussian with variance σ^{2}
- public key are the $L W E$ pairs

$$
\left(\vec{a}_{i}, b_{i}=\vec{a}_{i} \cdot \vec{s}+e_{i}\right) \quad i=1, \ldots, m
$$

Reger in 2005 suggested for fixed n

- $n^{2} \leq q \leq 2 n^{2}$
- $m=(1+\varepsilon)(n+1) \log q$ for any $\varepsilon>0$

$$
\sigma=\frac{q}{\sqrt{2 \pi n}(\log n)^{2}}
$$

Regen LWE encryption

- Choose a Random subset $T \subseteq\{1, \ldots, m\}$
- Compute $\vec{a}=\sum_{i \in T} \vec{a}_{i}$
- To send $x=0, \quad b=\sum_{i \in T} b_{i}$

To send $x=1, \quad b=\sum_{i \in T} b_{i}+\left\lfloor\frac{9}{2}\right\rfloor^{k^{\text {biggest number }}}$

- Send (\vec{a}, b)

Reges LWE decryption
Compute $\vec{a} \cdot \vec{s}-b=\left\{\begin{array}{l}\sum_{i \in T} e_{i} \text { if } x=0 \\ \sum_{i \in T} e_{i}+\left\lfloor\frac{q}{2}\right\rfloor \text { if } x=1\end{array}\right.$
with high probability, $x=0$ if $\vec{a} \cdot \vec{s}-b$ is "small"
 $x=1$ if $\vec{a} \cdot \vec{s}-b$ is "big"

Next week

- Monday: Fully homomorphic encryption (FHE)
-Tuesday / Thursday: Ring LWE
- Friday: Cryptography in the real world

Algebraic number theory background for RLWE

- A number field K is a field containing \mathbb{Q} and such that $\operatorname{dim}_{\mathbb{Q}} K=n<\infty$
K satisfies properties of a vector space $/ \mathbb{Q}$
- The number n is called the degree of k
- $\alpha \in K$
consider $\left\{1, \alpha, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{n}\right\}$
This is $n+1$ elements in a vector space of $\operatorname{dim} n$, so there must be a relation

$$
a_{n} \alpha^{n}+a_{n-1} \alpha^{n-1}+\ldots+a_{1} \alpha+a_{0}=0
$$

for $a_{i} \in \mathbb{Q}$

$$
f(x)=a_{n} x^{n}+\ldots+a_{0} \text { then } f(\alpha)=0
$$

- From the fact that α satisfies a polynomial of degree $\leq n$ with coeffs in \mathbb{Q}, we can get that there is a unique monic irreducible polynomial $p \in \mathbb{Q}[x]$

$$
\text { (such that) } \begin{aligned}
& p(\alpha)=0 \\
& \text { only trivial factorization over } \mathbb{Q}
\end{aligned}
$$

$a_{n}=1$, leading coefficient
This unique poly is the minimal polynomial of α.

- Inside of K, take the set of elements α such that the minimal polynomial of α has coefficients in Z. This set is a ring, we call it the ring of integers of K

Ex: $\frac{1+\sqrt{ \pm-5}}{2}$ is an "integer"
$\frac{1}{2} \in K \quad$ Root of $2 x-1$ OR $x-\frac{1}{2}$
So $Z \in \cup_{K}$
\leftarrow Ring of integers "mathcal O sub K"

Example: $K=\mathbb{Q}(i)=\left\{a+b i, a, b \in \mathbb{Z}, i^{2}=-1\right\}$

$$
O_{K}=\mathbb{Z}[i]=\left\{a+b i, \quad a, b \in \mathbb{Z}, i^{2}=-1\right\}
$$

Primitive element theorem (adapted)
If K is a number field of degree n, then there is $\gamma \in K$ such that

$$
K=\mathbb{Q}(\gamma)=\left\{a_{0}+a_{1} \gamma+a_{2} \gamma^{2}+\ldots+a_{n-1} \gamma^{n-1}: a_{i} \in \mathbb{Q}\right\}
$$

We call γ a primitive element, and the minimal polynomial of γ has degree n in this case.

Suppose that $K=\mathbb{Q}(\gamma)$ is a number field of degree n, then there are n injective ring homomorphisms

$$
\left.\begin{array}{rl}
K & \longmapsto \mathbb{C} \\
\gamma & \longmapsto \gamma_{1} \\
\gamma & \longmapsto \gamma_{2} \\
& \vdots \gamma_{n}
\end{array}\right\} \begin{aligned}
& \gamma_{1}, \ldots, \gamma_{n} \text { are the } \\
& n \text { Roots of the } \\
& \text { minimal polynomial } \\
& \text { of } \gamma
\end{aligned}
$$

Example $K=\mathbb{Q}(\alpha)$ with $\alpha^{2}-2=0$

$$
\begin{aligned}
& K \hookrightarrow \mathbb{R} \subseteq \mathbb{C} \\
& \alpha \longmapsto \sqrt{2} \\
& \alpha \longmapsto-\sqrt{2}
\end{aligned}
$$

—

That's all for now!

