Introduction to Cryptography
 99 problems and LWE is one

PCMI 2022 - Undergraduate Summer School

We say that Problem A reduces to Problem B if, given a solution to Problem B, we can Solve Problem A.

Search LWE (Learning With ERrors) Problem Given a prime q and a positive
hold on
Definition: LWE pairs
Given a prime of and a positive integer n form pairs $\left(\vec{a}_{i}, b_{i}\right)$ with $\vec{a}_{i} \in \mathbb{F}_{q}^{n}, b_{i} \in \mathbb{F}_{q}$
in the following way

- the vector \vec{a}_{i} is chosen uniformly at Random from \mathbb{F}_{q}^{n}
- $b_{i}=\vec{a}_{i} \cdot \vec{s}+e_{i}$ for \vec{s} a fixed element of \mathbb{F}_{q}^{n} and e_{i} a "small" Random element of \mathbb{F}_{q}.
Pairs like this \uparrow are $L W E_{q, \vec{s}, x}$ pairs

What is X, or what is "small":
We usually use X which is a discrete Gaussian/normal distribution constrained by $-\frac{9}{2}<x<\frac{9}{2}$

LWE pairs: secret \vec{s}

$$
\left(\overrightarrow{a_{i}}, \quad b_{i}=\overrightarrow{a_{i}} \cdot \vec{s}+e_{i}\right)
$$

Search LWE Problem
Given a certain number of LWE pairs $\left(\vec{a}_{i}, b_{i}\right)$, find \vec{s}.

Decision LWE problem
Given some number of pairs $\left(\overrightarrow{a_{i}}, b_{i}\right)$ determine if they are LWE or if the $b_{i} s$ were chosen at Random (separately from the $\vec{a}_{i} s$)

$$
4 \quad 1 \quad 2
$$

$$
\begin{aligned}
& \operatorname{PR}(X=0)=\frac{4}{7} \\
& \operatorname{PR}(X=1)=\frac{1}{7} \\
& \operatorname{PR}(X=2)=\frac{2}{7}
\end{aligned}
$$

Theorem:
(1) The decision LWE problem reduces (in polynomial time) to the search LWE problem.
(2) If q is polynomial in n, the search LWE problem reduces to the decision LWE problem.
(1) Given pairs $\left(\overrightarrow{a_{i}}, b_{i}\right)$
put them in the search LWE solver to get \vec{s}
Then check if $\quad \vec{a}_{i} \cdot \vec{s}-b_{i}$ is distributed like a Gaussian
(2) Given LWE pairs $\left(\vec{a}_{i}, b_{i}\right)$

We can ${ }^{\text {check }}$ guess the first coordinate of \vec{s}
in the following way:
Suppose we guess it's $g \in \mathbb{F}_{9}$
For each i, choose $r_{i} \in \mathbb{F}_{q}$ at random and form the pair

$$
(\underbrace{\overrightarrow{a_{i}}+\left(r_{i}, 0,0 \ldots 0\right)}_{\text {new } \vec{a}_{i}^{\prime}}, b_{i}^{\prime}+g r_{i})
$$

Feed the new pairs in the decision LWE solver If the pairs are LWE then the guess is correct. If they are not, guess again.
@home, check why.

In 2005, Reger gave a quantum reduction of the "GapSUP" to the search LWE problem.

Later on, Peikent gave a Classical Reduction of the GapSUP problem for large 9 $\left(q \geqslant 2^{n / 2}\right)$ to the search LWE problem.

In 2008, Regex showed that if q is a product of small primes + erRor is Gaussian, then GapSUP reduces to search
LW.

Definition Short integer solution $S I S_{\beta}$
Fix $\beta>0$, of prime. Given an $n \times m$ matrix
A with entries in \mathbb{F}_{q} find $\vec{z} \neq 0, \vec{z} \in \mathbb{Z}^{m}$
such that

$$
\begin{aligned}
& \|\vec{z}\| \leq \beta \\
& A \vec{z} \equiv 0 \bmod q
\end{aligned}
$$

decision LWE Reduces to SIS.
—

That's all for now!

