Introduction to Cryptography

 We finish DLP/ ElgamalPCMI 2022 - Undergraduate Summer School
(1) Solution to DLP: Baby steps, giant steps

$$
G=\langle g\rangle \quad h=g^{x}<\text { find } x
$$

Adversary E
. choose N such that $\# G \leqslant N^{2}$ (but close to $\sqrt{\# G}$)
If $x<\# G$ then $x=N x_{1}^{\text {quotient }}$

$$
0 \leqslant x_{0}, x_{1}<N .
$$

Baby steps: multiplication by 9
Giant steps: multiplication by g^{N}
(1) E compute + store $g, g^{2}, g^{3} \ldots g^{N-1}$ $g^{x_{0}}$ is among these
(1) E compute + store $1, g, g^{2}, g^{3} \ldots g^{N-1}$ $g^{x_{0}}$ is among these
(2) E computes $h \cdot g^{-N}, h g^{-2 N}, \ldots$ until E gets a match with the list above

This will happen in x_{1} steps.
(3) $x=x_{0}+N x_{1}$
$x_{0}=$ index of the match
$x_{1}=$ how many giant steps .

Number of operations to carry out attack

- $\approx N$ group mult, $N \approx \sqrt{\# G}$
- computing g^{N} is polynomial using fast exponentiation (or one more mult.) inversion is also fast.
$\approx \frac{N}{2}$, at worst N group mut

So overall this algorithm takes about (\sim)

$$
\sqrt{\# G} \text { steps }
$$

This is exponential in $k=\log _{2} \# G$ (size \#G)

$$
\# G=2^{k} \text { so } \sqrt{\# G}=2^{k / 2}
$$

This is an exponential time attack, so DLP is hard in general.

Security levels in crypto
Measured in bits:
" n bits of security" means takes 2^{n} steps to break / solve at least.

- 128 bits internet today
. 256 bits top secret

For "generic" G, or G s.t, we don't know how to use extra info, to get 128 bits of security, we need $\# G=2^{256}$

Such a G is an elliptic curve / \mathbb{F}_{p} then $\# G=\# E\left(\mathbb{F}_{p}\right) \sim p$

$$
E y^{2}=x^{3}+A x+B \quad, A_{1} B \in \mathbb{F}_{P}
$$

Next attack: index calculus is only for $G=(\mathbb{Z} / p \mathbb{Z})^{x}$ old: discrete log
Adversary E chooses a bound $B \approx 2^{\sqrt{\log p \log \log p}}<2^{\log _{g} p}$ and computes + stores the primes less than B

$$
\left\{l_{1}, l_{2}, . ., l_{r}\right\}
$$

We call these primes the factor base.
(1) E to compute $\log _{g} l_{j}$ for each l_{j} in the factor base.

To do this, E chooses random integers i, computes

$$
g^{i} \equiv g_{i} \bmod p
$$

${ }^{\uparrow}$ least Residue modulo p
and then checks if $g_{i} \in \mathbb{Z}$ is divisible only by primes in the factor base.
If so, E saves $g_{i}=\pi l_{j} e_{j}(i)$, if not keep going,

E keeps going until they have $\approx r$ (\# of primes in the factor base) equations

$$
g^{i} \equiv g_{i}=\pi l_{j}^{e_{j}(i)}
$$

Each of these equations \uparrow give an equation

$$
i \equiv \sum_{j=1}^{r} e_{j}(i) \underbrace{\log _{g} l_{j}}_{r_{\text {unknowns }}} \bmod p-1
$$

Now E solves their r equations in r unknowns,
(2) E takes Random values u and computes

$$
h \cdot g^{-u} \equiv h_{u} \quad \bmod p
$$

and checks if $h_{u} \in \mathbb{Z}$ is divisible only by primes in the factor base.
As soon as one such u is found, E is done.

$$
h_{u}=\pi l_{j}^{e_{j}(u)}
$$

Then we have

$$
\log _{g} h-u \equiv \sum_{j=1}^{r} e_{j}(u) \log _{g} l_{j} \quad \text { known from step } 1
$$

(Remember that

$$
\left.h \cdot g^{-u} \equiv h_{u} \quad \bmod p \quad \text { and } \quad h_{u}=\Pi l_{j}^{e_{j}(u)}\right)
$$

This attack takes $\sim 2^{(\log p)^{1 / 3}(\log \log p)^{2 / 3}}$ steps
which is subexponential in $\log p$ (size of p)

Accordingly, for 128 bits of security need $p \approx 2^{1024}, 2^{2048}, 2^{3072}$
—

That's all for now!

