Introduction to Cryptography We finish DLP/Elgamal

PCMI 2022 - Undergraduate Summer School

(i) Solution to DLP: Baby steps, giant steps

$$G = \langle g \rangle$$
 $h = g^{\chi}$ find χ

Adversary E
. choose N such that
$$\#G \leq N^2$$

(but close to $\sqrt{\#G}$)
. quotient
. pemainder
If $\chi < \#G$ then $\chi = N\chi_1 + \chi_0$
 $0 \leq \chi_0, \chi_1 < N$.

$$(I) E compute + store 1, g, g^2, g^3 \dots g^{N-1}$$

$$g^{\infty} is among these$$

Number of operations to capey out attack $\sim N$ group mult, $N \approx V \# G^{-1}$

computing g^N is polynomial using fast exponentiation (or one more mult.) inversion is also fast.
 ~ ~ N/2, at worst N group mult

So overall this algorithm takes about
$$(\sim)$$

 $\sqrt{\#G_1}$ steps
This is exponential in $k = \log_2 \#G$ (size $\#G$)

$$#G=2^{k}$$
 so $\sqrt{#G}=2^{k/2}$

This is an exponential time attack, so DLP is hard in general.

· 128 bits internet today

· 256 bits top secret

For "generic" G, or G s.t. we don't know how
to use extra info, to get 128 bits of
security, we need
$$\#G \simeq 2^{256}$$

Such a G is an elliptic curve $/F_p$
then $\#G = \#E(F_p) \gg p$
 $E y^2 = x^3 + Ax + B$, $A_iB \in F_p$

Next attack: index calculus is only for
$$G = (\mathbb{Z}/p\mathbb{Z})^{\times}$$

old: discrete log
Advensory E chooses a bound $B \approx 2^{\sqrt{\log p \log \log p}} < 2^{\log p}$
and computes + stores the primes less than B
 $\{L_{i}, L_{2}, ..., lr\}$

We call these primes the <u>factor</u> base.

() E to compute logglj for each lj in the
factor base.
To do this, E chooses random integers i, computes
$$g^i \equiv g_i$$
 modp
least pesidue modulo p
and then checks if $g_i \in \mathbb{Z}$ is divisible only
by permes in the factor base,
If so, E saves $g_i = TT l_i^{e_j(i)}$, if not keep
going.

E takes pandom values u and computes $h \cdot q^{-u} \equiv h_u \mod p$ and checks if hu EZE is divisible only by primes in the factor base. As soon as one such u is found, E is done. $h_u = \Pi L_i^{e_j(u)}$

Then we have
$$r$$
 is the set of r is the set of r is the set of r is the set of r is the set of r is the set of r is the set of r is the set of r is the set of r is the set of r is the set of r is the set of r is is the set of

(Remember that

 $h \cdot g^{-u} \equiv h_u \mod p$ and $h_u = \Pi L_j^{e_j(u)}$

Accordingly, for 128 bits of security
need
$$p \approx 2^{1024}$$
, Z^{2045} , Z^{3072}

That's all for now!