Introduction to Cryptography

PCMI 2022 - Undergraduate Summer School

Recall
We write $f<c g$ if $\left|\frac{f}{g}\right|$ is bounded as $k \rightarrow \infty$

- f grows polynomially if $\exists a, b>0$ with

$$
k^{a}<c+<c k^{b}
$$

.f grows exponentially if $\exists a, b>0$ with

$$
2^{a k} \ll f \ll 2^{b k}
$$

If grows subexponentially if $\forall a, b>0$

$$
k^{a} \ll f<c 2^{b k}
$$

Example: $f(k)=2^{\sqrt{k}}$

Definition
An algorithm is fast if the number of steps, as a function of the size of the input, grows polynomially.
A problem is easy if the fastest known alg to solve it is fast.

Similarly
An alg is slow if \# of steps grows exponentially
Problem is hard if the best known alg to solve it is slow.

What if $\#$ of steps grows subexponentially? still (kind of) hand.

Recall the DLP
Given $G=\langle g\rangle, \quad h \in G$, find x with $0 \leq x<\# G$ such that

$$
h=g^{x}
$$

(think: $x=\log _{g} h$)
Depending on the specific group G, this problem can be hard.

Today: Assume we do have a cyclic group G such that

- multiplication and inversion in G is fast

$$
(g, h) \mapsto g h \quad g \mapsto g^{-1}
$$

- but the DLP is hard

Then: $g_{1} x \mapsto h=g^{x}$ fast but $g, h \mapsto x=\log _{g} h$ slow
own set up

$$
A \longrightarrow B
$$

(1) B has to generate keys to receive messages
(2) A can encrypt a message
(3) B can decrypt the message

Elgamal key generation
B chooses G with known generator g

1. B generates a random secret number x (this is the secret key)
2. B computes $h=g^{x}$ the public key is (G, g, h)

Elgamal encryption
Suppose that A wants to send a message $m \in G$ to B.

1. A generates a secret random number y.
2. A computes 2 ciphertexts

$$
c_{1}=g^{y} \quad c_{2}=m \cdot h^{y} \quad\left(g^{y}\right)^{x}=h^{y}
$$

3. y is thrown out, $\left(c_{1}, c_{2}\right)$ made public

Elgamal decryption
When B receives C_{1} and C_{2} B computes

$$
\begin{aligned}
& c_{1}^{-x} \cdot c_{2}=m \\
& c_{1}^{-x}=\left(c_{1}^{x}\right)^{-1}
\end{aligned}
$$

$$
\begin{gathered}
c_{1}=g^{y}, c_{2}=m \cdot h^{y} \\
h=g^{x}
\end{gathered}
$$

Attacking Elgamal
Certainly, solving the DLP is enough to break the encryption

- Actually "less" is necessary: It suffices to Solve the Diffie-Hellman problem Given $G=\langle g\rangle, \quad g, g^{x}, g^{y}$ compute $g^{x y}$

Because we don't have a better way to solve DHP, we will try to solve the DLP.

To compute the "speed" of our solution, need -o know the size of the input.

Input: group G
in the number

Size of the input

$$
\begin{aligned}
& k=\text { size of } \# G \\
& k \approx \log (\# G)
\end{aligned}
$$

$$
\# G
$$

Baby steps, giant steps due to Shanks Best for generic group
—

That's all for now!

