
Introduction to
Cryptography

PCMI 2022 - Undergraduate Summer School

Recall

we write f- <cg
if /§ / is bounded

as k→x

• f- grows polynomial /y if Taib >0 with

ka << f- <ckb

if grows exponentially if ta ,boo with

Zak << f << zbk

< f- grows subexponentialty if Taib >o

ka a f- <a zbk

Example : -51k)=zÑ

Definition

An algorithm is fast if the number of steps,
as a function ofThe size of the input, grows
P-dyneia.ly .

A problem is easy
if the fastest known alg

to solve it is fast .

Similarly
An alg is Stow if

of steps grows

exponentially-
Problem is hard if the best known alg to

solve it is TWI .

What if # of steps grows subexponentially?
still (kind of) hard .

Recall the DLP

Given 6=59) , hᵗG , find × with

◦ ≤ ✗ a # G such that

h=g×

(think : ✗=/oggh)

Depending on the specific group G , this problem
coin be hard .

Today: Assume we do have a cyclic group G
such that

• multiplication and inversion in G is fast

(g.high gag
-1

◦ but the DLP is hard

Then : g.✗ → h=g× fast but gih ✗ =/ oggh
slow

Our set up

A → B

① B has to generate keys to Receive messages

② A can encrypt a message

③ B can decrypt the message

Elgamal key generation--
B chooses G with known generator g

1 .

B generates a Random secret number ×

(this is the secret keys

2
.

B computes h=g×
the public key is (Gg , b)

Elgamal encryption-
-

suppose that A wants to send a message MEG
to B.

1 .
A generates a secret Random number y .

2
.

A computes 2 ciphertexts

(g
')×=hY

C
,
= gY Cz = M . HY

3. y is thrown out , CC , , Cz) made public

Egam#rypñm_
When B Receives C

, and Czh-
9
? q = m

,

" 9? " = m.by

B computes

%
,

-
✗
= @it

'

Attacking Elgamal
• Certainly , Solving the DLP is enough to

break the encryption

• Actually
" less

"

is necessary :
It suffices to

solve the Diffie-Hellman problem

Given G-_ (g) , g , g? gy

compute g×y

Because we don't have a better way to solve

DHP
,
we will try to solve the DLP

.

To compute the
"speed

" of our solution, need

-0 know the size of the input.

Input : group G

,
number of digits

/ bits

site of the input k = size of #g
in the

number

#G

k ≈ log#G)

Baby steps , giant steps due to Shanks

Best for generic group

That’s all for now!

