Introduction to Cryptography

Computational complexity

PCMI 2022 - Undergraduate Summer School

We will be talking about algorithms

$$f$$

specific "pecipe" to do something
"exponentiation" is not an algorithm
compute g^3 : g^2
 $g^2 \cdot g^2$

vs fast modular exponentiation

We will talk about "schoolbook multiplication" 1 steps: single digit TH M + OR X $\cdot 113$ (|||)*375 1250 25000 25 kapatsuba Toom-Cook fastest alg due in part Harvey The exact number of steps when multiplying 2 3-digit numbers depends on the digits when multiplying the because of the carries But most of the operations are multiplications L'single-digit mult.

5-digit numbers Number of steps to multiply 2 as few as 41 as many as 74 233 k-digit numbers Number of steps to multiply 2 as few as $2k^2 - 2k + |$ $3k^2 - 1$ as many as

 $2k^2 - 2k + 1 = k^2 + k(k - 1) + (k - 1)(k - 2)$ 2 2

 $3k^2 - 1 = 2k^2 - 2k + 1 + k(k - 1) + k + 2(k - 1)$

Here a while, we see that the "Right" input
to a function counting the number of steps
is the size (the number of digits) of
the numbers being multiplied.
$$k = \lfloor \log_{10} n \rfloor + 1$$

Gremula to compute the size k of the number n
of bits = $\lfloor \log_2 n \rfloor + 1$

f

By abuse of the word function, let f(K) = #steps to multiply 2 K-digit numbers

for us
$$k^2 \leq f(k) \leq 3k^2$$

, natural numbers 2/20 Definition 1 let f,q: IN -> IN r positive real f << g is there are constants Then a, b such that if kza then when the input $f(k) \leq bq(k)$ is large enough Fisless than a constant times q. $f \in O(q)$ or f = O(q)Also

Definition 2
Let
$$f,g: (N \rightarrow N)$$

We say $f \gg 2g$
if $g << f$
equivalently if there are real constants
 a,b with
 $f(k) \ge bg(k)$ when $k \ge a$
flso $f \in SL(g)$ or $f = SL(g)$

D

Definition 3

We say $f \sim g$ if f < cg and g < < fread "fis on the order of g"

Real notation
$$f = \Theta(g)$$
 or $f \in \Theta(g)$

Proposition

If $\lim_{k \to \infty} \frac{f(k)}{g(k)}$ exists and is finite then $f \ge g$,

3 main speeds at which f can grow () slow growth: We say that f grows polynomially if there are positive real constants a, b with ka << f(k) << kb

(Silverman said "fis quadratic means $f \sim k^2$ ")

(2) tast growth f grows exponentially if $\exists a, b \neq 0$ and real with $2^{ak} \leq f(k) \leq 2^{bk}$

(3) medium
fgrows subexponentially if
$$\forall a_1b^{>0}$$
 and real
with $k^a << f(k) << 2^{bk}$

That's all for now!