Introduction to Cryptography

Computational complexity

PCMI 2022 - Undergraduate Summer School

We will be talking about algorithms
specific) "recipe" to do something
"exponentiation" is not an algorithm compute $g^{3}: \quad g^{2}$

$$
g^{2} \cdot g
$$

vs fast modular exponentiation

We will want to talk about the computational complexity of a given algorithm
This is roughly the amount of resources needed to do the computation time, number of arithmetic steps space or memory

We will talk about "schoolbook multiplication"

The exact number of steps when multiplying 2 3-digit numbers depends on the digits because of the carries
But most of the operations when multiplying are multiplications
lsingle-digit mult.

Number of steps to multiply $2 \quad 5$-digit numbers as few as 41
as many as 74233
Number of steps to multiply $2 \quad k$-digit numbers as few as $2 k^{2}-2 k+1$
as many as $3 k^{2}-1$

$$
\begin{aligned}
& 2 k^{2}-2 k+1=k^{2}+\frac{k(k-1)}{2}+\frac{(k-1)(k-2)}{2} \\
& 3 k^{2}-1=2 k^{2}-2 k+1+k(k-1)+k+2(k-1)
\end{aligned}
$$

After a while, we see that the "Right" input to a function counting the number of steps is the size (the number of digits) of the numbers being multiplied.

$$
k=\left\lfloor\log _{10} n\right\rfloor+1
$$

Cformula to compute the size k of the number n \# of bits $=\left\lfloor\log _{2} n\right\rfloor+1$

By abuse of the word function, let $f(k)=$ tsteps to multiply $2 k$-digit numbers for us $\quad k^{2} \leq f(k) \leqslant 3 k^{2}$

Definition 1 , natural numbers $\mathbb{Z}_{>0}$
Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$
\angle positive peal
Then $f \ll g$ is there are constants a, b such that if $k \geq a$ then

$$
f(k) \leqslant b g(k)
$$

when the input is large enough
f is less than a constant times g.
Also $f \in O(g)$ or $f=O(g)$

Definition 2
Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$
We say $f \gg g$
| Note that Ω is slightly different in analytic number theory

- if $g \ll f$
- equivalently if there are real constants a, b with

$$
f(k) \geqslant b g(k) \text { when } k \geqslant a
$$

Also $f \in \Omega(g)$ or $f=\Omega(g)$

Definition 3
We say $f \sim g$ if $f \ll g$ and $g \ll f$ Read " f is on the order of g "

Real notation $f=\theta(g)$ or $f \in \theta(g)$
Proposition If $\lim _{k \rightarrow \infty} \frac{f(k)}{g(k)}$ exists and is finite then $f \ll g$,

3 main speeds at which f can grow
(1) slow growth:

We say that f grows polynomially if there are positive real constants a, b with

$$
k^{a} \ll f(k)<c k^{b}
$$

(Silverman said " f is quadratic means $f \sim k^{2}$ ")
(2) fast growth
f grows exponentially if $\exists a, b>0$ and real with

$$
2^{a k} \ll f(k) \ll 2^{b k}
$$

(3) medium
f grows subexponentially if $\forall a, b>0$ and real with $\quad k^{a} \ll f(k)<c 2^{b k}$
—

That's all for now!

