Fully homomorphic encryption PCMI 2022 Undergraduate Summer School Lecture 9

Christelle Vincent
University of Vermont

August 1, 2022

Breaking news!!

SIDH/SIKE is broken as it stands!!

(Castryck-Decru, preliminary report posted on Saturday)

SIDH in one slide

Fully homomorphic encryption PCMI 2022 Undergraduate Summer School Lecture 9

Christelle Vincent
University of Vermont

August 1, 2022

A dream from 1978

A public key cipher such that

- for any function f, and
- access only to encryptions $\operatorname{Enc}\left(m_{1}\right), \operatorname{Enc}\left(m_{2}\right), \ldots, \operatorname{Enc}\left(m_{t}\right)$
we can compute an encryption of $f\left(m_{1}, m_{2}, \ldots, m_{t}\right)$.

Applications of FHE

- Query/search on encrypted database
- Private query/search on database
- Analysis of/machine learning on private data

The punchline

Gentry came up with a construction in 2009 based on RLWE.

Homomorphic encryption

A homomorphic cipher allows one operation on ciphertexts.
Usually this is + or \times on the integers (modulo N).

Homomorphic encryption example: RSA

RSA encryption: $c \equiv m^{e}(\bmod N)$
If $c_{i} \equiv m_{i}^{e}(\bmod N)$ and $m \equiv m_{1} m_{2}(\bmod N)$, then

$$
c_{1} c_{2} \equiv m_{1}^{e} m_{2}^{e} \equiv m^{e} \equiv c \quad(\bmod N)
$$

Fully homomorphic encryption

A fully homomorphic cipher allows arbitrary operations on ciphertexts.

Some circuit facts

Computer operations are encoded as circuits consisting of gates.

Example: bit addition with carry

Truth tables

Gates/programs can be expressed as truth tables.

| Input | Output | | Input |
| :---: | :---: | :---: | :---: | Output | 00 | 0 | | 00 |
| :---: | :---: | :---: | :---: |
| 01 | 1 | | 01 |
| 10 | 1 | | 10 |
| 11 | 0 | | 11 |
| | | 1 | |
| XOR gate (sum) | | AND gate (carry) | |

Universal gates

A set of gates is functionally complete if any truth table can be expressed with these gates.

One functionally complete set

The gates \{ AND, NOT \} are enough to express anything.

Input	Output		
00	0		Input
01	0		Output
10	0		1
11	1		0
AND gate		NOT	

Fully homomorphic encryption, again

It used to mean "respects + and \times."
Now can also respect just one universal gate, like NAND or NOR.

Main issue

Known constructions add noise to the ciphertext for security.
Operations increase the noise.

Somewhat homomorphic encryption

A cipher that respects a certain number of + and \times is called somewhat homomorphic.

One answer

Restrict how many operations can be done: leveled fully homomorphic encryption.

Gentry's idea: bootstrapping

If the decryption circuit has N operations, build a cipher that can handle at least $N+1$ operations.

Gentry's analogy: Alice's jewelry store

Alice does not trust her employees, so gets lockboxes with gloves:

Gentry's analogy: Alice's jewelry store

Unfortunately, the gloves get stiff with use.
Thankfully, the boxes have a one-way insertion slot, and are stretchy enough so one box can be put inside another.

Gentry's solution: Alice's jewelry store

Several boxes, and the i th box contains the key of the $(i-1)$ st box.
Work in box i-1 until almost stiff, put inside box i, unlock, work in box i until almost stiff, and so on.

Gentry's solution: FHE

Generate enough pairs $\left(\mathrm{sk}_{i}, \mathrm{pk}_{i}\right)$, and use pk_{i} to encrypt sk_{i-1}.
When noise gets too big, "recrypt" ciphertext with next set of keys.

Recryption example

Let D be the decryption circuit: If c is an encryption of m under pk then

$$
D(\mathrm{sk}, c)=m
$$

Recryption example

Let

- c_{1} encrypt m under pk_{1},
- $\overline{\mathrm{sk}_{1}}$ encrypt sk_{1} under pk_{2}, and
- $\overline{c_{1}}$ be an encryption of c_{1} under pk_{2}.

Then $D\left(\overline{\mathrm{sk}_{1}}, \overline{c_{1}}\right)$ is m encrypted under pk_{2}

Consequences for algorithms

- Must specify size of output of the circuit
- No random access memory
- Develop low depth algorithms

Thank you!

