USS: Introduction to mathematical cryptography Thursday August 4 problems

The canonical embedding

For these problems, consider $K = \mathbb{Q}(\sqrt[3]{2})$, the field generated by the element α such that $\alpha^3 = 2$. This is of degree 3 over \mathbb{Q} , and note that the ring of integers of K is monogenic and generated by α . If you do not know about them already, you might want to read about complex third roots of unity before starting this problem.

- 1. How many real embeddings does K have? How many complex embeddings? What does each embedding do to α ?
- 2. Give a basis of the lattice $\Lambda = \sigma(R)$, where R is the ring of integers of K and σ is the canonical embedding.
- 3. Compute the image of the following elements under the canonical embedding: 1, α , $1 + \alpha$, $\alpha + \alpha^2$.
- 4. Compare the multiplication of the image of elements under the canonical embedding to the multiplication of elements when expressed as a polynomial in α . In particular, if elements are stored as vectors, which multiplication is simpler to express?

Error distributions

Once again, consider $K = \mathbb{Q}(\sqrt[3]{2})$. Compare the PLWE error distribution, where coefficients of the polynomial in α are chosen at random according to a discrete Gaussian distribution, to the RLWE error distribution, which for simplicity you can assume chooses the coordinates of the elements, expressed in a basis for Λ , at random according to a discrete Gaussian distribution. Are the two distributions the same?

Dual lattices

One topic we unfortunately will not be able to get to is dual-RLWE, where the secret and/or errors belong to the dual lattice Λ^{\vee} of Λ . To introduce this lattice we will need some setup: Define the **trace** of an element $\alpha \in K$ to be the sum

$$\operatorname{Tr}(\alpha) = \sum_{\sigma_i} \sigma_i(\alpha),$$

where the σ_i run through all embeddings (real and complex) of K into \mathbb{C} . Then the **dual** ring to R, the ring of integers of K is the ring of elements

$$R^{\vee} = \{ \alpha \in K : \operatorname{Tr}(\alpha\beta) \in \mathbb{Z} \text{ for all } \beta \in R \}.$$

The dual lattice Λ^{\vee} is then the canonical embedding of R^{\vee} .

- 1. Prove that $R \subset R^{\vee}$ for all fields K.
- 2. Consider $K = \mathbb{Q}(\sqrt[3]{2})$. Find an element that is in R^{\vee} but not in R.