
USS: Introduction to mathematical cryptography
Tuesday August 2 problems

A (relatively) simple decryption circuit

Recall the simple cipher we studied in class last week on Tuesday. The truth is that it is
only somewhat homomorphic and unable to evaluate its own decryption circuit. In the article
where the cipher is introduced, the authors must first “squash” the decryption circuit by
modifying the key generation, encryption, and decryption algorithms. I recommend reading
this but we will not cover it in our course.

Instead, we will think deeply of the decryption circuit for the original simple cipher to
see what is involved in creating a circuit. Recall that the decryption algorithm is

m ≡ rp(c) (mod 2).

Throughout assume that you are given the ciphertext c as a string of bits, and the prime p
as a string of bits. For simplicity you can assume that p is 3 bits long and c is 6 bits long.

1. Suppose that you knew the value of rp(c), given in bits. Show/convince yourself that
the value of m is the least significant bit of rp(c).

2. We will compute rp(c) in the following manner:

• First compute the value 1
p

in bits to some amount of accuracy. For simplicity you

can assume that you must compute 1
p

up to 10 bits past the decimal point.

• Then compute the fractional part of c × 1
p
, in bits. Record the most significant

bit for later.

• Take the fractional part and multiply by p. Round to the nearest integer. This is
the remainder with 0 ≤ r < p.

• To get rp(c), add the most significant bit of the fractional part of c × 1
p

to the
least significant bit of the remainder you just obtained.

To begin, perform this algorithm, using first digits if you need, and then bits with
p = 7 and c = 13.

3. Now imagine how you would describe each operation above in more detail explaining
what to do to each bit of p and c to compute the various quantities, using only addition
and multiplication. These are the operations you would perform on the ciphertexts
(which are integers!) to perform the decryption circuit homomorphically. Imagine
what happens!



Practicing PLWE

For these problems, we will use the field K = Q(γ), for γ a root of the irreducible
polynomial x3 − x2 + 1. OK is monogenic and generated by γ. Let q = 17.

1. Generate, by hand, a private and public key for PLWE as described in class.

2. Encrypt a message with 3 bits.

3. Decrypt the ciphertext you produced.

4. Notice what happens to the polynomial coefficients when you multiply two elements
of OK : they grow. The rate at which they grow is called the “expansion factor” of the
polynomial x3 − x2 + 1.


