USS: Introduction to mathematical cryptography
Thursday July 28 problems

1. Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ be linearly independent row vectors in \mathbb{R}^{n}. Form the matrix M whose rows are the vectors \vec{v}_{i}. Let $\vec{a}=\left(a_{1}, \ldots, a_{n}\right)$ be a row vector with integer entries. Show that $\vec{a} M$ is a vector in the lattice generated by $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ and show that every vector in the lattice can be written in this way. (So M is a generating matrix for the lattice.)
2. Please read about lattice basis reduction in two dimensions. You can find pseudocode for it on Wikipedia at https://en.wikipedia.org/wiki/Lattice_reduction\#In_ two_dimensions, and it's also covered in Trappe and Washington. For each of the following two lattices, please give a reduced basis and a shortest vector:
(a) the lattice generated by the vectors $\vec{v}_{1}=(1,5)$ and $\vec{v}_{2}=(6,21)$
(b) the lattice generated by the vectors $\vec{v}_{1}=(3,8)$ and $\vec{v}_{2}=(5,14)$
3. (a) Find a reduced basis for the lattice generated by the vectors $\vec{v}_{1}=(53,88)$ and $\vec{v}_{2}=(107,205)$.
(b) Find the vector in the lattice of part (a) that is closest to the vector $\vec{v}=(151,33)$. (This is an example of the closest vector problem. It is easier to solve when a reduced basis is known, but difficult in general.)
4. Throughout this problem, let $q=17$. Consider the matrix

$$
A=\left(\begin{array}{cccc}
1 & 2 & 0 & 16 \\
4 & 3 & 14 & 15 \\
14 & 0 & 4 & 1 \\
4 & 16 & 15 & 3
\end{array}\right)
$$

Someone who cares about you very much tells you that if $\vec{z}=(1,-1,1,-1)$, then $A \vec{z} \equiv 0(\bmod 17)$.
Consider the following two sets of pairs $\left\{\left(\vec{a}_{i}, b_{i}\right)\right\}$. One of them is a set of LWE pairs, and the other is just made up with random values of b_{i}. Can you tell which is which? First set of pairs:

$$
\begin{gathered}
((1,4,14,4), 3) \\
((2,3,0,16), 5) \\
((0,14,4,15), 14) \\
((16,15,1,3), 3)
\end{gathered}
$$

Second set of pairs:

$$
\begin{gathered}
((1,4,14,4), 8) \\
((2,3,0,16), 16) \\
((0,14,4,15), 14) \\
((16,15,1,3), 5)
\end{gathered}
$$

