
USS: Introduction to mathematical cryptography
Monday July 25 problems

Factoring using Shor’s algorithm

1. Suppose that you are using Shor’s algorithm to compute the multiplicative order of 2
modulo 15. Throughout this problem we will use the notation set up in the slides.

(a) What value of q would you take?

(b) Suppose that your measurement in Shor’s algorithm is j = 192. What value
would you obtain for r, the multiplicative order of 2 modulo 15? Does it agree
with the real multiplicative order of 2 modulo 15?

(c) Use your value of r to factor 15.

2. Suppose that you wish to factor N = 35 using Shor’s algorithm, and you use the value
a = 2.

(a) What is the multiplicative order r of 2 modulo 35? You can compute this by
hand; as a hint to go faster, you may use the fact that the multiplicative order of
2 modulo 35 divides ϕ(35) = 24.

(b) What is ar/2 (mod 35), where r is the multiplicative order of 2 modulo 35?

(c) If you can, use the value you computed in part (b) to compute a nontrivial factor
of 35.

3. Suppose that you wish to factor N = 33 using Shor’s algorithm, and you use the value
a = 2.

(a) What is the multiplicative order r of 2 modulo 33? You can compute this by
hand; as a hint to go faster, you may use the fact that the multiplicative order of
2 modulo 33 divides ϕ(33) = 20.

(b) What is ar/2 (mod 35), where r is the multiplicative order of 2 modulo 35?

(c) If you can, use the value you computed in part (b) to compute a nontrivial factor
of 35.

Continued fractions and Shor’s algorithm

1. In this problem we will prove that if there is a fraction M
r
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(b) Suppose, as in Shor’s algorithm, that we have∣∣∣∣ j2q
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Show that M
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.

Roots of unity

1. In this problem we will prove that if ζ 6= 1 is any other nth of unity (not necessarily
primitive), then

1 + ζ + ζ2 + · · ·+ ζn−2 + ζn−1 = 0.

(a) Use induction to show that for all n ≥ 2,

xn − 1 = (x− 1)
n−1∑
k=0

xk = (x− 1)(1 + x+ x2 + · · ·+ xn−2 + xn−1).

(b) Use the fact that ζn− 1 = 0 and the formula you proved in part (a) to prove that

1 + ζ + ζ2 + · · ·+ ζn−2 + ζn−1 = 0

if ζ 6= 1 is an nth root of unity.

What are the odds of Shor’s algorithm succeeding?
Recall that Shor’s algorithm begins with choosing a number a with 1 < a < N at random.

It is possible to show that if if N = pq for p, q two distinct odd primes, the probability that
gcd(a,N) > 1 is negligible (in the sense of the Tuesday July 19 problem set) as N gets
large. So it is very likely that a will be relatively prime to N .

Assuming that gcd(a,N) = 1, Shor’s algorithm will work if the multiplicative order r of
a modulo N is even and ar/2 6≡ −1 (mod N). In this series of problems we work out what
the probability is of this happening. This probability affects how often we expect to have to
start the algorithm over with a new a.1 We will see that it is pretty high, so we don’t expect
to have to run Shor’s algorithm too many times.

This assignment requires the use of the Chinese Remainder Theorem, which you may
or may not have seen before. If you have not seen it, then the facts you will need are the
following:

1. If N = pq for p, q distinct primes, then x ≡ 1 (mod N) if and only if x ≡ 1 (mod p)
and x ≡ 1 (mod q).

2. If N = pq for p, q distinct primes, then x ≡ −1 (mod N) if and only if x ≡ −1 (mod p)
and x ≡ −1 (mod q).

1There is another point at which the algorithm can fail when we interpret the outcome of the quantum
algorithm using continued fractions, but we ignore that for now.



1. In this problem, p is an odd prime. We first compute the odds that an element chosen
uniformly at random from (Z/pZ)× has odd order.

(a) Suppose that (Z/pZ)× = 〈g〉; show that the element gs ∈ (Z/pZ)× has multi-
plicative order

k =
p− 1

gcd(p− 1, s)
.

Here s = 0, 1, 2, . . . , p− 2.

(b) Let p− 1 = 2em with m odd. Using your work from part (a), show that the order
of gs ∈ (Z/pZ)× is odd if and only if 2e divides s.

(c) If s is chosen uniformly at random from the values s = 0, 1, 2, . . . , p− 2 (in other
words, each of these numbers has an equal chance of being chosen), show that the
probability that the order of gs ∈ (Z/pZ)× is odd is 1

2e
.

2. Now let N = pq for p, q two distinct odd primes, and let 1 < a < N with gcd(a,N) = 1.
Suppose further that the multiplicative order of a modulo p is k and the multiplicative
order of a modulo q is `. Finally, write p − 1 = 2em for m odd and q − 1 = 2fm′ for
m′ odd.

(a) Show that if r is the multiplicative order of a modulo N , then r is the least
common multiple of k and `.

(b) Using your result from part (a), show that r is odd if and only if both k and `
are odd.

(c) Since a is chosen randomly, we can show using the result of problem 1 that k is
odd with probability 1

2e
and ` is odd with probability 1

2f
. In addition, the event

that k is odd is independent from the event that ` is odd. What is the probability
that r is odd?

(d) Show that the probability that r, the multiplicative order of a modulo N is odd,
is always less than or equal to 1

4
, so that r is even with probability at least 3

4
.

3. Finally, assuming that r is even, we must compute the probability that ar/2 ≡ −1
(mod N). This is trickier, so we will only cover a special case here, but this probability
is always less than or equal to 1

2
. Throughout this problem we use the notation we

have established in problems 1 and 2 above.

(a) Prove that ar/2 ≡ −1 (mod p) if and only if 2 gcd(k, `) does not divide `. (This
means that the largest power of 2 that divides ` is smaller than the largest power
of 2 that divides k.) Note that by symmetry it is also true that ar/2 ≡ −1 (mod q)
if and only if 2 gcd(k, `) does not divide k.

(b) Prove that ar/2 ≡ −1 (mod N) if and only if the largest power of 2 that divides
k is equal to the largest power of 2 that divides `.



(c) Suppose that e = f = 1, and remember that we assume that r is even. Show that
the probability that ar/2 ≡ −1 (mod N) is 1

4
.

The conclusion you should draw from this problem is that overall, these two constraints
(that r needs to be even, and that ar/2 6≡ −1 (mod N)) balance each other out: When
e and f are large, then the probability that r is even is really big, but it’s only just
a little bit better than 50-50 probability that ar/2 6≡ −1 (mod p). So overall in that
case the chance of success is approximately 1

2
. When e = f = 1 (so e and f are as

small as they can be), then the probability that r is even is 3
4
, which is as small as it

can be, but the probability that ar/2 6≡ −1 (mod N) is 3
4
, so overall the probability of

success is 9
16

, which is also close to 1
2
. All of the other cases make it more likely that we

will succeed. So overall the probability that the a we choose will be suitable is always
greater than 1

2
.


