USS: Introduction to mathematical cryptography
Thursday July 21 problems

1. In this problem we will consider the group $G=(\mathbb{Z} / p \mathbb{Z})^{\times}$for p an odd prime, under multiplication. Throughout suppose that g generates this group, and write $\log _{g} h \equiv a$ $(\bmod p-1)$ if $h \in(\mathbb{Z} / p \mathbb{Z})^{\times}$is such that $h \equiv g^{a}(\bmod p)$.
(a) Prove that $g^{a} \equiv g^{b}(\bmod p)$ if and only if $a \equiv b(\bmod p-1)$, so that the value of $\log _{g} h$ is indeed well-defined modulo $p-1$ for any $h \in(\mathbb{Z} / p \mathbb{Z})^{\times}$.
(b) Prove that $\log _{g}\left(h_{1} h_{2}\right) \equiv \log _{g}\left(h_{1}\right)+\log _{g}\left(h_{2}\right)(\bmod p-1)$ for all $h_{1}, h_{2} \in(\mathbb{Z} / p \mathbb{Z})^{\times}$.
(c) Show that the equation $x^{2} \equiv h(\bmod p)$ has a solution if and only if $\log _{g}(h)$ is even. (Does it even make sense to say that $\log _{g}(h)$ is even?)
2. This is Trappe and Washington's problem 2 in Section 7.6.
(a) Compute $6^{5}(\bmod 11)$.
(b) It is a fact that $(\mathbb{Z} / 11 \mathbb{Z})^{\times}=\langle 2\rangle$. Let x be such that $2^{x} \equiv 6(\bmod 11)$. Without computing x, is x odd or even?
3. This is Trappe and Washington's problem 6 in Section 7.6. It is a fact that $(\mathbb{Z} / 101 \mathbb{Z})^{\times}=$ $\langle 2\rangle$, and $\log _{2} 3 \equiv 69(\bmod 100)$ and $\log _{2} 5 \equiv 24(\bmod 100)$.
(a) Using the fact that $24=2^{3} \cdot 3$, compute $\log _{2} 24(\bmod 100)$.
(b) Using the fact that $5^{3} \equiv 24(\bmod 101)$, compute $\log _{2} 24(\bmod 100)$.
4. Find an odd prime p such that $(\mathbb{Z} / p \mathbb{Z})^{\times} \neq\langle 2\rangle$.
5. Use the baby steps, giant steps algorithm to solve the problem

$$
11^{x} \equiv 21 \quad(\bmod 71)
$$

