Erosion rates & patterns inferred from cosmogenic ¹⁰Be in the Susquehanna River Basin

> Joanna M. Reuter Thesis Defense March 11, 2005 Paul Bierman, advisor

Motivation:

- Applied questions
 - -Chesapeake Bay sedimentation
- Basic science questions
 - Topographic change over time
 - -Relationships between erosion rate and landscape characteristics

Erosion rates

Cosmogenic ¹⁰Be in fluvial sediment

Sediment yield

Landscape characteristics Tectonics Climate Vegetation Topography Bedrock geology

> Geographic information systems (GIS)

Cosmic ray bombardment produces ¹⁰Be in quartz.

10Be

Cosmic Rays

Virtual Tour of the Susquehanna River Basin

EXPLANATION

• Cities & towns

EXPLANATION

Coal fields

EXPLANATION

Major dams

Basin Selection and Sampling Approach

GIS-selected Basins

GIS-selected Basins: Nested Basins

Summary of Groups of Samples

USGS Basins

mostly large, complex

GIS-selected Basins

small, simple

Bedrock Samples

10 Be Concentrations and Inferred Erosion Rates

Results for USGS Basins

	¹⁰ Be			
not glaciated	part glaciated	glaciated		
			0.4 0.6 0.8 1.0 2.0 10	Normalized ${}^{10}Be$ concentration (10 ⁵ atoms g ⁻¹ quartz)

if assumptions have been met

	GIS-	USGS basins				
	sandstone	shale	schist	mixed lithology		
Appalachian Plateaus					50	Inferred
					30	erosion rate
					10	(m/My)
Valley and Ridge					50	
					30	
					10	
Piedmont					50	
					30	
					10	

¹⁰Be Erosion of the Appalachians

Summary of Results

- Erosion rate correlates positively with basin slope
- No discernible relationship exists between lithology and erosion rate
- Results for non-glaciated USGS basins are robust
- For basins impacted by glaciation, ¹⁰Be results cannot be directly interpreted as erosion rates
- Bedrock outcrops are eroding slowly

¹⁰Be Erosion Rates Compared to Sediment Yield

¹⁰Be

VS.

- Sediment generation
- Time scale: 10⁴-10⁵ years
- Representative of full rock erosion

Sediment Yield

- Export of sediment from the basin
- Period of record, 2 to 29 years
- Suspended load only; does not include dissolved load or bedload

For comparison, present both as erosion rates (m/My)

Source of sediment yield data:

Gellis et al. (2005), Williams and Reed (1972), and unpublished data from A. Gellis

Testing Geomorphic Models of Topographic Change

Geographical Cycle (Davis)

Image sources: http://www.staff.amu.edu.pl/~sgp/gw/wmd/wmd.html

http://epswww.unm.edu/facstaff/gmeyer/eps481/481tectclimateveg_files/frame.htm#slide0032.htm

Dynamic Equilibrium (Hack)

Image source: http://epswww.unm.edu/facstaff/gmeyer/eps481/481tectclimateveg_files/frame.htm#slide0032.htm

Dynamic Equilibrium (Hack)

"It is assumed that within a single erosional system all elements of the topography are mutually adjusted so that they are downwasting at the same rate."

Dynamic Equilibrium (Hack)

Statistical Steady State

Statistical Steady State

Perturbation

Mountains

More stable

Geographical Cycle Peneplain

Dynamic Equilibrium Uniformly eroding topography

Statistical Steady State Changing topography, constant relief

Hack's Equilibrium?

More stable

Geographical Cycle Peneplain

Dynamic Equilibrium Uniformly eroding topography

Statistical Steady State Changing topography, constant relief

Is Relief Changing?

- Slow erosion of ridges:
 - Bedrock samples
 - High elevation, low slope sandstone basins
- Capacity for rapid stream incision:
 - Holtwood Gorge

Mechanism for reduction of relief: Slope retreat

m/My

0.5

13 m/My

Kilometers

9

Perturbation

Mountains

More stable

Geographical Cycle Peneplain

Dynamic Equilibrium Uniformly eroding topography

Statistical Steady State Changing topography, constant relief

Perturbation?

Background: ¹⁰Be data from the Sierra Nevada Riebe et al. (2001)

No base level fall, no correlation with slope:

Base level fall, correlation with slope:

Perturbation

Mountains

More stable

Geographical Cycle Peneplain

Dynamic Equilibrium Uniformly eroding topography

Statistical Steady State Changing topography, constant relief

Evidence for a Miocene Perturbation

- Offshore sedimentary record: increased sediment delivery (Poag and Sevon, 1989; Pazzaglia and Brandon, 1996)
- Fission track: period of rapid exhumation beginning in the Miocene (Blackmer et al., 2001)
- Detrital chert and detrital fission track data suggest stream capture and drainage reorganization in the central Appalachians (Naeser et al., 2004)
 - Rates and patterns of erosion in the Susquehanna River Basin may reflect ongoing adjustment to Miocene stream capture and baselevel fall.

Global Compilation of ¹⁰Be Data from Fluvial Sediment:

A Brief Overview

Regions with ¹⁰Be erosion rate data from sediment Published data from:

Bierman and Caffee, 2001; Brown et al., 1995; Brown et al., 1998; Clapp et al., 2000; Clapp et al., 2002; Granger et al., 1996; Heimsath et al., 1997; Heimsath et al., 2001; Hewawasam et al., 2003; Kirchner et al., 2001; Matmon et al., 2003; Morel et al., 2003; Riebe et al., 2000; Riebe et al., 2003; Schaller et al., 2001; Vance et al., 2003

In press, in preparation, and unpublished data from: Bierman, Duncan, Johnsson, Nichols, Reuter, Safran

Erosion rate, in meters/million years, for largest sampled basin in region

Topography Tectonics Climate Vegetation

Topography Tectonics Climate Vegetation Lithology

Vegetation

Climate ¹⁰Be erosion rate (meters per million years) 10000 ۸ ▲ ∆ A n = 454 1000 100 10 Δ 500 1000 1500 2000 2500 3000 Mean annual precipitation in basin (millimeters)

Conclusions

Tectonics

 Susquehanna River Basin erosion rates are relatively low and similar to other passive margin and tectonically quiescent settings

Topography

- Slope matters
- Elevation and erosion rate are not correlated within the region

Climate

- Relatively uniform intra-annual distribution of precipitation, and correspondingly low erosion rates
- Glaciation disrupts isotopic steady state and precludes simple interpretation of erosion rates from ¹⁰Be

Conclusions

- Vegetation and land use
 - ¹⁰Be results are robust to land use impacts
 - Contemporary sediment yields for the Piedmont are high relative to background ¹⁰Be sediment generation rates
- Lithology
 - No clear impact of lithology on erosion rate in the Susquehanna River Basin
- History
 - Rates and patterns of erosion may reflect ongoing adjustment to Miocene stream capture and base-level fall

Acknowledgments

- Funding: NSF, USGS, UVM
- Paul Bierman
- Jen Larsen, Megan McGee, Bob Finkel
- Milan Pavich, Allen Gellis
- Donna Rizzo, Beverley Wemple, Cully Hession
- Luke Reusser, Matt Jungers, and all the other Geo grads, faculty, & staff
- Eric Butler

For example: Erosion rates – Sediment yield

Landscape characteristics

Topography – Relief

from Ahnert, 1970

For example: Erosion rates \leftarrow Landscape $-^{10}$ Be in fluvial sediment characteristics

Topography
– Relief

from Vance et al., 2003

Results for non-glaciated USGS basins are robust within a factor of 2

Appalachian Plateaus

Valley & Ridge

Piedmont

Factors of possible importance for understanding sediment dynamics and/or interpreting ¹⁰Be data

- Multiple lithologies, varying quartz content
- Glaciation
- Human impact
 - Agriculture
 - Logging
 - Development
 - Coal mining
 - Dams

Results for USGS Basins

if assumptions have been met

Summary

Landscape characteristic	Metric	Relates to ¹⁰ Be erosion rate?
Lithology	Rock Type (Susquehanna) Erodibility metric (Rio Puerco)	Νο
		Yes

Summary: ¹⁰Be and Sediment Yield

 Sediment yield is out of equilibrium with ¹⁰Be in the Piedmont