Basin-scale analysis of long-term sediment-generation rates derived from ¹⁰Be in river sediment: The Susquehanna River basin and beyond

> Joanna M. Reuter M.S. Proposal April 30, 2003 Paul Bierman, advisor

Outline

- Big picture questions
- Fundamentals of cosmogenic nuclide analysis of sediment
- Framework of study
- Susquehanna River
- Example: Drift Creek, Oregon Coast Range
 - Geographic Information Systems
 - Multivariate statistics
- Applications and summary

Where and how quickly does **Earth's** surface erode?

Sediment generation

Topography

Local geology

Climate

- Precipitation
- Temperature

Tectonics

Tectonic setting

Sediment generation

Biota

Land cover

Topography

- Relief
- Slope
- Aspect
- Stream network
- Sinuosity

Local geology

Lithology

Temporal Scale: Methods for Inferring Erosion Rates

Apatite fission track, (U-Th)/He thermochronometry $10^6 - 10^8$ years

Cosmogenic nuclide analysis of sediment 10³ – 10⁶ years

Measurement of present day sediment yield $10^{0} - 10^{2}$ years

Time scale

Production Rate

¹⁰Be is a proxy for erosion rate

Sample Sediment for Basin-Integrated Sediment-Generation Rates

Spatial Distribution:

Drift Creek, OR: Bierman et al., 2001 Yuma Wash: Clapp et al., 2002 Rio Puerco: Clapp et al., 2001, Bierman et al., 2001 Great Smoky Mountains: Matmon et al., 2003 Nahal Yael, Israel: Clapp et al., 2000

The Susquehanna River Basin

Basin size: >70,000 km² North American passive margin Motivation: Chesapeake Bay

Partly glaciated

The Susquehanna River basin

22 preliminary samples Collected at USGS streamgages Challenges of data interpretation Large basin Glaciated basin Sediment storage in terraces Sampling strategy Utilize GIS to select sampling sites Focus on small headwater basins Focus on unglaciated parts of the basin

Data Analysis

- Acquire GIS data
- Delineate drainage basin from digital elevation model
- Summarize data for each basin
- Explore data qualitatively—longitudinal profiles, etc.
- Explore data statistically
- Investigate whether sediment generation rates inferred from ¹⁰Be activities correlate with basin-scale parameters

Drift Creek

- 180 km² basin in the Oregon Coast Range
- Oregon Coast Range has received extensive geomorphic study
- Independent evidence suggests that the Oregon Coast Range approximates a topographic steady state

Multivariate statistics

 Ascertain which variables have most explanatory value

- Principal components analysis
- Multiple linear regression
- Canonical correlation analysis

Anticipated Outcome

Insight regarding relative importance of:

Climate

Tectonics

Topography

Biota

Local geology

Motivation and Applications

- Assess human impacts on sediment yield
- Chesapeake Bay sedimentation
- Development of EPA Total Maximum Daily Load (TMDL) regulations

Funding

- USGS
- NSF Graduate Research Fellowship
- Graduate College Summer Research Fellowship
- Graduate Teaching Fellowship

Timeline

Spring 2003 (Graduate Teaching Fellowship)

- Preliminary Susquehanna samples: from quarts of sample to samples of quartz; data before summer field work
- GIS data acquisition (focus on US basins) and preliminary analysis

Summer 2003 (Graduate College Summer Research Fellowship)

- Susquehanna field work, purify quartz from new samples
- GIS work continued

Fall 2003 (NSF Graduate Research Fellowship)

- Continue intensive GIS analysis, analyze summer field data
- Present at GSA
- Spring & Summer 2004 (NSF Graduate Research Fellowship)
- Complete data analysis
- Write and defend thesis
- Presentation of results at national meetings

JUNK

Cosmogenic nuclide analysis of sediment: key ideas

- Earth is continually bombarded by cosmic rays
- The interaction of cosmic rays with near-surface materials produces cosmogenic nuclides, including ¹⁰Be and ²⁶Al in quartz
- Abundance of cosmogenic nuclides in stream sediments reflects the erosional history of the basin

Data organization

Sediment			¹⁰ Be activity
sample properties			Interpreted sediment generation rate
			Grain size fraction used in analysis
Basin properties			Basin area
			Slope
	Digital elevation model (DEM)		Curvature
			Relief
		Stream network properties	Network length (by stream order)
			Sinuosity
		Longitudinal profile geometry	Concavity
	Goology		Area with quartz-bearing rocks
	Geology		Rock strength
	Physiography		Area of represented physiographic provinces
	Ecoregion		Area of represented ecoregions
	Land use/land cover		Area of land cover types
Region properties	Tectonics		Tectonic setting
	General climate		Rainfall
			Temperature

What's New & Different

Combination of:

- Temporal scale
- Spatial distribution

Combination of analytical tools:

- Cosmogenic nuclide analysis of sediment
- Geographic Information Systems (GIS)
- Multivariate statistics

Framework of M.S. Research

- Obtain and interpret ¹⁰Be data from Susquehanna River basin sediments
- Analyze worldwide basins from which Bierman and collaborators have obtained cosmogenic nuclide data from sediment
 - Consider relationship of ¹⁰Be activities to basinscale parameters using GIS

Spatial Distribution Cosmogenic Data Sets

EXPLANATION

DC: Drift Creek, OR (Bierman et al., 2001)
YW: Yuma Wash, AZ (Bierman et al., 2001)
RP: Rio Puerco, NM (Clapp et al., 2001)
GS: Great Smoky Mtns. (Matmon et al., 2003)
NY: Nahal Yael, Israel (Clapp et al., 2000)
BA: Bolivian Andes

SQ: Susquehanna River

- NS: North Slope, Alaska
- VZ: Venezuela
- NA: Namibia
- **BH**: Bhutan

Anticipated Outcome

Results of the analysis of cosmogenic nuclide data and basin-scale parameters will provide insight regarding the relative importance of climate, tectonics, topography, biota, and lithology in determining sediment generation rates.