Holocene Flood Frequency in New England: Large, Episodic Events in the Sediment Record

Adam Parris University of Vermont Master's Thesis Defense April 18, 2003

WHY?

RICHFORD, VT. NOV.4th. 1927.

Calendar ky BP

Does particle size anlaysis of lake sediment cores offer a higher resolution record of storminess?

Are there periods and/or cycles of increased storminess in NH & ME, similar to VT & NY?

Is the regional storm record in NH & ME similar to other Atlantic records? •Climatic causes/controls?

Reasoner Method

Head

Barrel

-Piston

Lake Locations

	DEE			
Lake Name	Surface Area (km²)	Depth (m)	Basin Relief (m)	
Worthley Pond (ME)	1.43	15	344	
Crystal Lake (NH)	0.4	18	353	
South Pond (NH)	0.7	27.9	427	
Ogontz Lake (NH)	0.303	22	408	
Stinson Lake (NH)	1.4	22	655	
Sandy Pond (NH)	0.11	12	226	

Analytical Methods • Visual Stratigraphic Log Magnetic Susceptibility (MAG) Loss on ignition (LOI) AMS- Radiocarbon Analysis (¹⁴C) Particle Size Analysis COMPREHENSIVE PREP •HIGH RESOLUTION •REGIONAL COVERAGE

Size Frequency Distributions

End Member Modeling: Unraveling the size distribution

60 %

20 %

20 %

Estimation of End Members

End Members

Proportion of the End Members

- 80 dates
- John Southon, Tom Guilderson
 - Lawrence Livermore National Laboratory

Event Detection Comparison

	Mean	Median	Min	Max
LOI 1σ	31	28	15	70
LOI 2 σ	8	4	2	32
Mean PS 1 σ	39	33	11	81
Mean PS 2 σ	20	18	7	45
Median PS 1 σ	37	32	12	88
Median PS 2 σ	18	15	6	52
Coarse EMs 1 σ	29	22	14	57
Coarse EMs 2 σ	15	12	7	31

Storm Dates

Storm Frequency

Storm Frequency- EMM

Climate in Northeastern USA

Hurricane Connection

- Increased storminess in New England = Increased hurricane frequency in Atlantic and Gulf Coast
- Increased storminess in New England = Increased flooding in Upper Mississippi Valley
- Modern record of hurricane-related precipitation and flooding

Discussion

- Differing landscape response to precipitation
- Storm size
 - -More frequent events
 - -Smaller cycles
 - -Radiocarbon uncertainties

Discussion

- Geographic location of study area
- Proposed mechanisms for hurricane-related storms in New England

Conclusions

- Grain size is an effective physical parameter which detects more frequent events
- End Member Modeling is a valuable tool for revealing processes reflected in grain size distributions
- Different patterns of storminess in NH & ME than VT & NY
- Patterns of storminess in NH & ME connected to hurricane related storms

Acknowledgements

Without the financial support from NSF and the friendship, support, and collaboration of these people, this project would not be possible.

Paul Bierman Peter Ryan Charlotte Mehrtens Angie Conlan Sarah Brown Kristen Benchley Joseph Haun Sarah Stopper Anders Noren Andrea Lini Andi Lord Maarten Prins Wayne Parris Kathy Parris Krista Parris Laura Mallard Andy Bosley Stephen Wright Karen Jennings John Southon Tom Guilderson Eric Steig Craig Kochel