A 13,000-year regional record of Holocene storms in the northeastern United States

Anders Noren University of Vermont

Funding: NSF Career Grant EAR-970264

Rain-induced erosion Deposition in lakes

Ritterbush Analyses GD LOI %C %N C/N δ^{13} C PS MS CH **1 cm**

Other Mechanisms

- Earthquakes
- Snowmelt
- Lake-level fluctuations
- Removal of vegetation
 - Drought, disease
 - Fires
 - Human activity

Why Storms?

 Written records correlate with paleostorm reconstructions
 Layer occurrence
 Layer thickness

Field observations

Questions

Does the Ritterbush record reflect regional processes?

 Storm size: Hurricanes or localized storms? (Were layers deposited synchronously in multiple lakes?)

 Regional storm trends: Periods of increased storminess? Cycles?

Climatic causes/controls?

Lake Characteristics

Steep
Deep
Evidence of sediment transport

Lake Locations

Analytical Tools

 Magnetic Susceptibility (MS) X-Radiography (XR) • Visual Logging: color, texture (VL) Loss-on-Ignition (LOI) AMS-Radiocarbon Analysis (¹⁴C)

Time Series Filter

- Remove negative peaks $> 1\sigma$ from median
- SSA reconstruction of remaining series
- Peaks > 1σ from reconstruction = SIGNIFICANT

Depth (cm)

AMS ¹⁴C Analysis

- 80 dates
- John Southon,

Lawrence Livermore National Laboratory

Calendar Years BP

Depth (cm)

Events	Dates	Model Ages
	1400	1400
	3000	2100, 2150 3000, 3120 3400, 3790
	5200	4800, 4950 5200

Discussion

Storm size
Storm magnitude
Storm frequency

---> Climate: New England and North Atlantic

Storm Size

Storm Size

Small storms locally as damaging as large

Magnitude highest in early and late Holocene

Spectral Analysis

Another Spectrogram...

Storm Magnitude

Frequency (cycles/kyr)

Storm Magnitude

Frequency (cycles/kyr)

500-year cycle: Ocean circulation? Solar?

Storm Frequency

Frequency (cycles/kyr) • 3000-year cycle

Storm Frequency

Storm Frequency

4 maxima; currently increasing—observed?

North Atlantic Climate

Arctic Oscillation

High phasezonal flowEurope warm

Low phase
meridional flow
Europe cold

Europe cold

Factors Pointing to AO Involvement

- **1.** Storminess correlates with GISP2
 - GISP2 maxima imply meridional flow
 - Meridional flow :: low-phase AO
- 2. Storm maxima occur when Europe is cold
 - Cold in Europe :: low-phase AO
- **3.** Modern relationship established

North Atlantic Climate

Implications of AO involvement

Dominant atmospheric modesAO, ENSO

Long-timescale climate forcing

Ocean thermohaline circulation
Solar variability

Conclusions

1. Storm Size

 Small storms locally as damaging as hurricanes/nor'easters

2. Storm Magnitude
500-year cycle: cause?
Highest when climate is cool, moist

Conclusions

3. Storm Frequency • 3000-year cycle 4 Holocene maxima Currently increasing—observed? Maxima correlate with fans, floods, storms, cool periods Relationships consistent with AO

Probable solar forcing

Acknowledgements

I thank NSF for funding, and the following people for their work and guidance.

Paul Bierman Andy Bosley Sarah Brown **Gordon Chadburn Angie Conlan Ben Copans Jen Cunningham David Fleming Gretchen Fowles Claude Gaboriault Josh Galster**

Doug Gomez Sara Gran **Rachael Howse Forrest Janukajtis Karen Jennings Neil Kamman Drew Lamneck** Andrea Lini Andi Lord Laura Mallard **Christine Massey**

Gagan Mirchandani Kyle Nichols Adam Parris Simon Rupard John Southon Eric Steig Stephen Turgeon Carrie Williams Stephen Wright Geohydrology **Class 1999**

Grain Size Analysis

Low-Phase AO Temp. Anomalies

Arctic Oscillation

High phasezonal flowEurope warm

Low phasemeridional flowEurope cold

Calendar Years BP

Calibration

Calendar Years BP

Another Spectrogram...

